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Abstract—In a time-reversal (TR) communication system, the
signal-to-noise ratio (SNR) is boosted and the inter-user interfer-
ence (IUI) is suppressed due to the spatial–temporal resonances,
commonly known as the focusing effects, of the TR technique when
implemented in a rich scattering environment. However, since
the spatial–temporal resonances highly depend on the location-
specific multipath profile, there exists a strong–weak spatial–
temporal resonances effect. In the TR uplink system, different
users at different locations enjoy different strengths of spatial–
temporal resonances, i.e., the received signal-to-interference-noise
ratios (SINRs) for different users vary, and the weak ones can
be blocked from correct detection in the presence of strong ones.
In this paper, we formulate the strong–weak spatial–temporal
resonances in the multiuser TR uplink system as a max–min
weighted SINR balancing problem by joint power control and sig-
nature design. Then, a novel two-stage adaptive algorithm that
can guarantee the convergence is proposed. In stage I, the original
nonconvex problem is relaxed into a Perron Frobenius eigenvalue
optimization problem and an iterative algorithm is proposed to
obtain the optimum efficiently. In stage II, the gradient search
method is applied to update the relaxed feasible set until the
global optimum for the original optimization problem is obtained.
Numerical results show that our algorithm converges quickly,
achieves a high energy-efficiency, and provides a performance
guarantee to all users.

Index Terms—Time Reversal, strong–weak spatial–temporal
resonances, energy-efficiency, performance guarantee.

I. INTRODUCTION

T HE explosive growth of high speed wireless services that
can support various wireless communication applications

with a large number of users calls for future wideband com-
munication solutions. Moreover, the dispersion of a channel
in wideband communications will bring in an undesirable phe-
nomenon: inter-symbol interference (ISI). Since the resolution
of perceiving multiple paths increases significantly with the
increase of bandwidth, ISI is more severe in a wideband sin-
gle carrier system [1]. To tackle this problem, equalization
techniques at the receiver side and/or multicarrier modula-
tions are developed. While the performance of communication
is improved, the complexity of terminal devices inevitably
increases.
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On the other hand, thanks to its inherent nature that fully
collects energy of multi-path propagation, the time-reversal
(TR) based signal transmission is an ideal paradigm for low-
complexity single-carrier broadband communication systems
[2]. In essence, by treating each path of the multi-path channel
in a rich scattering environment as a widely distributed virtual
antenna, TR provides a high-resolution spatial-temporal reso-
nance, commonly known as the focusing effect. This focusing
effect indeed is the outcome of a resonance of electromag-
netic field, in response to the environment, which concentrates
energy propagated through the multipath channel onto a partic-
ular intended location at a specific time instant. The property
of spatial focusing alleviates the inter-user interference (IUI)
effectively in communications. Meanwhile, the traditional TR
signature works as a matched filter at the access point (AP),
which brings a temporal focusing and boosts the signal-to-
noise ratio (SNR) at the intended location. In [3], a multi-user
downlink system over multi-path channels using time reversal
division multiple access (TRDMA) method was investigated.
TRDMA is capable of achieving a very high diversity gain and
of supporting low-cost and low-complexity terminal devices
with only one single transmit antenna. As analyzed in [4], the
TR-based wideband communication system was further proved
to be a desired solution for future wireless communication
systems. TR technique is also a promising solution for green
Internet of Things (IoTs) in that a typical TR system has a
potential of over an order of magnitude of reduction in power
consumption and interference alleviation, as well as support-
ing heterogeneous terminal devices and providing an additional
security and privacy guarantee [5]. However, the traditional TR
signature is optimal only in the low symbol rate scenario due
to ISI. A near optimal waveform design and power allocation
solution was proposed in [6], suppressing both ISI and IUI and
maximizing the achievable sum rate for the multiuser TRDMA
downlink system.

The spatial-temporal resonance of the TR has been proposed
as theory and validated through experiments in both acous-
tic domain and radio frequency (RF) domain. As verified in
[7]–[9], energy of acoustic signal can be refocused with high
resolution through a TR procedure after which a divergent wave
issued from an acoustic source is converted into a convergent
wave focusing on the source. This time-reversal mirror (TRM)
is a self-adaptive technique that can be utilized to compen-
sate for propagation distortions. The resonant effects of TR
have also been validated through underwater acoustic experi-
ments [10], [11]. In the RF domain, the TR spatial-temporal
resonances of electromagnetic (EM) waves were studied in the
SISO and MISO schemes and experiment results showed that
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the quality of focusing is determined by the bandwidth fre-
quency and spectral correlations of the field [12]. Lerosey et al.
conducted experiments on microwaves in an indoor environ-
ment to further study the TR spatial-temporal focusing effects
[13]. In [14], the TR technique was applied as a prefilter and its
performance was investigated in the channel with large delay
spread. Furthermore, the theory of TRM is formally developed
for electromagnetic waves in [15]. However, since the quality
of spatial-temporal resonances of EM waves highly depends
on the propagation environment and transmission bandwidth,
there exists a strong-weak spatial-temporal focsing effect in the
multiuser TRDMA uplink system. Because of the strong-weak
spatial-temporal resonances, the received SNRs of different
users can be very distinct and weak signals can be blocked from
correct detection in the presence of strong ones. Note that such
a strong-weak spatial-temporal resonance is different from the
well-known near-far effect in the CDMA uplink systems. For
example, the TR resonances may bring in a signal boosting gain
up to 6 - 10 dB while the near-far effect only causes attenuation
in signal strength. Moreover, the reasons of creating the strong-
weak spatial-temporal resonances is much more complicated
than the near-far effect which is mainly resulted from the phys-
ical distances. The detailed differences between them will be
discussed in the following.

The main reason causing the near-far problem in the CDMA
uplink systems is that the distances from different transmit-
ters to the same receiver differ a lot and the signals from the
farther transmitters have lower SNR according to the inverse
square law [16]. Dynamic power control algorithms have been
proposed to alleviate the near-far effect in CDMA uplink sys-
tems and other cellular communication systems [17]–[21]. In
[18], a centralized power adjustment scheme for cochannel
interference control was proposed and investigated. Alpcan
et al. formulated the distributed power control problem in
CDMA system as a noncooperative game where a user-specific
utility function based on SIR was designed and a quantita-
tive criterion for admission control was derived upon possible
equilibrium solutions [21]. Furthermore, as the usage of beam-
forming affected not only the individual link gains but also the
power allocation strategy, joint optimization algorithms were
proposed to enhance system performance [22]–[24]. With the
uplink and downlink duality [25], [26], dynamical power con-
trol has also been applied to ensure multiuser fairness and to
improve the total system data capacity in the downlink system
[27]–[33]. The max-min criterion was first proposed in [27] for
smart antenna downlink systems and the Perron Frobenius the-
orem [34], [35] was involved. Furthermore, a centralized algo-
rithm was proposed in [28] for MISO downlink systems with
frequency-flat channels. Recently, a nonlinear Perron Frobenius
theorem has been introduced, and a distributed weighted pro-
portional SINR algorithm was proposed to optimize multiuser
downlinks [36]. The work has been extended to MIMO down-
links in [33], [37], and a power update problem under multiple
power constraints was analyzed in [38]. However, the analysis
and algorithms in the previous literature only considered opti-
mizations in downlink systems where constraints are applied
to the sum of individual powers. Compared to the total power
constraints, to address the nonconvex max-min optimization

under multiple individual power constraints is more compli-
cated. Moreover, most of existing literature considered the
frequency-flat channel model or multi-carrier systems and thus
the inter-symbol interference (ISI), which is an important issue
in the single-carrier system, has been omitted in the analysis.

