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Abstract—In this work, we propose a novel wireless indoor
events detection system, TRIEDS. By leveraging the time-reversal
(TR) technique to capture the changes of channel state infor-
mation (CSI) in the indoor environment, TRIEDS enables low-
complexity single-antenna devices that operate in the ISM band
to perform through-the-wall indoor multiple events detection.
The multipath phenomenon denotes that the electromagnetic
signals undergo different reflecting and scattering paths in a
rich-scattering environment. In TRIEDS, each indoor event is
detected by matching the instantaneous CSI to a multipath profile
in a training database. To validate the feasibility of TRIEDS and
to evaluate the performance, we build a prototype that works
on ISM band with carrier frequency being 5.4 GHz and a 125
MHZ bandwidth. Experiments are conducted to detect the states
of the indoor wooden doors. Experimental results show that
with a single receiver (AP) and transmitter (client), TRIEDS
can achieve a detection rate higher than 96.92% and a false
alarm rate smaller than 3.08% under either line-of-sight (LOS)
or non-LOS transmission.

Index Terms—Indoor events detection, time reversal (TR),
wireless events detection, spatial-temporal resonance, through the
wall.

I. INTRODUCTION

The past few decades have witnessed the increase in the
demand of surveillance systems which aims to capture and
to identify unauthorized individuals and events. With the
development of technologies, traditional outdoor surveillance
systems become more compact and of low cost. In order
to guarantee the security in offices and residences, indoor
monitoring systems are now ubiquitous and their demand is
rising both in quality and quantity. For example, they can be
designed to guard empty houses and to alarm when break-in
happens.

Currently, most indoor monitor systems basically rely on
video recording and require cameras deployments in target
areas. Techniques in computer vision and image processing are
applied on the captured videos to extract information for real
time detection and analysis [1]–[4]. However, conventional
vision-based indoor monitor systems have many limitations.
They cannot be installed in places requiring high level of pri-
vacy like restrooms or fitting rooms. Owing to the prevalence

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

of malicious softwares on the Internet, vision-based indoor
surveillance systems may lead to more dangers than pro-
tections, contradicting their intention. Moreover, vision-based
approaches have a fundamental requirement of a line-of-sight
(LOS) environment with enough illumination is indispensable.

On the other hand, sensing with the wireless signals to
detect indoor events has gained a lot of attention [5]. By
utilizing the fact that the received radio frequency (RF) signals
can be altered by the propagation environment, device-free
indoor sensing systems are capable of capturing activities in
the environment through the changes in received RF signals.
Common features of RF signals to identify variations during
signal transmission for indoor events detection include the
received signal strength (RSS) and channel state information
(CSI). Due to its susceptibility to the environmental changes,
the RSS indicator (RSSI) has been applied to indicate and
further recognize indoor activities [6]–[9]. Sigg et al. proposed
a method that links the patterns of RSSI fluctuation to different
human activities [7]. An approach where the direction of
human movement was determined according to the RSSI
degradation among different receivers was proposed in [8].
Recently, a RSSI-based gesture recognition system was built
where 7 gestures were identified with accuracy 56% [9].
Furthermore, CSI information, including the amplitude and
the phase, is now accessible in many commercial devices and
has been used for indoor event detection [10]–[16]. In [10],
the first two largest eigenvalues of CSI correlation matrix were
viewed as features to determine whether environment is static
or dynamic. Abid et al. applied MIMO interference nulling
technique to eliminate reflections off static objects and focus
on a moving target, and used beam steering and smoothed
MUSIC algorithm to extract the angle information of target
[11]. Han et al. treated the CSI in the 3 × 3 MIMO system
independently and the standard deviations of the CSI were
combined with SVM for human activity detection [12]. In
[13], in order to locate the client with a fixed AP, both the
amplitudes of the CSI and the frequency diversity in OFDM
specturm were used to build a model for calculating the
distance between the AP and the client. In [14] the histograms
of the CSI amplitudes were utilized to distinguish between
different human activities. In [15] a coarse relationship be-
tween variation in CSI amplitudes and the number of persons
present was established. Wang et al. proposed the CARM that
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leveraged the CSI-speed and CSI-activity models for detection
[16]. Moreover, a lip reading system based on WiFi signals
was developed where the features of mouth motions were
extracted through the discrete wavelet packet decomposition
on CSI’s amplitudes and classified with the help of dynamic
time wrapping [17]. However, most aforementioned CSI-based
indoor sensing systems rely on only the amplitudes of the CSI,
whereas the phase information is discarded regardless of how
informative it is.

Another category of technologies in device-free indoor
monitor systems is adopted from radar imaging technology
to track targets [18]–[21]. The radar technique can identify
the delays of sub-nanoseconds in the time-of-flight (ToF) of
wireless signals through different paths, by using the ultra-
wideband (UWB) sensing. Hence, radar-based systems are
capable of separating the reflection from the moving object
behind the walls against the reflections from walls or other
static objects [22]. However, the UWB transmission is im-
practical in commercial indoor monitoring systems, because
it requires specific hardwares for implementation. Recently,
Katabi et al. proposed a new radar-based system to keep track
of different ToFs of reflected signals by leveraging a specially
designed frequency modulated carrier wave (FMCW) that
sweeps over different carrier frequencies [19]–[21]. However,
their techniques consume over 1GHz bandwidth to sense the
environment and only the images of result are obtained from
the sensors, which requires further effort to detect the types
of indoor events.

The aforementioned device-free systems have limitations
in that they either require multiple antennas and dedicated
sensors or require LOS transmission environment and ultra-
wideband to capture features that can guarantee the accuracy
of detection. In contrast, in this work, we propose a time-
reversal (TR) based wireless indoor events detection system,
TRIEDS, capable of through-the-wall indoor events detections
with only one pair of single-antenna devices. In the wireless
transmission, the multipath is the propagation phenomenon
that the RF signals reaches the receiving antenna through
two or more different paths. TR technique treats each path
of the multipath channel in a rich scattering environment
as a widely distributed virtual antenna and provides a high-
resolution spatial-temporal resonance, commonly known as
the focusing effect [23]. In physics, the TR spatial-temporal
resonance can be viewed as the result of the resonance of
electromagnetic (EM) field in response to the environment.
When the propagation environment changes, the involved
multipath signal varies correspondingly and consequently the
spatial-temporal resonance also changes.

