
Received November 26, 2019, accepted January 1, 2020, date of publication January 6, 2020, date of current version February 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2964525

Radio Frequency Based Direction
Sensing Using Massive MIMO
XIAOLU ZENG 1,2, FENG ZHANG 2,3, (Member, IEEE),
BEIBEI WANG 2,3, (Senior Member, IEEE), AND
K. J. RAY LIU 2,3, (Fellow, IEEE)
1National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
2Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
3Origin Wireless Inc., Greenbelt, MD 20770, USA

Corresponding author: Xiaolu Zeng (feiying3709@sina.com)

This work was supported by the China Scholarship Council (CSC).

ABSTRACT Navigation systems have been widely used in modern applications in which the moving speed
and direction estimations are two key steps. Instead of using traditional device-based orientation sensor
such as accelerometer and magnetometer to estimate the moving direction, this paper presents a novel radio
frequency (RF) signal-based moving direction sensing scheme by using 5G massive multiple input and
output (MIMO) system. We first explore the energy distribution of the received signal in massive MIMO
in both near- and far-field scenarios. The energy distribution in near-field is proved to be highly related to
the geometric shape of the antenna deployment. In contrast, the energy distribution turns out to be a stationary
sinc-like focusing beam in far-field scenario. Inspired by such an observation, we develop a novel method
to estimate the speed of a moving target with respect to a single based station. The moving direction can
be further determined by jointly considering the speed estimation results and the geometric property of the
locations between the target and nearby base stations. Finally, numerical simulations show that the proposed
RF-based method can achieve high accuracy in which the moving speed estimation error is less than 1.5m/s
while the moving direction estimation error is within 2 degrees.

INDEX TERMS Massive MIMO, moving speed, moving direction, far-field, 5G.

I. INTRODUCTION
Navigation systems have been widely used in modern appli-
cations, among which GPS is the most popular one. However,
GPS cannot work well in non-line-of-sight (NLOS) situa-
tion [1] because of its requirement of an unobstructed line-
of-sight (LOS) to four or more GPS satellites. As a result,
inertial navigation system (INS) [2], [3] has been regarded as
an effective supplement of GPS because it is a self-contained
navigation technique. In an INS, moving speed and direction
estimations are necessary to dead reckon the position of a
moving object. As a result, how to estimate the moving speed
and direction of a target has also been extensively studied.

Accelerometer, gyroscope and magnetometer are the three
most commonly used sensors in an INS. In general, INS
adopts certain data fusion methods [4] to jointly use the
information extracted from different sensors to estimate the
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moving speed and direction of the target. They are accurate
when the target is relatively stable. However, they suffer from
the unavoidable mechanical resistance or magnetic interfer-
ence, which causes accumulative errors from the truth, espe-
cially over a long time.

Vision/image based method aided by camera devices is
another kind of popular ways to detect the moving speed
and direction for metro vehicles. For example, the contin-
uous image sequences of the road surface texture are ana-
lyzed to get the vehicle speed and direction estimations
in [5]. To solve the high frame rate requirement, two par-
allel vehicle-borne devices are adopted to take the images
simultaneously [6], [7]. Then, the vehicle speed and moving
direction are extracted by image matching and parame-
ter calibration schemes. Although those vision based meth-
ods can achieve good accuracy after rounds of improve-
ment, their requirements of sufficient image resolution and
computational power becomes a bottleneck in real-time
applications.
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RF-based methods such as direction-of-arrival (DOA) esti-
mation has also beenwidely explored to estimate the direction
of a target with respect to the antenna array [8], [9]. Recently,
massive MIMO [10] is shown to further improve the DOA
estimation accuracy because of its high degree of freedom
and angular resolution. In addition, massive MIMO/access
point (AP) generates a huge number of data which can be
used by training-based approach for moving speed and direc-
tion estimation such as deep learning [11], K-means [12].
However, DOA-based methods usually estimate the incom-
ing direction of the received signal rather than the moving
direction of a target. Training-based approach requires plenty
of data to train the parameters whenever the wireless propa-
gation property changes, thus hindering practical usability.

Different from most existing works which rely on ded-
icated devices, this paper is inspired by the principle of
time reversal (TR), based on which many powerful indoor
target localization and tracking methods have been devel-
oped [13]–[18]. In particular, the time-reversal resonat-
ing strength (TRRS) [14] is proved to be a stationary
and location-independent focusing-ball shaped distribution
around the receiver [17]. By leveraging such an observation,
a target tracking method with centimeter-level accuracy has
been proposed and verified by extensive experiments [18].

Intuitively, the afore-mentioned indoor localization sys-
tems [17], [18] take advantage of the massive multipath com-
ponents existing in the indoors and establish a link between
the statistical property of the received signal and the moving
speed of the target. However, when it comes to outdoor
scenario with cellular communication beingwidely deployed,
there are two new challenges. First, it has been shown through
extensive measurements [19]–[21] that there are much less
multipaths in an outdoor environment (e.g., a street or plaza)
than in indoors. In addition, the 5G cellular network will
become ultra dense (about 40 − 50 BSs/km2) so as to
provide seamless coverage [22]. In this case, the received
signal is more likely to consist of both LOS and NLOS
signal components while the NLOS signal dominates in an
indoor area. Second, multipath signals in indoors [17] are
assumed to impinge from all directions around the receiver
symmetrically. As a result, the TRRS energy distribution of
the received signal is shown to be a symmetric Bessel-like
focusing ball around the receiver, which cannot provide the
direction information. Is there a good alternative that not only
exhibits a similar focusing effect but also provides direction
information?