Unlike the CDMA near-far problem resulted solely from dis-
tance, the TRDMA uplink systems suffer from the strong-weak
spatial-temporal resonances among different users mainly due
to the different resonances resulted from location-specific mul-
tipath environments. The performance of each link depends on
the corresponding signal-to-interference-noise ratio (SINR). To
guarantee the performance, we need to combat the strong-weak
spatial-temporal resonances and to balance the SINRs among
all links. To this end, we formulate the strong-weak spatial-
temporal resonances combating problem in the TRDMA uplink
system as a max-min weighted SINR optimization problem by
the means of joint power allocation and signature filter design.
Note that such a problem is non-convex and has many individ-
ual constraints which make it even harder to handle. To tackle
this challenge, in this work, we propose a two-stage algorithm
that solves this problem efficiently in two steps and converges
to the global optimum quickly. In stage I, the original opti-
mization problem is relaxed into a Perron Frobenius eigenvalue
optimization problem by converting all the individual power
constraints into a total power constraint. An iterative algorithm
is proposed that is targeted to tackle the relaxed problem. In
stage II, in order to find the global optimum for the origi-
nal problem, the gradient search method is applied to shrink
the relaxed feasible set. Simulation results demonstrate that the
proposed algorithm is capable of providing a performance guar-
antee to all users regardless of their channel gains. Furthermore,
our proposed algorithm is highly energy efficient comparing to
the Basic TR schemes [3].

This paper is organized as follows. In Section II, the sys-
tem model and problem formulation is described. In Section III,
we relax the original TRDMA uplink SINR balancing problem
with individual power constraints into an eigenvalue optimiza-
tion problem and introduce an iterative algorithm which alter-
nately optimizes signature matrix and power assignment vector.
The two-stage adaptive algorithm for the TRDMA uplink SINR
balancing problem with individual constraints is proposed in
Section IV. Finally, numerical simulation in Section V demon-
strates the performance improvement of our proposed scheme
compared with traditional methods and conclusion is drawn in
Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, in this work, we consider a TRDMA
uplink system, where K users transmit data through the same
media to one single access point (AP) simultaneously. In con-
ventional single-carrier uplink systems, there is a detectability
problem where signals with strong SNRs block weaker sig-
nals from being detected, e.g. the well-known near-far effect
in the CDMA uplink system [1]. In CDMA uplink systems,
the difference between SNRs of received signal is caused by
the variations in transmit power and distance-based propagation
attenuation. In the TRDMA uplink system, however, besides
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Fig. 1. Representative case for TRDMA uplink system.

Fig. 2. Diagram for TRDMA uplink system.

the variations in transmit power and distance-based pathloss,
the multipath channel gain brings in the strong-weak spatial-
temporal resonances that cause the SNRs of the received signals
to be different. Therefore, the detectability problem also com-
monly exists in the TRDMA uplink systems and needs to be
carefully addressed.

The schematic diagram of a TRDMA uplink system is shown
in Fig. 2 [5]. We can see that the signal of kth user, Xk , is first
upsampled by a backoff factor Dk . Then, the upsampled signal
X [Dk ]

k is boosted by a power control factor p(k) before being
transmitted through the location-specific multipath channel hk .
Since all the transmitted signals from different users are com-
bined over the air, the received signal at the AP is a mixture
of all transmitted signals and noise. To extract the information
of different users, the received signal passes through a user-
specific signature filter bank gi which is designed according to
the channel information obtained in the channel probing phase.
In the channel probing phase, devices send an impulse or a
pseudorandom noise (PN) sequence to the AP [2], such that
the channel estimation can be obtained. We found through real
experiments that channel response is rather stationary. In order
to combat variations on channels and number of users, TR com-
munication systems must rely on the channel probing phase to
update the channel information frequently. This can be done
really quick to be unnoticeable to users under time-varying sit-
uation. Then the output is downsampled by a backoff rate Di ,
and a series of detectors are performed to detect the information
of each user.

However, since the multipath channel gains vary among dif-
ferent users, the SINR of each user in the received signal may
be different, and consequently the information of some users
may not be detected correctly. From Fig. 2, we can see that,

for a fixed detector, the received SINRs of users are deter-
mined jointly by the power control factor and the signature
filter. Therefore, in this work, our objective is to jointly opti-
mize signature G = [g1, . . . , gK ] and power allocation p =
[p(1), . . . , p(K )]T to make sure the information of all users
can be correctly detected.

A. Problem Formulation

Now, let us take a close look at this strong-weak spatial-
temporal resonances problem and formulate it into an optimiza-
tion problem. According to the system diagram in Fig. 2, the
received signal at the AP can be written as follows

s[m] =
∑

k

∑
l

√
p(k)hk[m − l]X [Dk ]

k [l]+ n[m], (1)

where X [Dk ]
k is the upsampled version of the transmitted signal

from the kth user, p(k) is the transmit power and hk denotes the
channel impulse response of the kth user to AP with channel
length Lk , i.e., hk[m] = 0 for m < 0 and m > Lk − 1.

The (1) can be rewritten in a matrix form as s =∑
k
√

p(k)Hkx[Dk ]
k + n, where s is a (2L − 1)× 1 vector with

L = maxk Lk , Hk is a (2L − 1)× L Toeplitz matrix with each
column being the shifted version of hk , and n denotes the addi-
tive white Gaussian noise (AWGN) vector whose elements are
identical complex Gaussian with mean zero and variance σ 2.

At the AP side, the received signal s first passes through a
user-specific signature filter bank {gi ,∀i} to extract information
and to suppress interference. Then it is downsampled to obtain
Yi as follows

Yi [m] =
K∑

j=1

∑
l

√
p( j)X j [l](h j ∗ gi )[m Di − l D j ]+ n[m]

= √p(i)Xi [m](hi ∗ gi )[0]

+√p(i)

l=� L−1
Di
�∑

l=−� L−1
Di
��=0

Xi [m − l](hi ∗ gi )[Dil]

+
∑
j �=i

√
p( j)

l=� L−1
D j
�∑

l=−� L−1
D j
�
X j [m−l](h j ∗ gi )[D jl]+ñi [m],

(2)

where ñi is a downsampled version of n ∗ gi .
Based upon (2), the uplink SINR for user i is given as,

SI N RU L
i (G, p) = p(i)gH

i R(0)
i gi

p(i)gH
i R̂i gi +∑ j �=i p( j)gH

i R j gi + σ 2
,

(3)

where G = [g1, . . . , gK ] is the signature matrix,
p = [p(1), . . . , p(K )]T is the power allocation vector,
R(0)

i = H(L)H
i H(L)

i with H(l)
i being the lth row of Hi and the

superscript H denoting the hermitian operator, R j = H̃H
j H̃ j ,
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H̃ j is the upsampled version of H j with factor D j and sam-

pling center located at H(L)
j , and R̂i = Ri − R(0)

i . The first two

terms in the denominator, p(i)gH
i R̂i gi and

∑
j �=i p( j)gH

i R j gi ,
represent ISI and IUI respectively.

Let us define a crosstalk matrix ��� for the TRDMA uplink
system whose elements correspond to the ISI and IUI term in

SI N RU L
i as [�]i j =

{
gH

j Ri g j , i �= j

gH
i R̂i gi , i = j

. The crosstalk matrix

� is of all positive components, and �i is the i th column of
matrix �.