Taking use of the spatial-temporal resonance, a novel TR-
based indoor localization approach, namely TRIPS, was re-
cently proposed in [24]. By exploiting the unique location-
specific characteristic of channel impulse response (CIR), TR
creates a spatial-temporal resonance that focuses the energy
of the transmitted signal only on the intended location. The
TRIPS mapped the real physical location to the estimated
CSI through the spatial-temporal resonance. The TR indoor
locationing system was implemented on a WiFi platform, and
the concatenated CSI from a total equivalent bandwidth of

Fig. 1: Prototype of TRIEDS.

1 GHz has been treated as the location-specific fingerprints
[25]. Through non-line-of-sight (NLOS) experiments, the WiFi
based TR indoor locationing system achieved a perfect 5cm
precision with a single access point (AP). TR based indoor
locationing system was an active localization system in that
it required the object to be located to carry one of the
transmitting or receiving device, such that the difference in
the TR resonances between different locations of device is
large.

Based on a similar principle as TRIPS, we utilize the TR
technique to capture the variations in the multipath CSI due to
different indoor events, and propose TRIEDS for indoor event
detection. More specifically, thanks to the nature of TR that
captures the variations in the CSI, maps different multipath
profiles of indoor events into separate points in the TR space,
and compresses the complex-valued features into a real-valued
scalar called the spatial-temporal resonance strength, the pro-
posed TRIEDS supports simplest detection and classification
algorithms with a good performance. Compared with previous
works on indoor monitoring systems which require multiple
antennas, dedicated sensors, ultra-wideband transmission or
LOS environment, and rely on only the amplitude information
in the CSI, TRIEDS introduces a novel and practical solution
which can well support through-the-wall detection and only
requires low-complexity single-antenna hardware operating in
the ISM band. To demonstrate the capability of TRIEDS in
detecting indoor events in real office environments, we build
a prototype that operates at 5.4 GHz band with a bandwidth
of 125 MHz, as shown in Fig. 1, and conduct extensive
experiments in an office on the tenth floor of an sixteen-
story building. During the experiments, we test the capability
of TRIEDS of monitoring the states of multiple doors at
different locations simultaneously. Using only one pair of
single-antenna devices, TRIEDS could achieve perfect detec-
tion in LOS scenario and near 100% accuracy in detection
when events happens in the absence of LOS path between the
transmitter (TX) and the receiver (RX).

The rest of the paper is organized as follows. In Section
II, the system overview for TRIEDS is briefly discussed
and an introduction to TR technique is given. The details
of how TRIEDS works are studied and analyzed in Section
III, consisting of an offline training phase and an online
testing phase. Moreover, extensive experiments of TRIEDS
in detecting indoor events in real office environments are
conducted and the experimental results are investigated in
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Fig. 2: TR-based wireless communication.

Section IV. Based on the results in Section IV, we further
discuss how the system parameters, human motions will affect
the accuracy of TRIEDS, as well as the potential applications
and future work. Finally, conclusions are drawn in Section VI.

II. TRIEDS OVERVIEW

When an EM signal travels over the air in a rich-scattering
indoor environment, it encounters reflectors and scatters that
alter and attenuate signals differently. Consequently, the re-
ceived signal at the receiving antenna is a combination of
multiple altered copies of the same transmitted signal coming
from different paths and suffering different delays. This phe-
nomenon is well known as multipath propagation. In order to
detect an indoor event, wireless sensors should be capable
of tracking the targets against all other interferences. The
previous indoor monitoring work can be categorized into two
classes. The first class ignores the multipath effect and only
uses a single-valued CSI feature like RSSIs for detection,
which leads to the degradation of accuracy to some extent.
On the other hand, the second class tries to separate differ-
ent components in a multipath channel, by means of UWB
transmission and specially-designed modulated signals.

The previous work either views the multipath as the com-
promise to the system or separates the components in the
multipath CSI by radar-based techniques. As opposed to them,
TRIEDS is proposed as a novel system that monitors and
detects different indoor events by utilizing TR technique. The
details of TR technique are discussed as follows.

A. Time-Reversal Technique

A typical TR wireless communication system is shown in
Fig. 2 [26]. During the channel probing phase, the transceiver
B sends an impulse to the transceiver A, which gets an
estimated CSI h(t) for the multipath channel between A
and B. Then, the corresponding TR signature is obtained
by time-reversing and conjugating the estimated CSI h(t) as
g(t) = h∗(−t). During the second phase, the transceiver A
transmits back g(t) and generates a spatial-temporal resonance
at the transceiver B, by fully collecting and concentrating
the energy of multipath channel. The TR spatial-temporal
resonance can be viewed as the resonance of EM field in
response to the environment, also known as the TR focusing
effect [23].

As originally investigated in the phase compensation over
telephone line [27], TR technique was then extended to the
acoustics [28]. The spatial-temporal resonance of the TR has

Fig. 3: Mapping between the CSI logical space and the time-
reversal space.

been proposed as theory and validated through experiments in
both acoustic domain and RF domain [29]. In the RF domain,
the property of TR spatial-temporal resonances of EM waves
have been studied in [30], [31]. Moreover, the TR technique
relies on two assumptions, i.e., the channel reciprocity and
the channel stationarity. The channel reciprocity demonstrates
the phenomenon that the CSI for both the forward and the
backward links is highly correlated, whereas the channel
stationarity requires that the CSI remains highly correlated
during a certain period. Both of the assumptions were validated
in [26], [32] and [24], respectively.