Moreover, D is defined as a diagonal matrix with [D]i i =
γi/gH

i R(0)
i gi , and γi is the SINR weighted factor for i th user

which supports heterogeneous SINR requirements. Then we
can have SI N RU L

i (G, p)/γi = p(i)/[D]i i (�
T
i p+ σ 2),

In order to ensure the fairness among all users and to
boost the system performance, we jointly design the signa-
ture matrix G = [g1, . . . , gK ] and power allocation vector p =
[p(1), . . . , p(K )]T . To balance the SI N RU L

i (G, p) among dif-
ferent users, the max-min fairness is adopted in this work as
follows

maximize
G,p

min
j

p( j)

[D] j j (�
T
j p+ σ 2)

subject to p � 0, p 	 pmax , ‖gi‖2 = 1, i = 1, . . . , K , (4)

where pmax denotes the vector of individual maximal transmit
power, and 0 is an all-zero vector with K elements. In an attempt
to maximize the entire network throughput, by using the log
utility functions, the proportional fairness criterion pulls up the
weaker signals thereby giving them QoS protections. However,
the QoS protection from proportional fairness is not as strong
as that of the max-min criterion. Because the fairness is the top
concern in the multiuser uplinks, rather than the entire through-
put, in this work with the purpose to address the strong-weak
spatial-temporal resonances the max-min criterion is selected.

By introducing an auxiliary variable γ and rewriting the K
individual SINR expressions into a vector form, we have

maximize
G,p,γ

γ

subject to p � 0, p 	 pmax , p � γ D(�T p+ σ ),

‖gi‖2 = 1, i = 1, . . . , K , (5)

where σ is a K × 1 vector with each element being σ 2.
First of all, the optimization problem in (5) is not convex.

Moreover, the 4× K individual constraints make the problem
even more challenging. To solve (5), we develop a two-stage
efficient algorithm as will be shown in the following two sec-
tions. Specifically, we first relax the problem into a Perron
Frobenius eigenvalue optimization problem through using a
total power constraint to enlarge the feasible set, and develop
an iterative algorithm to find the optimal solution to the relaxed
problem. Then, we propose an adaptive two-stage algorithm
to find the global optimal solution to the original optimiza-
tion problem with individual constraints, based on the relaxed
eigenvalue problem.

III. ITERATIVE ALGORITHM WITH A TOTAL POWER

CONSTRAINT

In this section, we will introduce our work on relaxing the
original uplink SINR balancing problem into an equivalent
eigenvalue optimization problem and introduce the proposed
algorithm where the signature and power assignment are iter-
atively optimized.

The relaxed version of the original problem in (5) is

maximize
G,p,γ

γ

subject to 1T p ≤ 1T pmax , p � γ D(�T p+ σ ),

p � 0, ‖gi‖2 = 1, i = 1, . . . , K , (6)

where 1 is an all-one vector with K elements.
Here we can see, the problem in (6) maintains the same

objective function but is relaxed by a total power constraint.

A. Uplink Power Assignment Problem

We first consider the case when the signature matrix is fixed
as G̃ = [g̃1, g̃2, . . . , g̃K ] with ‖g̃i‖2 = 1, i = 1, 2, . . . , K , and
then problem in (6) is reduced to an uplink power allocation
problem as

maximize
p,γ

γ

subject to p � 0, 1T p ≤ 1T pmax , p � γ D(�T p+ σ ). (7)

In Theorem 1, the necessary condition for the global opti-
mum of problem in (7) is introduced.

Theorem 1: Given G̃, if p∗ is a global maximizer of the (7),
then 1T p∗ = 1T pmax , and p∗ = γ ∗D(�T p∗ + σ ), where γ ∗ is
the optimum of minimum weighted SINR.

Proof: The proof of Theorem 1 is in APPENDIX A. �
Combining the two equations in Theorem 1, we have an

equivalent necessary condition for global optimizer p∗ of (7)
as 1

γ ∗ 1T pmax = 1T D(�T p∗ + σ ).
Based on the previous analysis, let us define an augmented

power vector as p̃ = [pT , 1]T and an augmented matrix which
only depends on G and Ptotal = 1T pmax as

�(G, Ptotal) =
(

D�T Dσ
1

Ptotal
1T D�T 1

Ptotal
1T Dσ

)
. (8)

Then, the necessary condition for the global optimum p∗
in (7) can be characterized as an eigensystem that 1

γ ∗ p̃∗ =
�(G, Ptotal)p̃∗. In order to ensure the feasibility of the solution,
p̃∗ should be element-wisely positive as well as γ ∗.

In TRDMA uplink systems, due to the existence of ISI and
IUI, � is a nonnegative irreducible cross-talk matrix. As a
result, �(G, Ptotal) is a matrix with nonnegative entries and
is also irreducible. According to the Perron Frobenius Theorem
[27], [34], [35], we can have the following properties for � as

1) the maximal eigenvalue λmax is just its spectral radius and
it is simple;

2) the eigenvector v that has all positive entries is the one
associated to the largest eigenvalue.
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Therefore, there exists a feasible solution to the eigensys-
tem and the solution is unique. Moreover, based upon the
uniqueness and existence, the necessary condition in Theorem 1
becomes a necessary and sufficient condition for global opti-
mum of (7). Thus, the power allocation problem in (7) is
addressed by finding the Perron Frobenius eigenvector of
�(G̃, Ptotal) and the optimal threshold is given by γ ∗ =
1/λmax (�(G̃, Ptotal)).

B. Joint Signature Design and Power Assignment

From the previous subsection, we know that for any arbi-
trary matrix G̃, the optimal power assignment vector p∗ under
the total power constraint Ptotal is a K × 1 vector consisting
of the first K elements in the scaled (K + 1)× 1 dominant
eigenvector of �(G̃, Ptotal). Meanwhile the associated opti-
mal threshold γ ∗ is the reciprocal of the dominant eigenvalue.
Therefore, the number of optimization variables in (6) is greatly
reduced and the (6) is equivalent to an eigenvalue optimization
problem as

minimize
G

λmax (�(G, Ptotal))

subject to ‖gi‖2 = 1, i = 1, . . . , K , (9)

For the Perron Frobenius eigenvalue λ of a matrix �, it can
be represented as [35]

λ = min
y�0

max
x�0

xT �y
xT y

= min
x�0

max
y�0

xT �y
xT y

. (10)

Recall that p̃ = [pT , 1]T , let us define a cost
function as λ̃(G, p) = max

x�0
xT �(G, Ptotal)p̃/xT p̃, and

the Perron Frobenius eigenvalue can be represented as
λmax (�(G, Ptotal)) = min

p�0
λ̃(G, p).

Then, the optimal threshold for the problem in (9) can be
obtained as

γ ∗ = 1

min
G

min
p�0

λ̃(G, p)
= 1

min
G

λ̃(G, popt )
, (11)

where popt = arg min
p�0

λ̃(G, p) represents a vector consisting of

the first K elements in the dominant eigenvector.
Given the cost function, the problem in (9) has an equivalent

formulation as

min
G

min
p�0

λ̃(G, p)⇔ min
p�0

min
G

λ̃(G, p). (12)

For the left part in (12), when the signature matrix is fixed,
the problem is solved as the eigenvalue problem in the previ-
ous subsection. Considering the right hand side of (12), when
the power allocation vector is fixed, the way to find the corre-
sponding optimal signature matrix G∗ is given in Lemma 1 as
follows.

Lemma 1: The optimal signature matrix for a given vector
par y is denoted as G∗. We have G∗ = arg min

G
λ̃(G, par y) =

arg min
G

γi/SI N RU L
i (G, par y),∀i . That is to say, the opti-

mal signature can be obtained by individually maximizing the
uplink SINR of each user.

Proof: The proof of Lemma 1 is in APPENDIX B. �

Algorithm 1. Iterative SINR Balancing Algorithm under
Total Power Constraint

1: Initialize: Given {γi }Ki=1, σ 2, Ri and R(0)
i ∀i , Pmax . Pick

ε > 0, Ptotal ← 1T Pmax , p(0)← Ptotal
K 1, λ

(0)
max ←∞.

2: loop n ⇐ n + 1
3: Calculate the MMSE g(n)

i ,∀i under p(n−1), and
normalize it to make ‖gi‖2 = 1,∀i .

4: Build the couple matrix �(n)(G(n), Ptotal) in the way
shown in (8).