In the indoor environment, there exists a large amount of
propagation paths for EM signals due to the presence of
scatters and reflectors. As long as the indoor propagation
environment changes, the received multipath profile varies
accordingly. As demonstrated in Fig. 3, each dot in the CSI
logical space represents an indoor event or location, which is
uniquely determined by the multipath profile h. By taking a
time-reverse and conjugate operation over the multipaths, the
corresponding TR signatures g are generated and the points
in the CSI logical space as marked by “A”, “B”, and “C” are
mapped into the TR space as “A′”, “B′”, and “C ′”. In the
TR space, the similarity between two indoor events or indoor
locations is quantified by the strength of TR resonances. The
definition of TR resonating strength (TRRS) is given in (3),
where h1 and h2 represent the multipath profiles in the CSI
logical space and g2 is the TR signature in the TR space.
The higher the TRRS is, the more similar two points are in
the TR space. Similar events defined by a threshold on TRRS
will be treated as a single class in TRIEDS. Leveraging the
TR technique, a centimeter-level accurate indoor locationing
system, named as TRIPS, was proposed in [24]. In TRIPS,
each of the indoor physical locations was mapped into a logical
location in the TR space and can be easily separated and
identified using TRRSs. Taking the advantage of the TR space
to separate multipath profiles with small differences, TRIEDS
is capable of monitoring and detecting different indoor events
with a high accuracy.

III. SYSTEM MODEL

In this part, we present a detailed introduction to the pro-
posed TR based indoor events detection system, TRIEDS. The
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Fig. 4: An example of indoor CSI.

proposed TRIEDS exploits the intrinsic property of TR tech-
nique that the spatial-temporal resonance fuses and compresses
the information of the multipath propagation environment. To
implement the indoor events detection based on the TR spatial-
temporal resonances, TRIEDS consists of two phases: the
offline training and the online testing. During the first phase,
a training database is built by collecting the signature g of
each indoor events through the TR channel probing phase.
After training, in the second phase, TRIEDS estimates the
instantaneous multipath CSI h for current state and makes the
prediction according to the signatures in the offline training
database by means of the strength of the generated spatial-
temporal resonance. The detailed operations are discussed in
the followings.

A. Phase 1: Offline Training

As discussed above, TRIEDS leverages the unique indoor
multipath profile and TR technique to distinguish and detect
indoor events. During the offline training phase, we are going
to build a database where the multipath profiles of any targets
are collected and stored the corresponding TR signatures in the
TR space. Unfortunately, due to noise and channel fading, the
CSI from a specific state may slightly change over the time.
To combat this kind of variations, for each state, we collect
several instantaneous CSI samples to build the training set.

Specifically, for each indoor state Si ∈ D with D being the
state set, the corresponding training CSI is estimated and form
a Hi as,

Hi = [hi,t0 , hi,t1 , · · · , hi,tN−1
], (1)

where N is the size of the CSI samples for a training state.
hi,tj represents the estimated CSI vector of state Si at time tj
and Hi is named as the CSI matrix for state Si. An example
of estimated indoor CSI obtained by the prototype in Fig. 1
shown in Fig. 4, where the total length of the CSI is 30. From
Fig. 4a, we can find out that there exist at least 10 to 15
significant multipath components.

The corresponding TR signature matrix Gi can be obtained
by time-reversing the conjugated version of Hi as:

Gi = [gi,t0 , gi,t1 , · · · , gi,tN−1
], (2)

where the TR signature gi,tj [k] = h∗
i,tj

[L − k].Ḣere, the
superscript ∗ on a vector variable represents the conjugate
operator. L denotes the length of a CSI vectors and k denotes
the index of taps. Then the training database G is the collection
of Gi’s.

B. Phase 2: Online Testing

After constructing the training database G, TRIEDS is
ready for real-time indoor events detection. The indoor events
detection is indeed a classification problem. Our objective
is to detect the state of indoor targets through evaluating
the similarity between the testing TR signatures and the TR
signatures in the training database G. The raw CSI information
is complex-valued and of high dimensions, which compli-
cates the detection problem and increases the computational
complexity if we directly treat the CSI as the feature. To
tackle this problem, by leveraging the TR technique, we
are able to naturally compress the dimensions of the CSI
vectors through mapping them into the strength of the spatial-
temporal resonances. The definition of the strength of the
spatial-temporal resonance is given as follows.

Definition: The strength of the spatial-temporal resonance
T R(h1,h2) between two CSI samples h1 and h2 is defined
as

T R(h1,h2) =

(
max

i

∣∣∣(h1 ∗ g2)[i]
∣∣∣√∑L−1

l=0 |h1[l]|2
√∑L−1

l=0 |h2[l]|2

)2

, (3)

where “∗” denotes the convolution and g2 is the TR signature
of h2 as,

g2[k] = h∗
2[L− k − 1], k = 0, 1, · · · , L− 1. (4)

When comparing two estimated multipath profiles, they
are first mapped into the TR space where each of them is
represented as one TR signature. Then the TR spatial-temporal
resonating strength is a metric that quantifies the similarity
between these two multipath profiles in the mapped TR space.
The higher the TRRS is, the more similar two multipath
profiles are in the TR space. The resonating strength defined in
(3) is similar to the definition of cross-correlation coefficient
between h1 and h2 as the inner product of h1 and h∗

2, which
is equivalent to (h1 ∗ g2)[L − 1]. However, the numerator in
(3) is the maximal absolute value in the convolved sequence.
This step is important, in terms of combating any possible
synchronization error between two CSI estimations, e.g., the
first several taps of CSI may be missed or added in different
measurements. Hence, due to its robustness to the synchro-
nization errors in the CSI estimation, the TRRS is capable of
capturing all the similarities between multipath CSI samples
and increasing the accuracy.