5: Solve the Perron Frobenius eigenpair problem to
get λ

(n)
max and its corresponding eigenvector p̃(n) with

p̃(n)(K + 1) = 1. p(n)← {p̃(n)}K1 .

6: end loop If λ
(n−1)
max − λ

(n)
max < ε or reach the maximal

number of iterations.

Remark: The SINR maximizing signature can be opti-
mized by

g∗i = arg max
‖gi‖2=1

par y(i)/[D]i i (�
T
i par y + σ 2),∀i. (13)

The optimal solution is equivalent to the MMSE beam-
forming vector, g∗i = αi (

∑K
j=1 par y( j)R j + σ 2I)−1H(L)H

i ,∀i ,
where αi is a normalized factor.

Furthermore, the necessary and sufficient condition for the
global optimum of problem in (9) is stated in the following
theorem.

Theorem 2: (Necessary and Sufficient Condition): G∗ =
[g∗1, g∗2, . . . , g∗K ] is the global optimizer of the problem in
(9) if and only if λ̃(G∗, p∗) = min

G
λ̃(G, p∗), where p∗ =

arg min
p�0

λ̃(G∗, p), i.e., p̃∗ is the Perron Frobenius eigenvector

of �(G∗, Ptotal) and p̃∗T = [p∗T , 1].

Proof: The proof of Theorem 2 is in APPENDIX C. �
Theorem 2 implies that if one of the variable p or G has

reached the optimum, the remaining one can be obtained either
by solving the Perron Frobenius eigenpair problem or by inde-
pendently solving the MMSE problem. Based on this, we
propose an iterative algorithm that alternatively optimizes p and
G, and eventually converges to the global optimum.

C. Iterative Algorithm and Convergence

Built upon the previous analysis, we propose an iterative
algorithm in Algorithm 1 to jointly optimize the signature
matrix and the power assignment vector, given the objective to
balance the weighted uplink SINRs for all users.

Theorem 3: The sequence {λ(n)
max }∞n=0 generated by the pro-

posed algorithm in Algorithm 1 is strictly decreasing and
converges to the global optimum of (9), regardless of the initial
value.

Proof: The proof of Theorem 3 is in APPENDIX D. �
As we proved, the necessary and sufficient condition for

global optimum of (9) is equivalent to the condition λ
(n+1)
max =

λ
(n)
max , which implies the convergence of {λ(n)

max } sequence. As
a consequence, the algorithm stops as soon as the difference
in λ

(n−1)
max − λ

(n)
max reaches a predetermined threshold ε > 0. On
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average the algorithm will yield the global optimum of (9) in 3
or 4 iterations, independent of number of users.

IV. TWO-STAGE ADAPTIVE ALGORITHM WITH

INDIVIDUAL POWER CONSTRAINTS

In the previous section, we have discussed how to relax the
original problem in (5) into a Perron Frobenius eigenvalue opti-
mization problem. For any fixed total power constraint Ptotal ,
there only exists one pair of optimal signature matrix G∗(Ptotal)

and power assignment vector p∗(Ptotal). As we have analyzed,
the original problem with individual power constraints has a
more tightened feasible set. Hence, we need to gradually shrink
the relaxed feasible set until the optimal solution to the original
problem is reached.

Lemma 2: The optimal power assignment vector generated
from iterative SINR balancing algorithm in Algorithm 1 is
monotonically increasing as the total power constraint Ptotal

increases.

Proof: The proof is provided in APPENDIX E. �
According to Lemma 2, we know that as the feasible set is

shrunk by reducing the total power constraint in (6), the optimal
power assignment for each user is monotonically decreasing.
Hence, as long as we keep adjusting the feasible set by updating
the total power constraint, we will definitely reach a point which
is on the boundary of the individual-constrained feasible set.
At this point, we achieve the maximum of balanced weighted
SINRs. In the SINR balancing scenario under TRDMA uplink
systems, the user with the weakest spatial-temporal resonance
or a minimal transmit power will restrict the performance of
entire system. Here, we define the worst case in a network to
be the user who has a minimal difference between its power
constraint pmax (i) and its assigned power under a total power
constraint Ptotal , i.e. pmax (i)− p∗i (Ptotal). After finding the
worst case, the relaxed feasible set is updated following the
direction of the worst case.

The proposed two-stage adaptive algorithm is shown in
Algorithm 2, where the SINR balancing problem with individ-
ual constraints is solved. In stage I, the original optimization
problem in (5) is relaxed into an eigenvalue optimization prob-
lem, and the corresponding optimum is obtained through the
proposed iterative algorithm shown in Algorithm 1. In stage
II, based on the solution in stage I, the relaxed feasible set is
modified by updating the total power constraint using the gra-
dient decent method against the worst case. Before converging
to the global optimum, stage I and stage II work alternatively
and iteratively.

A. Analysis on Convergence

Theorem 4: The sequence {δ(n), n = 1, 2, . . .} generated
from Algorithm 2, is a strictly increasing sequence, and con-
verges to 0 where the global optimum for problem in (5) is
achieved.

Proof: The proof is provided in APPENDIX F. �
According to Theorem 4, we can see that our adaptive algo-

rithm for SINR balancing problem under individual power
constraints is practical and it always converges to the global
optimal solution to the problem in (5).

Algorithm 2. Two-Stage Adaptive Algorithm for SINR
Balancing Problem under Individual Power Constraint

1: Initialize: Given {γi }Ki=1, σ 2, Ri and R(0)
i ∀i , Pmax .

Pick ε > 0 as the stop criterion or tolerance and 0 <

η,μ < 1 as stepsizes. P(0)
total ← 1T Pmax , Update p(0)

by Algorithm 1 under P(0)
total , δp(n)← Pmax − p(n),

[index, δ(n)]← min(δp(n)).
2: loop n ⇐ n + 1
3: p← Algorithm 1 with μP(n−1)

total , slope←
(p(n−1)(index)− p(index))/(1− μ)Ptotal .

4: δPtotal ← δ(n−1)/slope, P(n)
total ← P(n−1)

total + δPtotal .

5: Update p(n) under P(n)
total , δp(n), and [index, δ(n)]←

min(δp(n)) � Find the worst case
6: while δ(n) > ε do � Force δ(n) ≤ ε

7: δPtotal ← η × δPtotal , P(n)
total ← P(n−1)

total + δPtotal

8: Update p(n), δp(n) and [index, δ(n)]
9: end while

10: end loop If |δ(n)| ≤ ε or reach the maximal number of
iterations.

The average number of iterations for Algorithm 1 to converge
is N1 = 3, for backward search in Algorithm 2 with stepsize
η = 0.8 is N2 = 1, and for Algorithm 2 with stepsize μ = 0.9
is N3 = 3. Moreover, the complexity for solving MMSE signa-
ture is O(L2), where L is the length of channel. In our real
environment measurement, under 125 MHz its typical value
is smaller than 30. The computational complexity for solving
the Perron Frobenius eigenvalue of the augmented matrix is
O((K + 1)2), where K is the number of users in the uplinks.
Hence, the total computational complexity for the joint opti-
mization is approximately N1 × N2 × (1+ N3)× (O(L2)+
O((K + 1)2)). Under the simulation with stepsizes being η =
0.8 and μ = 0.9, the amount of required computation time is
10× (O(L2)+ O((K + 1)2)).

B. Properties of SINR Balancing Problem

In this part, we will briefly introduce some properties of the
TRDMA SINR balancing problem.

Assumption 1: With a small perturbation in total power con-
straint Ptotal , i.e., Ptotal → (1+�)Ptotal ,�� 1, the optimal
MMSE signature can be viewed as approximately unchanging.

The detailed explanation for the rationality of Assumption 1
is shown in APPENDIX G.