During the online monitoring phase, the receiver keeps
matching the current estimated CSI to the TR signatures in
G to find the one that yields the strongest TR spatial-temporal
resonance. The TRRS between the unknown testing CSI H̃
and state Si is defined as

T RSi(H̃) = max
h̃∈H̃

max
hi∈Hi

T R(h̃,hi), (5)

where H̃ is a group of CSI samples assumed to be drawn from
the same state as

H̃ = [h̃t0 , h̃t1 , · · · , h̃i,tM−1
], (6)

and M is the number of CSI samples in one testing group,
similar to the N in the training phase defined in (1).
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Once we obtain the TRRS for each event, the most possible
state for the testing CSI matrix H̃ can be found by searching
for the maximum among T RSi(H̃), ∀ i, as

S∗ = arg max
Si∈D

T RSi(H̃), (7)

The superscript ∗ on S denotes the optimal.
Besides finding the most possible state S∗ by comparing the

TR spatial-temporal resonances, TRIEDS adopts a threshold-
trigger mechanism, in order to avoid false alarms introduced
by events outside of the state class D. TRIEDS reports a
change of states to S∗ only if the TRRS T RS∗(H̃) reaches a
predefined threshold γ.

Ŝ =

{
S∗, if T RS∗(H̃) ≥ γ,

0, otherwise,
(8)

where Ŝ = 0 means the state of current environment is not
changed, i.e., TRIEDS is not triggered for any trained states
in D. According to the aforementioned detection rule, a false
alarm for state Si happens whenever a CSI is detected as Ŝ =
Si but it is not from state Si.

Although the algorithm for TRIEDS is simple, the accuracy
of indoor events detection is high and its performance is
validated through multiple experiments in the next section.

IV. EXPERIMENTAL EVALUATION

To empirically evaluate the performance of TRIEDS, we
conduct several experiments for door states detection in a com-
mercial office environment with different transmitter-receiver
locations.

To begin with, a simple LOS experiment for validating
the feasibility of TRIEDS is conducted in a controlled en-
vironment, with 7 transmitter locations, one receiver location
and two events. Then, the validation is further extended to
both LOS and non-line-of-sight (NLOS) cases in a controlled
office environment with 3 receiver locations, 15 locations for
transmitter and 8 targeted doors made of wood. Meanwhile,
experiments are conducted in an uncontrolled indoor envi-
ronment during normal working hours with people around.
Furthermore, the performance of the proposed TRIEDS is
also compared with that of the RSS-based indoor monitoring
approach, which can be easily extracted from the channel
information and classified the using k-nearest neighbor (kNN)
method. To further evaluate the accuracy of the proposed
TRIEDS in real environments, the performance of TRIEDS
with intentional human movements is studied. Last but not
least, results of TRIEDS being as a guard system to secure a
closed room are discussed.

A. Experimental Setting

The prototype of the proposed TRIEDS requires one pair of
single-antenna transmitter and receiver that work on the ISM
band with the carrier frequency being 5.4 GHz and a 125 MHz
bandwidth. Moreover, during the experiment, the system runs
with a channel probing interval around 20 millisecond (ms).
A snapshot of the hardware device for TRIEDS is shown in
Fig. 1 with the antenna installed on the top of the radio box.

Fig. 5: Floorplan of the test environment.

(a) Radio station: receiver. (b) Radio station: transmitter.

Fig. 6: Experiment setting: the transmitter and the receiver.

The experiments are carried out in the offices at the 10th

floor in a commercial building of 16 floors in total. The
experimental offices are surrounded by multiple offices and
elevators. The detailed setup is shown the floorplan in Fig. 5
where different dotted marks represent different locations for
the transmitters and the receivers. During the experiments, we
are detecting the open/close states of multiple wooden doors
labeled as D1 to D8. Each location for the transmitter, marked
as small round dots and labelled by“TX1” and “TX2”, are
separated by 0.5 meters, whereas the candidate locations for
the receiver are marked as large round dots by “A” to “D”. The
TX-RX locations include both LOS and NLOS transmissions.

In TRIEDS experiments, the receiver and the transmitter are
placed on the top of stands at the intended locations, with the
height from the ground being 4.3 ft and 3.6 ft respectively, as
shown in Fig. 6a and Fig. 6b.

In all the experiments, we choose the number of the training
CSI and the testing CSI to be N = 10 and M = 10 as defined
in (1) and (6).

B. Feasibility Validation

To begin with, the feasibility for the proposed TRIEDS
to detect indoor events is verified in a LOS case where the
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Location Index 1 2 3 4 5 6 7
False Alarm Rate 0 0 0 0 0 0 0

Detection Rate 1 1 1 1 1 1 1

TABLE I: Performance of the proposed TRIEDS in easy case.

receiver is placed at the location “D” in Fig. 5, the transmitter
is moving along the 7 purple dots in a vertical line in Fig. 5
with the dot closest to the targeted door labeled as index “1”.
Our task is to detect whether the wooden door D3 is close or
open.

The multipath CSI samples for D3 open and close are
obtained through TR channel probing phase and the corre-
sponding TR signatures are stored in the database. In the
testing phase, we keep listening to the multipath channel and
matching the collected testing CSI to the database for. With
any threshold γ smaller than 0.97, we can achieve the perfect
detection for all the 7 transmitter locations as in Table I.

In this case, the proposed TRIEDS indeed performs a
detection for the events on the LOS path between the trans-
mitter and the receiver. Through this simple experiment, we
have demonstrated the feasibility of TRIEDS to use the TR
spatial-temporal resonance to capture the changes in the indoor
multipath environment. Next, the performance of TRIEDS
is further evaluated under more complicated changes of the
multipath environment and with both LOS and NLOS TX-RX
transmissions.

C. Single Door Monitoring

In this part, the experiments are conducted to understand
how locations of the receiver, the transmitter and the targeted
objecs affect the performance of TRIEDS. The receiver is
placed at location “A”, “B” and “C”, whereas the transmitter
is moving along the 15 locations marked by green dots and
separated by 0.5 meters in a horizontal line as shown in Fig. 5.
The objective of TRIEDS is to monitor the states of wooden
door D1. During the experiment, for each location and each
indoor event, we measure 3000 samples of the CSI which lasts
about 5 minutes by using our built prototype, leading to a total
experimental time to be 10 minutes for each TX-RX location.