Following the Assumption 1, as � < 10−2, since the opti-
mal MMSE signature matrix G will not change, the argumented
matrix �(G, Ptotal) in (8) will have the same components with
�(G, (1+�)Ptotal) except the last row. Under this setting, we
have

���(G, (1+�)Ptotal) =
(

D�TD�TD�T DσDσDσ
1T D�TD�TD�T

(1+�)Ptotal

1T DσDσDσ
(1+�)Ptotal

)
, (14)

and ���(G, (1+�)Ptotal) = A×���(G, Ptotal), where A =(
I 0

0T 1
1+�

)
.
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As mentioned in [39], ρ(���(G, (1+�)Ptotal)) ≥
1

(1+�)α
ρ(���(G, Ptotal)) and δλ ≥ ( 1

(1+�)α
− 1)λ, where

δλ is the difference in dominant eigenvalues, ρ(·) denotes the
spectral radius of nonnegative matrices, i.e., in our case it is the
Perron Frobenius eigenvalue, and 0 < α < 1 is a coefficient
determined by the right and left Perron Frobenius eigenvectors
of ���(G, Ptotal).

Then, we can bound the change of Perron Frobenius eigen-
value under the perturbation of � as 0 < − δλ

λ
< �

�+1 .
Let us denote k = [k1, k2, . . . , kK ] as the optimal power

assignment ratio vector, where ki = p∗(i)/Ptotal and p∗(i)
is the optimal power assignment to problem in (6) under
total power constraint Ptotal . According to the necessary and
sufficient condition of optimal power, we have

k = 1

Ptotal
(λI− D���T )−1D1, (15)

where we assume σσσ = 1 and thus Ptotal is the SNR. Then we
can also have

k+ δk = 1

(1+�)Ptotal
((λ+ δλ)I− D���T )−1D1

= 1

1+�

∑
n≥0

(
−δλ

λ

(
I− 1

λ
D���T

)−1
)n

k, (16)

where δk denotes the change in power assignment ratio with a
total power changes by �Ptotal .

Combining the (15) and the (16), we can represent the
change in power assignment ratio vector as δk = − �

1+�
k+

1
1+�

∑
n≥1(− δλ

λ
C−1)nk, where C−1 = (I− 1

λ
D���T )−1, and∑

n≥1(− δλ
λ

C−1)n exists. It can be further derived as

δk = �

1+�

⎛⎝−I+ 1

�

∑
n≥1

(
−δλ

λ
C−1

)n
⎞⎠k

= �

1+�

(
I+ δλ

λ
C−1

)−1 (
−�+ 1

�

δλ

λ
C−1 − I

)
k.

(17)

Moreover, owing to the fact that 1T δk = 0, 1T k = 1, we
have 1 = 1T (−�+1

�
δλ
λ

C−1)k.
Let us define v = −�+1

�
δλ
λ

C−1k, with 0 < vi , ∀i < 1
and 1T v = 1. The (17) can be re-written as δk = �

1+�
(I+

δλ
λ

C−1)−1(v− k). Dividing both sides by �, we have δk
�
=

1
1+�

(I+ δλ
λ

C−1)−1(v− k).

Then taking the limit gives limit
�→0

δk
�
= (v− k), which implies

that limit
δP→0

δki
δP = 1

Ptotal
(vi − ki ),∀i , where δP is the perturba-

tion in Ptotal . This demonstrates that the slope |δki |
δP for every

user is bounded by 1
Ptotal

max{ki , 1− ki }. As a result, within a

suitable SNR range where the slope |δki |
δP is quite small, the opti-

mal power assignment ratio will stay stable even the total power
constraint is changing.

Fig. 3. Power assignment under 3 users case.

V. SIMULATION RESULTS

To evaluate the proposed algorithms, we conduct several
simulations to demonstrate that our proposed weighted SINR
balancing algorithm is an ideal solution to ensure fairness
and energy-efficiency, as well as to tackle the strong-weak
spatial-temporal resonances in the multiuser TRDMA uplink
system.

Our simulation settings are described as following:
1) Channel Model: UWB office non-line-of-sight channel,

with bandwidth B = 500 MHz and maximal number of
channel taps L = 60.

2) Back-off rate D: The D is set to 4 (16) when there are 3
(20) users.

3) Channel Gain ‖H(L)
i ‖22: uniform distributed among [0, 1]

for all users.
4) Weighted factors: γi = 1,∀i . Equal maximal power con-

straint pmax (i) = pmax ,∀i .

A. Optimal Power Assignment

In Fig. 3, we show the optimal power assignment strategy
versus the maximal individual power constraint. In this simu-
lation, the channel gains for all 3 users are predetermined as
‖H(L)

1 ‖22 : ‖H(L)
2 ‖22 : ‖H(L)

3 ‖22 = 1 : 2 : 3, i.e., the 1st user has
the worst channel response and may suffer the strong-weak
spatial-temporal resonances. Under the equal power constraint
setting, in order to balance the weighted SINRs, the worst
user always uses up all power to boost SINR while others
slightly reduce their transmit power to alleviate interference.
Meanwhile, the 3rd user takes an advantage of its focusing
effect such that only smallest power is consumed to main-
tain the balanced SINR. Moreover, the power assignment ratio
between all users is approximately stable when the individual
power constraint changes.

B. Comparison under Different Backoff Rates

In Fig. 4, 5 and 6, the performance of our proposed algorithm
under different backoff rates is studied. For a smaller D, the
uplink transmission is conducted more frequently which causes
the ISI to lie close to the signal peak at the receiver side. On
the other hand, IUI and ISI can be significantly alleviated by
choosing a higher backoff rate D. As BER is a monotonically
decreasing function in uplink SINR, users’ BER in our scheme
is also reducing when the backoff rate increases as shown in
Fig. 4. In Fig. 5, the balanced SINR becomes higher as the
backoff rate increases.
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Fig. 4. BER performance comparison under different backoff rates and 3 users.

Fig. 5. Balanced SINR comparison under different backoff rates and 3 users.

Fig. 6. Achievable sum rate comparison under different backoff rates and 3
users.

Let us define the achivable sum rate in TR uplinks as
1
D

∑K
i=1 log2(1+ SI N RU L

i ) bps/Hz. Because the achievable
sum rate is normalized by 1/D, a higher D may result in a larger
factor in the denominator outside the logarithm which leads to
a smaller sum rate. From Fig. 6 we can see that, in low SNR
region, a smaller D will always attain a higher sum rate. It is
because when the SNR is small, the dominant interference at
the receiver side is noise while ISI is less prominnet in the nor-
malized sum rate. On the other hand, as SNR increases, the ISI
and IUI become dominant against the noise. Thus, a higher D
will reduce those interference efficiently and provide a better
sum rate performance.

C. Highly Crowded Network

We then compare the multiuser uplink performance of our
proposed algorithm and other two schemes: Basic TR and
MMSE TR. In Basic TR scheme, each user transmits with its
maximal power and the signature filter gi is the normalized
time-reversal conjugate version of its channel response,

gi [k] = h∗i [L − 1− k]√∑L−1
l=0 |hi [l]|2

, k = 0, 1, 2, . . . , L − 1. (18)

In MMSE TR, each user also transmits in the maximal power
but its signature g is the MMSE signature that can be calculated
by independently maximizing its own SINR.

Fig. 7. BER performance comparison under 20 users case.

Fig. 8. Achievable sum rate comparison under 20 users case.

On the other hand, in our SINR balancing scheme, AP which
has all channel information controls the transmit power of each
user and designs the signature filter based on the optimal power
assignment.

In this part, we simulate a highly crowded network where one
AP serves 20 users. We assume the 20 users are divided into 3
groups according to the strength of their spatial-temporal reso-
nances. The channel gain of each user is set to be 1

3 , 2
3 or 1, and

the back-off rate is D = 16. Simulations are conducted to com-
pare the BER performance, achievable sum rate, network-level
energy-efficiency and user-level energy-efficiency among Basic
TR scheme, MMSE TR scheme and the proposed scheme.