Here, the location “A” (LOC A) represent a throuth-the-
wall detection scenario in the absence of a LOS path between
the transmitter and the receiver, and between the receiver and
where the indoor event happens. Under the case when the
receiver is at the location “B” (LOC B), there is always a LOS
path between the receiver and where the indoor event happens,
since they are in the same room. However, the LOS path
between the transmitter and the receiver disappears regarding
most of the possible transmitter locations, and it exists only
if the transmitter, the receiver and the door D1 form a line.
However, the transmitter and the receiver always perform LOS
transmission when the receiver is at the location “C” (LOC
C). Meanwhile, the door D1 to be detected falls outside of the
LOS link between the transmitter and the receiver.

1) LOC A: NLOS case: As we discussed above, when the
receiver is on LOC A, there is no LOS path between the
receiver and the transmitter, and the receiver and door D1 are
isolated by walls. One example of the multipath CSI for the
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Fig. 7: Multipath profiles (amplitude part) of door D1 under
LOC A.
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(a) Multipath profiles (amplitude
part) when TX on location “1” (N-
LOS).
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(b) Multipath profiles (amplitude
part) when TX on location “5”
(LOS).

Fig. 8: Multipath profiles of door D1 under LOC B.

open and the close state of door D1 is shown in Fig. 7. In Fig. 7
where only the amplitudes of the CSI are plotted, it is clear to
observe a change in how the energy is distributed on each tap.
In the proposed TRIEDS, not only the amplitude information
but also the phase for each tap is taken into consideration by
means of the TR spatial-temporal resonance.

From the experiment, with a threshold γ no larger than 0.9,
we can achieve a perfect detection rate and zero false alarm
rate for all 15 transmitter locations. Hence, we can conclude
that TRIEDS is capable of detecting an event in a NLOS
environment with through-the-wall detection and the distance
between the receiver and the transmitter has little effect on the
performance.

2) LOC B: LOS and NLOS case: When the receiver is
on LOC B, as the transmitter moving from the location “1”
to the location “4” (the 4th dot right to the one marked as
“1”), the transmission scenario between the transmitter and
the receiver is NLOS due to the absence of a direct LOS
link. Then, the trasmission scenario become LOS, when the
transmitter is on the location “5” to the location “6”. When
the transmitter moves farther away (i.e., from the dot “7”),
there is no LOS path again between the transmitter and the
receiver and the transmission scenario becomes NLOS. In Fig.
8a and Fig. 8b, examples of the CSI for each event are plotted
to demonstrate the changes in the amplitudes of the multipath
profile corresponding to the indoor event.
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Fig. 9: Multipath profiles (amplitude part) of door D1 under
LOC C.

Considering the accuracy for TRIEDS, with a threshold γ ≤
0.9, the detection rate for all 15 transmitter locations is higher
than 99.9%. Except when the transmitter is at the location
“6”, the detection probability drops to 95.9%. Nevertheless,
the corresponding false alarm rates are all below 0.1%. Since
the experiment is carried out in a commercial office building,
there exist outside activities that we cannot control but indeed
change the multipath CSI to fall out the collected indoor
events. So the reason for the detection probability at the 6th

location being 95.9% might be the existence of uncontrollable
outside activities. For example, the elevator running which
may greatly change the outside multipath propagation because
it is close to the environmental office and is made of metal.
Moreover, generally, TRIEDS is robust to the various distances
between the transmitter, the receiver and where the indoor
event happens.

3) LOC C: LOS case: When the receiver is on LOC C,
no matter which green dot the transmitter is on, they are
transmitting under LOS scenario, which leads to a dominant
multipath component exists in the multipath CSI.

The LOS transmission brings difficulties to indoor events
detection when event locates outside of the LOS path between
the transmitter and the receiver. The reason for that can
be decomposed into two parts. In the first place, in this
experiment, the object door D1 is located parallel with the
transmission link between the transmitter and the receiver,
and has little influence to the dominant LOS component in
the multipath profile. Secondly, since more energy is focused
on the LOS path dominant in the CSI, the other multipath
components that contain the event information are more noise-
like and less informative. Hence, as most of the information
for the event is buried in the CSI components with only a
few energy, it is hard to detect an event happening outside the
direct link between the transmitter and the receiver in a LOS-
dominant wireless system. This can be shown by an example
of the multipath CSI with respect to the open and close states
of door D1 in Fig. 9, where the dominant path remains the
same and contains most of the energy in the CSI.

In the experiment, TRIEDS yields a 100% detection rate
and a 0 false alarm rate for all the 15 transmitter locations

State index Description
S1 All the doors are open.

Si+1 Door Di close and the others open,
∀i = 1, 2, · · · , 8.

TABLE II: State list for TRIEDS to detect.

with the threshold γ ≤ 0.93. The experimental result supports
our claim that the proposed TRIEDS can capture even minor
changes in the multipath profile by using TR technique.

D. TRIEDS in Controlled Environments
In the previous sections, we have validated the capability of

the proposed system of detecting two indoor events with both
LOS and NLOS transmission in controlled indoor environ-
ments. In this part, we are going to study the performance
of TRIEDS in detecting multiple indoor events. Moreover,
the performance comparison between the RSSI-based indoor
detecting approach and the proposed TRIEDS is further inves-
tigated.

In the experiment, the receiver is placed on either LOC B
or LOC C, whereas the transmitter moves and stops on every
two green dots that are separated by 1 meter, named from
“axis 1” to “axis 4” respectively. In total, we have 2 receiver
locations and 4 transmitter locations, i.e., 8 TX-RX locations.
The objective of TRIEDS is to detect which wooden doors
among D1 to D8 is closed versus all other doors are open,
as labeled in Fig. 5. During the experiment, for each TX-RX
location and each event, we measure 3000 CSI samples which
takes approximately 5 minutes, leading to a total monitoring
time of 45 minutes. In Table II is the state table describing all
the indoor events in the experiment.

As we claimed and verified in the single-event detection
experiment that the proposed TRIEDS can achieve highly ac-
curate detection performance by utilizing the spatial-temporal
resonance to capture changes in the multipath profiles. In this
section, we evaluate the capability of TRIEDS of detecting
multiple events in a controlled indoor environment. The perfor-
mance analysis for normal office environment during working
hours will be discussed in Section IV-E.

1) Evaluations on LOC B: To begin with, the performance
of TRIEDS when the receiver is on LOC B is studied. In Fig.
10, we show how the TRRS varies between different events.

Due to the fact that door D5 and D6 are close to each
other whereas they are far away to the receiver and the
transmitter, the introduced changes in the multipath profiles of
both of them are similar. Consequently, the resonance strength
between states S6 and S7 is relatively higher than other off-
diagonal elements, but it is still smaller than the diagonal
ones in Fig. 10 that represent the in-class resonance strength.
Similar phenomenon happens between states S8 and S9.

In Fig. 11 and Fig. 12, examples of the receiver operating
characteristic (ROC) curves for detecting states of indoor doors
are plotted for both the proposed TRIEDS system and the
conventional RSSI approach. Here, the legend “aixs i”, i =
1, 2, 3, 4, denotes the location of transmitter to be on the (2 ∗
i− 1)th green dot in Fig. 5.

As shown by Fig. 11 and Fig. 12, the proposed TRIEDS out-
performs the RSSI-based approach in distinguishing between
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Fig. 10: Resonance strength map with RX on LOC B and TX
on the 1st green dot (axis 1).
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Fig. 11: ROC curve for distinguishing between S1 and S2

under LOC B.

one door is close (i.e., Si, i ≥ 1) versus all doors are open
(i.e., S0), by achieving perfect detection and zero false alarm
rate. Note that S9 is the state of door D8 which is blocked
from the TX-RX link by a close office, as an example, Fig.
11 demonstrates the superiority of TRIEDS in performing a
through-the-wall detection. Meanwhile, the performance of the
RSSI-based approach degrades as the distance between where
the indoor event happens and the TX-RX gets smaller. By
leveraging the TR technique, TRIEDS is capable of capturing
the changes in a multipath environment in a form of multi-
dimensional and complex-valued vector with high degree of
freedoms, and of distinguishing between different changes in
the TR spatial-temporal resonance domain. However, the RSSI
based approach tries to monitor the changes in the environment
through a real-valued scalar, which due to its dimension loses
most of the distinctive information.

Furthermore, the accuracy of detection of TRIEDS improves
as the distance between the transmitter and the receiver
increases. So does the RSSI-based method. The reason is
that when the transmitter and the receiver get far away, more
energy will be distributed to the multipath components with
longer distance and thus the sensing system will have a larger
converage. The overall performance obtained by averaged on
all possible events shows that TRIEDS outperforms the RSSI
approach in Table III.

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 

TR Peak (axis 1)
TR Peak (axis 2)
TR Peak (axis 3)
TR Peak (axis 4)
RSSI (axis 1)
RSSI (axis 2)
RSSI (axis 3)
RSSI (axis 4)

Fig. 12: ROC curve for distinguishing between S1 and S9

under LOC B.

LOC B axis 1 axis 2 axis 3 axis 4
Detection Rate 99.12 99.5 99.67 99.81
TRIEDS (%)
False Alarm 0.88 0.5 0.33 0.19
TRIEDS (%)

Detection Rate 89.41 91.16 92.07 93.07
RSSI (%)

False Alarm 10.59 8.84 7.93 6.93
RSSI (%)

TABLE III: False alarm and detection probability for multi-
event detection on LOC B in controlled environment.

2) Evaluations on LOC C: Experiments are further con-
ducted to evaluate the performance of indoor multiple events
detection in a LOS transmission scenario by putting the
receiver on LOC C. In Fig. 13, we show the strengths of
the TR spatial-temporal resonances between different indoor
events. When the receiver and the transmitter transmit in a
LOS setting, the CSI is LOS-dominant such that the energy
of the multipath profile is concentrated only on a few taps.
It makes the coverage of TRIEDS shrink and degrades the
performance of TRIEDS, especially when the indoor events
happen far from the TX-RX link as shown in Fig. 13.

Examples of ROC curves to illustrate the detection perfor-
mance of both TRIEDS and the RSSI-based approach are plot-
ted in Fig. 14 and Fig. 15. The performance of the proposed
TRIEDS working in a LOS environment is similar to that in
a NLOS environment. Generally, TRIEDS achieves a better
accuracy for events detection with a lower false alarm rate,
compared with the RSSI-based approach. In both scenarios,
TRIEDS achieves almost perfect detection performance in
differentiating between Si, i ≥ 1 and S0. Moreover, the RSSI
method has a better accuracy in the LOS case than that in the
NLOS case.

The corresponding overall performance comparison for
TRIEDS and the RSSI-based method is shown in Table IV. It
is obvious that the farther the receiver and the transmitter are
separated, the better accuracy TRIEDS achieves. Moreover,
compared with Table III, the accuracy of RSSI-based method
improves a lot in LOS environment, whereas the one of
TRIEDS degrades slightly. Moreover, comparing the results in
Table III and Table IV, the detection performance for TRIEDS
degrades a little when the receiver and the transmitter change
the transmission scheme from NLOS to LOS. Because of
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Fig. 13: Resonance strength map with RX on LOC C and TX
on the 1st green dot (axis 1).
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Fig. 14: ROC curve for distinguishing between S1 and S2

under LOC C.

the dominant LOS path in LOS transmission, the ability to
perceive multipath components which is far away from the
direct link degrades, leading to a worse detection accuracy.

E. TRIEDS in Normal Office Environments

In this section, we repeat the experiments in Section IV-D
during working hours in weekdays where approximately 10
individuals are working in the experiment area, and all offices
surrounding and locating beneath or above the experimental
area are occupied with uncontrollable individuals.