In Fig. 7, we can see the BER performances of the afore-
mentioned three schemes in a highly crowded network. All
users in Basic TR scheme have such a high BER that the
whole system fails to work properly. With MMSE TR, some
of users whose channel degradation is severe will have a poor
BER performance that is close to the Basic TR BER curves.
Thus, even when they are active and transmitting in full power,
those users are blocked from getting service due to the low
SINRs. Moreover, these blocked users bring high interference
to other active users which degrades the whole network’s per-
formance. On the other hand, when applying our proposed
algorithm to this crowded network, as SINRs are balanced, all
users will have almost the same rational BER performance such
that all of them can be detected. This indicates that the pro-
posed algorithm can support all users, no matter whether their
spatial-temporal resonance is strong or weak and no matter how
crowded the network is.

Fig. 8 shows the curves of achievable sum rate versus the
maximal power constraint. Here, the achievable sum rate is
normalized by 1/D which represents the spectral efficiency.
Since Basic TR is aimed to maximize the received signal power
regardless of interference, it saturates at a lower rate. In this
case, because the interference of other users becomes the dom-
inant factor in individual SINRs and the channels become more
correlated as the number of users is large, even under maximal
power Basic TR fails to support the system with a high quality
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Fig. 9. Network-level energy-efficiency comparison under 20 users case.

Fig. 10. Trade-off between energy-efficiency and spectral-efficiency under 20
users case.

of service. In MMSE TR scenario, as everyone transmits in
maximal power and MMSE signature is applied at AP to extract
information, the SINR is boosted remarkably. As a result, even
the network is highly densed and the interference is large,
MMSE signature can surpress the interference and the MMSE
TR obtains a higher achievable rate than Basic TR. In SNR bal-
ancing scheme, users with a better spatial-temporal resonance
has to sacrifice to achieve the balance, leading to a reduction
in the sum rate compared to the MMSE TR. However, the
gap between the sum rate of MMSE TR and proposed scheme
diminishes in high SNR range.

The energy-efficiency feature of our proposed scenario is fur-
ther studied in Fig. 9, Fig. 10 and Fig. 11. In Fig 9, the network-
level energy-efficiencies of different schemes are plotted versus
the individual power constraints. Here, we define the network-
level energy-efficiency as the ratio between achievable sum rate
and the total transmit power: Energy-Efficiency (bits/Hz/J) =

Achievable sum rate (bps/Hz)
Total power consumed in the network (W)

. Under the same condition,
the network-level energy-efficiency of the proposed scheme is
higher than those of the MMSE TR and the Basic TR. That
is because in the MMSE TR and Basic TR, most of the ener-
gies are wasted to generate interference, and thus the network
performance are contaminated. In the proposed algorithm, by
the means of joint signature matrix and power allocation opti-
mization, the interference between users are well managed and
resources are assigned efficiently.

The trade-off between energy-efficiency and spectral-
efficiency is shown in Fig 10. As we can see, for a given
spectral-efficiency, the energy-efficiency of the proposed algo-
rithm is lower than that of the MMSE TR. The reason is that
since the proposed algorithm is aimed to balance the weighted
uplink SINRs which is restricted by the worst users, the power
consumption to achieve the same total network throughput is
higher. However, this does not contradict with the result in
Fig 9, since in order to have a fair comparison we must fix the
individual power constraints for all the different schemes to be
the same. As we have shown, under the same power constraints,

Fig. 11. User-level energy-efficiency comparison under 20 users case.

the proposed algorithm achieves a higher network-level energy-
efficiency than others.

Moreover, the user-level energy-efficiency defined as the
ratio of per-user throughput to power consumption of the user
is studied. As we can see in Fig 11, under the same individual
power constraints, the user-level energy-efficiency obtained by
the proposed algorithm is superior to those of MMSE TR and
Basic TR, for all users. In the proposed scheme, with joint sig-
nature design and power allocation, the interference between
users is well managed and resource is utilized efficiently with a
guarantee on QoS fairness.

Hence, due to the high user-level energy-efficiency, no mat-
ter how strong their spatial-temporal resonances are, each users
have an incentive and prefer the proposed algorithm to the
others.

As demonstrated in Fig 9 and 11, under the same power con-
straints, both the network-level energy-efficiency and user-level
energy-efficiency are improved remarkably through our pro-
posed algorithm, compared with MMSE TR and Basic TR. The
reason is that by the means of joint signature design and power
allocation optimization, the severe interference between users
is alleviated and weak spatial-temporal resonance is also com-
pensated. Moreover, the purpose of our proposed algorithm is
to balance the weighted uplink SINRs among all users. When
equal weighted factors are adopted, the proposed algorithm
achieves a same uplink SINR for all users, providing a fair QoS
guarantee. On the other hand, heterogenous QoS requirements
can be achieved by selecting different weighted factors. Hence,
the proposed algorithm is energy-efficient and QoS-guaranteed
in multiuser TRDMA uplinks.

VI. CONCLUSION

In this paper, we propose a joint power allocation and signa-
ture design method to address the strong-weak spatial-temporal
resonances in multiuser TRDMA uplink systems. By forming
the TRDMA strong-weak spatial-temporal resonances problem
into a max-min weighted SINR problem, a two-stage adaptive
algorithm that can guarantee to converge to the global opti-
mal solution is proposed. In stage I, the original non-convex
optimization problem is relaxed into a Perron Frobenius eigen-
value optimization problem whose optimum can be efficiently
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obtained. In stage II, the gradient descent method is applied to
adaptively update the relaxed feasible set until the prime global
optimum that satisfies all individual constraints is reached. In
our simulation, the proposed algorithm converges to the global
optimum in a few iterations with a relatively low computa-
tional complexity. Moreover, the proposed algorithm provides
a high energy-efficiency and a QoS performance guarantee to
all users in network. Simulation results also show that, our
method is capable of boosting the entire system performance
through signature design and power allocation. Therefore, the
proposed SINR balancing algorithm can be a promising tech-
nique for energy-efficient QoS-guaranteed multiuser TRDMA
uplink systems.

APPENDIX A
PROOF OF THEOREM 1

Proof: For the problem in (7), suppose a global optimizer
p̂ is obtained, and γ̂ is the achievable maximal threshold within
the feasible set. For some index n0, we have p̂(i)/[D]i i (�

T
i p̂+

σ 2) = γ̂ , i = n0, and p̂(i)/[D]i i (�
T
i p̂+ σ 2) ≥ γ̂ , ∀i �= n0.

First of all, suppose 1T p̂ < 1T pmax , i.e., there is a portion of
unused energy at the optimum point as Psave = 1T pmax − 1T p̂.
If we re-distribute Psave among all the users such that the
updated power assignment vector is p̂new = αp̂ with α > 1
and 1T p̂new = 1T pmax . Obviously, p̂new is in the feasible set
defined in (7). Thus, we get p̂new(i)

[D]i i (�
T
i p̂new+σ 2)

= p̂(i)

[D]i i (�
T
i p̂+ σ2

α
)
≥

γ̂new > γ̂ , which contradicts to the assumption that γ̂ is the
maximum within the feasible set. Hence, when the global opti-
mum γ ∗ is achieved, we must have 1T p∗ = 1T pmax , and the
optimal threshold γ ∗ is a monotonically increasing function in
Ptotal = 1T pmax .