The proposed TRIEDS achieves similar accuracy compared
with that of the controlled experiment in Section IV-D. The
overall false alarm and the detection rate for TRIEDS and the
RSSI-based approach are shown in the Table V and Table VI.

The results in Table V and Table VI are consistent with
the results in Table III and Table IV. The performance for
TRIEDS is superior to that of the RSSI-based approach, by
realizing a better detection rate and a lower false alarm rate.
Even in the dynamic environment, the proposed TRIEDS can
maintain a detection rate higher than 96.92% and a false alarm
smaller than 3.08% under the NLOS case, whereas a detection
rate higher than 97.89% and a false alarm smaller than 2.11%
under the LOS case. Moreover, as the distance between the
receiver and the transmitter increases, the accuracy of both
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Fig. 15: ROC curve for distinguishing between S1 and S9

under LOC C.

LOC C axis 1 axis 2 axis 3 axis 4
Detection Rate 99.09 99.28 99.31 99.35
TRIEDS (%)
False Alarm 0.91 0.72 0.69 0.65
TRIEDS (%)

Detection Rate 97.24 97.66 97.8 97.88
RSSI (%)

False Alarm 2.76 2.34 2.2 2.12
RSSI (%)

TABLE IV: False alarm and detection probability for multi-
event detection on LOC C in controlled environment.

LOC B axis 1 axis 2 axis 3 axis 4
Detection Rate 96.92 98.95 99.23 99.4
TRIEDS (%)
False Alarm 3.08 1.05 0.77 0.6
TRIEDS (%)

Detection Rate 92.5 94.16 94.77 95.36
RSSI (%)

False Alarm 7.5 5.84 5.23 4.64
RSSI (%)

TABLE V: False alarm and detection probability for multi-
event detection of TRIEDS in normal environment (LOC B).

LOC C axis 1 axis 2 axis 3 axis 4
Detection Rate 97.89 98.94 99.18 99.36
TRIEDS (%)
False Alarm 2.11 1.06 0.82 0.64
TRIEDS (%)

Detection Rate 96.73 97.19 97.35 97.43
RSSI (%)

False Alarm 3.27 2.81 2.65 2.57
RSSI (%)

TABLE VI: False alarm and detection probability for multi-
event detection of TRIEDS in normal environment (LOC C).

methods improves. In the comparison of Table III, IV, V and
VI, we claim that the proposed TRIEDS has a better tolerance
to the environment dynamics.

F. TRIEDS with Intentional Human Movements

To investigate on the effects that the human movements
have on the performance of TRIEDS, we conduct experiments
with none, one and two individuals keep moving back and
forth in the shaded area as Figure 16 shows. Meanwhile, the
transmitter is put on the purple dot and the receiver is on the
green dot, detecting the states of two adjacent doors labeled
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Fig. 16: Experiment setting for study on human movements.

as “D1” and “D2”. The list of door states is in Table VII. For
each set of experiments, TRIEDS detects the states of the two
doors for 5 minutes during the normal working hours.

State 00 01 10 11
D1 Open Open Close Close
D2 Open Close Open Close

TABLE VII: State list for study on human movements.

Interference caused by the human movements changes the
multipath propagation environment and brings in the variations
in the TR spatial-temporal resonances during the monitoring
process of TRIEDS. Fortunately, due to the mobility of human,
the introduced interference keeps change and the duration
for each interference is short. To combat the resulted bursted
variations in the TRRSs, we adopt the majority vote method
combined with a sliding window to smooth the detection
results over time. Supposing we have the previous K − 1
outputs S∗

k , k = t−K + 1, · · · , t− 1 and the current result
S∗
t , then the decision for time stamp t is made by majority

vote over all S∗
k , k = t−K+1, · · · , t, so on and so forth for

all t. K denotes the size of the sliding window for smoothing.

Experiment No HM One HM Two HM
No 97.75% 87.25% 79.58 %
Smoothing
With 98.07% 94.37% 88.33 %
Smoothing

TABLE VIII: Accuracy comparison of TRIEDS under human
movements.

In Table VIII, we compare the average accuracy over all
states for TRIEDS with or without the smoothing algorithm in
the absence of human movements (HM), and in the presence of
the intentional persistent human movements performed by one
individual and two individuals. Here, the length of the sliding
window is K = 20. First of all, the accuracy of TRIEDS
reduces as the number of individuals increases, performing
persistent movements near the location of the indoor events
to be detected, the transmitter and the receiver. Moreover,
the adopted smoothing algorithm improves the robustness of
TRIEDS to human movements and enhances the accuracy by
7% to 9% compared with that of the case without smoothing.
Meanwhile, during the experiments, we also find that the most
vulnerable state is state “00” where all doors are open, such
that with human movements TRIEDS is more likely to yield
a false alarm than other states. The reason is that as human

Fig. 17: Experiment setting for guarding.

moves close to the door location, the human body, viewed as
an obstacle at the door location, is similar to a close wooden
door, and hence the changes in the multipath CSI are also
similar, especially for D1.

G. TRIEDS for through-the-wall Guard

Unlike the previous experiments where we are trying to
detect the door states, in this part, TRIBOD is functioning as
a through-the-wall guard system. The objective for TRIEDS
is to secure a target room through walls and to alarm not only
when the door state changes but also when unexpected human
movements happen inside the secured room. The system setup
is shown in Figure 17, where the secured room is shaded.

In this experiment, the transmitter and the receiver of
TRIEDS, marked as purple and green dots, are placed in two
rooms respectively as shown in Figure 17. TRIEDS is aimed to
monitor and secure the room in the middle, which is shaded in
light blue color, and to report as soon as the door of the secured
room is open or someone is walking inside the secured room.
TRIEDS only collects the training data for normal state, i.e.,
door is closed and no one is walking inside the room. The
training database consists of 10 samples of the CSI. Once
TRIEDS starts monitoring, it will keep sensing the indoor
multipath channel profile, and compare it with the training
database by computing the time reversal resonance strength
according to (3) and (5).

An example is shown in Figure 18, where we can see a
clear cut between the normal state and the intruder state,
and between the normal state and the state where someone
is walking inside the room. The threshold 1 is the threshold
for detecting when the indoor states deviates from the normal
state, leading to a 100% detection rate and 0 false alarm.
Whereas the threshold 2 is for differentiating between the
intruder state( i.e., door is open) and the state when someone
is walking inside the secured room with the door is close,
based on which TRIEDS only has 3% error by classifying the
human activity state as the intruder state. Even with a single-
class training dataset, TRIEDS is capable of distinguishing
between different events and functioning as an alarm system
to secure the rooms through the walls.

V. DISCUSSION

A. Experimental Parameters

1) Sampling Frequency: In this work, the sampling fre-
quency of TRIEDS is 50 Hz, i.e., TRIEDS senses
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Fig. 18: Resonating strength of guard system.

the multipath environment every 20 ms. Since usually
the changes of door states happen in 1 to 2 seconds
(s), current sampling frequency is enough for capturing
binary changes for doors. In order to detect and monitor
the entire transition of the changes or other changes
happen in a sudden, a higher sampling frequency is
indispensable.

2) Size of Training and Testing Group: In the current
experiments, we choose both the training group size M
in (1) and the testing group size N in (6) as 10, to
address the variations of noise in the CSI estimation. We
have studied the performance of TRIEDS with different
sizes of training and testing group. It is found out that
with a size greater than 10, the performance does not
improve much but a larger delay for acquiring more
CSI samples is introduced. Hence, in this work, without
sacrificing the time sensitivity of TRIEDS, the size of
10 (i.e., a sensing duration of 0.2s) is adopted.

B. Impact of Human Movements

TRIEDS utilizes the TR technique to map multipath profiles
of indoor events into separate points in the TR space, due to
the fact that different indoor events and human movements
alter the wireless multipath profiles differently.

In Section IV-G, the experimental results of applying
TRIEDS in a through-the-wall guard task are discussed. As
shown in the Fig. 18, in most cases, given the door close
event with no human motions, the TRRS of the same event
with human motions drops. However, the degradation in the
TRRS introduced by human motions is small, whereas the gap
between the TRRS of the door close event and that of the door
open event is significantly large. The reason is that due to the
small size of human body compared to indoor objects like
doors, human body only alters a small portion of multipath
components when moving not close to the transmitter or
the receiver, resulting in sparse changes in the amplitude or
the phase of a couple of taps in the CSI. Consequently, the
point of door close event with human motions locates at the
“proximity” of the point of the static door close event, i.e.,
the two points are quite similar measured by the TRRS. They

can be viewed as a single cluster given a proper threshold on
the TRRS. However, when the human motions are close to the
transmitter or the receiver, there is a chance that the altered
multipath profile differs a lot from the one of the static indoor
event, leading to a great attenuation in the TRRS, and thus a
different cluster in the TR space as well as a miss detection in
TRIEDS. Moreover, as discussed in Section IV-F, the detection
accuracy drops compared to the case without intentional
motions with intentional human movements. It is because that
due to the existence of moving human bodies, the CSI or
the multipath profiles in the environment deviate accordingly
and keep changing. However, with the help of smoothing over
the time domain, the dynamic changes in multipath profiles
introduced by human motions can be trimmed out.

C. Future Work

This work validates the feasibility and capability of TRIED-
S in detecting indoor events and evaluates its performance
through experiments in real environments. We also recognize
several limitations of the existing system and potential appli-
cations that motivate future work.

1) In this work, the capability of the proposed TRIEDS
is only validated and evaluated through the experiments
to detect the states of multiple doors with the existence
of human movements in an office environment. In fact,
TRIEDS is suitable for many other indoor events, such
as monitoring the states of windows, and differentiating
between different human movements. In the next step,
we are going to conduct more experiments on detecting
other events.

2) As the first to apply time-reversal (TR) technique to
indoor event detections, this work is aimed to illustrate
the feasibility and capability of TRIEDS in detecting
events in indoor environments with the simplest training
and testing mechanism to produce acceptable results and
performance. Moreover, a prototype of the TR indoor
event detection system is built and put into experiments
in real indoor environments to test the performance
of TRIEDS. Advanced training and testing algorithms,
e.g., the machine learning technique, will improve the
performance of the TR indoor event detection system.
However, this is beyond the scope of this paper and we
plan to investigate it in the next step.

3) Equipped with only one pair of the transmitter and the
receiver, the current system can yield a good detection
accuracy for indoor events. However, by deploying more
transceiver pairs, the performance of TRIEDS can be
improved as the captured multipath profiles contain
information with more degrees of freedoms coming from
the spatial diversity. We plan to explore the use of
multiple transmitters or receivers to acquire the gain in
spatial diversity for further performance improvement of
TRIEDS.

In spite of these limitations, we believe that the proposed
TRIEDS introduce a novel idea to apply the TR technique
to capture the variations in the multipath propagation environ-
ments for future surveillance systems.
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VI. CONCLUSIONS

In this paper, we proposed a novel wireless indoor events
detection system, TRIEDS, by leveraging the TR technique to
capture changes in the indoor multipath environment. TRIEDS
enables low-complexity devices with the single antenna, op-
erating in the ISM band to detect indoor events even through
the walls. TRIEDS utilizes the TR spatial-temporal resonances
to capture the changes in the EM propagation environment
and naturally compresses the high-dimensional features by
mapping multipath profiles into the TR space, enabling the
implementation of simple and fast detection algorithms. More-
over, we built a real prototype to validate the feasibility and to
evaluate the performance of the proposed system. According
to the experimental results for detecting the states of wooden
doors in both controlled and dynamic environments, TRIEDS
can achieve a detection rate over 96.92% while maintaining
a false alarm rate smaller than 3.08% under both LOS and
NLOS transmissions.
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