Suppose when γ ∗ is achieved with the optimal power
assignment vector p1, for some index n1, we have

p1(n1)

[D]n1n1 (�T
n1

p1+σ 2)
> γ ∗, and for other users we have

p1(i)
[D]i i (�

T
i p1+σ 2)

= γ ∗, ∀i �= n1. Moreover, p(i)
[D]i i (���

T
i p+σ 2)

is

strictly increasing in p(i) and decreasing in p( j), j �= i ,

since ∂
p(i)

[D]i i (�
T
i p+σ 2)

/∂p(i) = [D]i i
∑

j �=i � j i p( j)+σ 2

([D]i i (�
T
i p+σ 2))2 > 0 and

∂
p(i)

[D]i i (�
T
i p+σ 2)

/∂p( j) = − p(i)[D]i i��� j i

([D]i i (���
T
i p+σ 2))2 < 0. If we slightly

reduce p(n1) by δ, then we can obtain a new power assignment
vector denoted as p̂ which ensures p̂1(n1)

[D]n1n1 (�T
n1

p̂1+σ 2)
≥ γ ∗.

On the other hand, as p(n1) decreases, we have
p̂1(i)

[D]i i (�
T
i p̂1+σ 2)

> γ ∗, ∀i �= n1. Namely, the minimum of all

weighted SINR is not reduced when the total consumed power
reduces as 1T p̂1 = 1T pmax − δ. Hence, as we have proved in
the above part, by re-distributing δ, we can definitely obtain an
increasing in threshold γ̂ ∗ with γ̂ ∗ > γ ∗. This contradicts to
our assumption. �

APPENDIX B
PROOF OF LEMMA 1

Proof: Given the definition of cost function λ̃(G, p), for
arbitrary G and p , it can also be formulated as λ̃(G, p) =

max
i=1,...,K+1

eT
i �(G)p̃

eT
i p̃

, where ei is a column vector with i th ele-

ment being one and the rest being zero [28]. From this it
follows:

eT
i p̃ =

{
p(i) , i ≤ K

1 , i = K + 1
, and

eT
i �(G)�(G)�(G)p̃ =

⎧⎨⎩
γi

S I N RU L
i

, i ≤ K

1
Ptotal

∑K
i=1

γi p(i)
SI N RU L

i
, i = K + 1.

It can be easily verified that 1
Ptotal

K∑
i=1

γi p(i)
SI N RU L

i
≤ max

i

γi

S I N RU L
i

and 1
Ptotal

K∑
i=1

γi p(i)
SI N RU L

i
≥ min

i

γi

S I N RU L
i

. Thus we have

λ̃(G, p) = max
i=1, ...,K+1

eT
i �(G)p̃

eT
i p̃
= max

i=1, ...,K

γi

S I N RU L
i (G,p)

, and

min
x�0

xT �(G,Ptotal )p̃
xT p̃

= min
i=1, ...,K+1

eT
i �(G)p̃

eT
i p̃
= min

i=1, ...,K

γi

S I N RU L
i (G,p)

which will be used in the next section in appendix.
For a given par y , it can be derived that λ̃(G, p̃ar y) =

max
i=1, ...,K

γi

S I N RU L
i (G,par y)

, and the corresponding optimal signa-

ture matrix G∗ with fixed power assignment can be obtained by
G∗ = arg min

G
max

i=1, ...,K

γi

S I N RU L
i (G,par y)

. Given a power assign-

ment vector par y , since the uplink SINR for each user
only depends on gi and is independent of g j , i �= j , g∗i =
arg min‖gi‖2=1

γi

S I N RU L
i (G,par y)

. �

APPENDIX C
PROOF OF THEOREM 2

Proof: Here, we prove the necessary and sufficient condi-
tion in Theorem 2 by contradiction.

1) To prove the sufficiency: suppose G∗ is not the
global optimizer of the problem in (9), where G∗ =
arg min‖gi‖2=1,∀i λ̃(G, p∗) and p̃∗ = [p∗, 1] is the dominant

eigenvector of �(G∗, Ptotal).
Suppose there exists another Ĝ such that
λmax (�(Ĝ, Ptotal)) < λmax (�(G∗, Ptotal)). Recall
(10) we can have

γ−1
global = λmax (�(Ĝ, Ptotal))

= min
G

λmax (�(G, Ptotal))

= min
G

min
x�0

max
y�0

xT �(G, Ptotal)y
xT y

≥ min
G

min
x�0

xT �(G, Ptotal)p̃∗

xT p̃∗

= min
G

min
i

γi

S I N RU L
i (G, p∗)

= min
i

γi

S I N RU L
i (G∗, p∗)

= λmax (�(G∗, Ptotal)). (19)

In (19), we have λmax (�(Ĝ, Ptotal)) ≥
λmax (�(G∗, Ptotal)), which contradicts to that Ĝ is
the global optimum.
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2) To prove the necessity: suppose G∗ is the global opti-
mizer with the corresponding power vector being p∗
and λ̃(G∗, p∗) > min

G
λ̃(G, p∗). Moreover, suppose there

exists an arbitrary feasible G̃ that satisfies λ̃(G̃, p∗) =
min

G
λ̃(G, p∗), i.e. λ̃(G∗, p∗) > λ̃(G̃, p∗).

Since G∗ is the global optimizer, we have

λ̃(G∗, p∗) = λmax (�(G∗, Ptotal))

= min
G

λmax (�(G, Ptotal)) ≤ λmax (�(G̃, Ptotal))

= min
y�0

max
x�0

xT �(G̃, Ptotal)y
xT y

≤ max
x�0

xT �(G̃, Ptotal)p̃∗

xT p̃∗
= λ̃(G̃, p∗). (20)

Then we have λ̃(G∗, p∗) ≤ λ̃(G̃, p∗), which contradicts
to the assumption. �

APPENDIX D
PROOF OF THEOREM 3

Proof: According to the definition of cost function, we
have

λ̃(G(n+1), p(n)) = min‖gi‖2=1,∀i λ̃(G, p(n))

≤ λ̃(G(n), p(n)) = λ(n)
max . (21)

Moreover, we also have

λ(n+1)
max = min

p�0
λ̃(G(n+1), p)

= min
p̃�0

max
x�0

xT �(G(n+1), Ptotal)p̃
xT p̃

≤ max
x�0

xT �(G(n+1), Ptotal)p̃(n)

xT p̃(n)

= λ̃(G(n+1), p(n)). (22)

Combining (21) and (22), it can be induced that λ
(n+1)
max ≤

λ
(n)
max , ∀n. The sequence {λ(n)

max } is nonnegative, lower-bounded
by zero, and monotonically decreasing. Hence, the limit
λ∞max = lim

n→∞ λ
(n)
max exists.

So far it has been verified that λ∞max exists, we need to prove

that the generated sequence {λ(n)
max } always converges to the

global optimum no matter what the initial point is.
Let us denote set X = {G ∈ C

L×K : G =
[g1, . . . , gK ], ‖gi‖2 = 1,∀i}, where K is the num-
ber of users and L is the channel length. Similarly,
Y = {p ∈ R

K+ : ‖p‖1 = Ptotal}. Both sets X and Y are
convex compact sets, i.e. bounded and closed. Moreover, set
S = {λmax : λmax = ρ(�(G, Ptotal)), G ∈ X} is also compact,
due to the compactness of X and the continuity of operator
ρ(·) and ���(·, Ptotal). In the algorithm, the tuple (G(n), p(n))

is updated in each loop as (G(n), p(n)) = T{(G(n−1), p(n−1))}.

The continuous mapping function T, on the compact space
X × Y , is defined as

g(n)
i = arg max

‖gi‖2=1

SI N RU P
i (G, p(n−1))

γi
,∀i (23)

λ(n)
max p̃(n) = �(G(n), Ptotal )̃p(n), (24)

where λ
(n)
max = ρ(�(G(n), Ptotal)), G = [g1, . . . , gK ], and aug-

mented vector p̃(n) = [p(n), 1]. According to the Schauders
fixed point theorem, function T has at least one fixed point
on X × Y , i.e., ∃ (G(∞), p(∞)) such that (G(∞), p(∞)) =
T{(G(∞), p(∞))}. Moreover, the generated sequence {λ(n)

max } is
monotonically decreasing and λ

(∞)
max = ρ(�(G(∞), Ptotal)).

For every potential fixed point (G(∞), p(∞), λ
(∞)
max ), it satis-

fies both sides of (23), (24) and

λ(∞)
max p̃(∞) = ρ(�(G(∞), Ptotal))̃p(∞). (25)

Moreover, as we have proved in Lemma 1 that

G(∞) = arg max
‖gi‖2=1

SI N RU P
i (G,p(∞))

γi
∀i is equivalent to G(∞) =

arg min‖gi‖2=1

γi

S I N RU P
i (G,p(∞))

= arg min‖gi‖2=1
λ̃(G(∞), p(∞)).

Hence, this tuple satisfies the necessary and sufficient condi-
tion in Theorem 2 for the global optimality of joint optimization
problem under total power constraint, and thus each locally
optimal tuple (G(∞), p(∞), λ

(∞)
max ) is indeed a globally optimal

tuple to the relaxed problem that λ
(∞)
max = λ∞max . �

APPENDIX E
PROOF OF LEMMA 2

Proof: Let the optimal power assignment vector in (6)
with Ptotal be p0 and the one with Ptotal +�(� > 0) be p1.
Suppose ∃ n0 such that the optimal power assignment p0(n0) ≥
p1(n0) and for other users p0(i) < p1(i).

As shown in the proof of Theorem 1 in APPENDIX A, γ ∗ is
a strictly increasing function in Ptotal , i.e., γ ∗0 < γ ∗1 , where γ ∗0
is the optimum under Ptotal and γ ∗1 under Ptotal +�.

However, as shown in APPENDIX A, SI N RU L
i is strictly

increasing in p(i) and decreasing in p( j),∀ j �= i . This gives us
that SI N RU L

0,n0
≥ SI N RU L

1,n0
, where SI N RU L

0,n0
is the SINR of

nth
0 user under Ptotal and SI N RU L

1,n0
is the one under Ptotal +�.

According to Theorem 1, we have SI N RU L
0,n0

/γn0 = γ ∗0 and

SI N RU L
1,n0

/γn0 = γ ∗1 . This implies that γ ∗0 ≥ γ ∗1 , which contra-
dicts to the assumption. �

APPENDIX F
PROOF OF THEOREM 4

Proof: In the initialization, as P(0)
total = 1T Pmax is an

extreme case in our SINR balancing problem, δ(0) is usually
smaller than 0. Except when δ(0) = 0 wherein the optimal
power assignment is equal to each individual constraints, our
algorithm terminates.
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At the nth iteration, if the δ(n) > 0, we use backward
search with a coefficient 0 < η < 1 to adjust the stepsize
δPtotal without flip its direction. As a result, we can make
sure at the end of nth iteration δ(n) < 0 and the relaxed fea-
sible set is tightened. The stepsize for gradient search is

defined as δPtotal = δ(n−1)

slope , where slope = p(n−1)(index)−p(index)

(1−μ)P(n−1)
total

.

According to Lemma 2, the slope is always positive since
p is the optimal power assignment vector with μP(n−1)

total
and 0 < μ < 1 is a predefined coefficient. Since δ(n−1) is
always less than or equal to 0 in the proposed algorithm,
we have stepsize δPtotal ≤ 0 at the nth iteration, implying
P(n)

total = P(n−1)
total + δPtotal ≤ P(n−1)

total and p(n) 	 p(n−1). Hence,
δ(n) = min

i
{pmax (i)− p(n)(i)} ≥ δ(n−1). Moreover, the equal-

ity holds if and only if δ(n−1) = 0. As a consequence, the
sequence {δ(n)}∞n=1 is a nonpositive, monotonically increas-
ing sequence and upper-bounded by 0. The limit exists and
lim

n→∞ δ(n) = δ∞ ≤ 0.

Suppose δ∞ = μ < 0 and it is achieved for some n0,
i.e. δ(n) = μ, ∀ n ≥ n0. Then from Alrotighm 2, we have
P(n0+1)

total = P(n0)
total + δPtotal ≤ P(n0)

total . As an immediate result
0 ≥ δ(n0+1) > δ(n0) = μ, which contradicts to the assumption
that the sequence converges to μ. Thus, the limit point of
{δ(n)}∞n=1 is δ∞ = 0.

Hence, since the sequence {δ(n)}∞n=1 is strictly increasing
before converging and the limit of {δ(n), n = 1, 2, . . .} is
δ∞ = 0. Our algorithm will converge to the global
optimum. �

APPENDIX G
EXPLANATION FOR ASSUMPTION 1

To simplify the analysis, let us consider the noise variance
σ 2 = 1. When the constraint is Ptotal , we can have our gM M SE

i
calculated as shown in (26).

gM M SE
i = ci

⎛⎝∑
j

p( j)R j + σ 2I

⎞⎠−1

H(L)H
i

= ci B−1(k)H(L)H
i

1

Ptotal
. (26)

With a slightly perturbation �, the updated version of gM M SE
i

is defined as

gM M SE
�i

= c̃i

⎛⎝∑
j

p( j)R j +
∑

j

δp( j)R j + σ 2I

⎞⎠−1

H(L)H
i

= c̃i

⎛⎝∑
j

k j R j+ 1

Ptotal
I+

∑
j δp( j)R j

Ptotal

⎞⎠−1

H(L)H
i

1

Ptotal

= c̃i

ci
gM M SE

i + c̃i

ci

∑
n≥1

(
−
∑

j δp( j)R j B−1(k)

Ptota

)n

gM M SE
i .

(27)

Then, the difference between gM M SE
i and gM M SE

�i can be
denoted as δgM M SE

i in (28).

δgM M SE
i =

∑
m≥1

(∑
j δp( j)R j B−1(k)

Ptota

)2m−1

×
(∑

j δp( j)R j B−1(k)

Ptota
− I

)
gM M SE

i . (28)

As � < 10−2 and ‖gM M SE
i ‖2 = 1, we can derive a bound for

‖δgM M SE
i ‖2 as∥∥∥δgM M SE

i

∥∥∥
2
≤
∥∥∥∥∥∥
∑
m≥1

(∑
j δp( j)R j B−1(k)

Ptotal

)2m−1

×
(∑

j δp( j)R j B−1(k)

Ptotal
− I

)∥∥∥∥∥
2

≤
∑
m≥1

∥∥∥∥∥
∑

j δp( j)R j B−1(k)

Ptotal

∥∥∥∥∥
2m−1

2

×
∥∥∥∥∥
∑

j δp( j)R j B−1(k)

Ptotal
− I

∥∥∥∥∥
2

. (29)

Moreover, as we define k̃(i) = δp(i)
�

and � < 10−2, we
assume k̃(i)� ≈ k(i)�. Then we can have∑

j δp( j)R j B−1(k)

Ptotal
= �

∑
j

k̃( j)R j B−1(k)

≈ �
∑

j

k( j)R j B−1(k) = �B−1(k)

(
B(k)− 1

Ptotal
I
)

= �

(
I− 1

Ptotal
B−1(k)

)
. (30)

Since the eigenvalues of 1
Ptotal

B−1(k) lie in (0, 1), the

eigenvalues of
∑

j δp( j)R j B−1(k)

Ptotal
will lie in (0,�). As a result,

‖
∑

j δp( j)R j B−1(k)

Ptotal
‖2 < � and ‖

∑
j δp( j)R j B−1(k)

Ptotal
− I‖2 < 1,

which implies ‖δgM M SE
i ‖2 <

∑
m≥1 �2m−1 = �

1−�2 � �.
Hence, under a small perturbation in Ptotal , the optimal
signature matrix can be approximately viewed as unchanging.
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