In this paper, we address the two aforementioned problems
on the base of 5G massive MIMO communication scheme
and propose a simple yet practical device-free moving speed
and direction estimation method. Specifically, a massive
MIMO system utilizes multiple antennas to physically gener-
ate a large number of signal components which play similar
roles as multipaths in a rich-scattering environment. In addi-
tion, the incident signals generated by massive MIMO can
only get to the receiver from the transmitter side. We then
prove that in far-field scenario, the autocorrelation function

strength (ACFS) distribution of the received signal around
the receiver exhibits a sinc-like beam in spatial domain,
which can provide direction information. By further using
the dense deployment of 5G massive MIMO base stations
(BSs) [22]–[24], a new radio frequency (RF) signal based
moving speed and direction estimation method is proposed.
In addition, it leverages the natural superposition property
of the received signal, which reduces the computational load
greatly. The main contributions of this work can be summa-
rized as follows:

• Wederive the ACFS distribution of the received signal of
a massive MIMO communication system in both near-
and far-field scenarios. In near-field situation, the ACFS
distribution is closely related to the geometric param-
eters of the antenna array while it shows a stationary
sinc-like beam in far-field scenario.

• Considering the practical far-field scenario, we develop
a moving speed estimation algorithm by using the
aforementioned ACFS distribution, which achieves high
accuracy with the speed estimation error less than
1.5m/s. Because the ACFS distribution of the received
signal is stable, meaning the computation complexity
for calculating the ACFS is linearly proportional to the
received data size, the proposed speed estimation algo-
rithm also enjoys a low complexity.

• Based on the speed estimation, we propose an approach
to estimate the moving direction by further using the BS
deployment information. Numerical simulations show
that our method is environment independent and the
moving direction estimation error is less than 2 degrees,
which outperforms the benchmark methods i.e., DOA
estimation methods [25]–[28], SenSpeed [29], GPS
method [30], INS based methods [2], [3], massive
MIMO based methods [9], [12], [31] and vision based
methods [5], [6] in terms of accuracy and complexity.

The rest of the paper is organized as follows. In Section II,
we introduce the signal model for a massive MIMO system
and derive theACFS distribution of the received signal in both
near- and far-field scenarios respectively. Speed estimation
and corresponding moving direction estimation methods are
elaborated in Section IV. Extensive numerical simulations in
Section V show the validity of the proposed approach. And
Section VI concludes the paper.

II. ACFS DISTRIBUTION OF MASSIVE MIMO
A. SIGNAL MODEL
We assume a massive MIMO BS and a receiver fixed on a
moving object. In Fig. 1, the BS denoted by ‘B’ is equipped
withM antennas which communicate with the receiver simul-
taneously. HB denotes the height difference between the BS
and the receiver r. Different from the typical Rician fading
model, the LOS signal yL(t) here is not a single component
but the superposition of multiple signals transmitted by the
massive antennas on the BS. Then, the complex form of the
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FIGURE 1. The set-up for a base station with massive MIMO(A:
transmitting antennas, B: base station, r: receiver, HB: height difference
between the BS and the receiver r).

received signal at base band can be expressed as [32], [33]

y(t) = yL(t)+ yN(t)+ n(t),

yL(t) =
√
KL

M∑
m=1

exp(j(k|xmrt | + φm))
4π |xmrt |

,

yN(t) =
√
KN

N∑
n=1

exp[j(ωd tcosαn + φn)], (1)

where yN(t) is the superposition of the NLOS signal com-
ponents reflected from the surrounding scatterers. KL and
KN are the power coefficients. k = 2π/λ denotes the wave
number while λ is the wavelength. ωd is the Doppler fre-
quency. xm denotes the coordinate of the m-th antenna and
rt is the coordinate of the receiver location at time t . |xmrt |
denotes the spatial distance between xm and rt . n(t) is the
complex additive white Gaussian noise (AWGN). φm(m =
1, 2, . . . ,M ) is the compound phase distortion of the m-th
LOS path signal. αn and φn are the DOA and phase distortion
of the n-th NLOS path signal. In general, φm, αn and φn(n =
1, 2, . . . ,N ) can be assumed as i.i.d uniform distributions
over [−π, π) [33], where N is the total number of NLOS
signal components. In typical urban areas, N varies from tens
to hundreds [19]–[21]. As a result, we set N as a random
integer within 10 ∼ 100 in this paper.

B. ACF DISTRIBUTION OF THE NLOS SIGNAL
Recalling (1), the ACF of the received signal at two different
time stamps t0 and ts is given by

ηy = Eα,φ[y(t0)y∗(ts)] (2)

= Eφ[yL(t0)y∗L(ts)]+ Eα,φ[yN(t0)y∗N(ts)]. (3)

where E represents the expectation w.r.t. α and φ. Note that
in (1), we only know the distributions of φm, αn and φn.
Hence, we should take the expectations over variables α
and φ to get the ACF of the received signal in (2) and (3).
In addition, yL(t) is not related to α. Hence, we omit α when
we compute the ACF of yL(t). This notation is commonly
used by researchers in this area. Interested readers can refer
to [33] and the references therein for details.Moreover, ACFS
is defined as |ηy|2. The cross-correlation terms between yL(t),
yN(t) and n(t) are zeros because they are independent terms

FIGURE 2. Signal propagation geometry between two different locations
r0 and rs of the target.

with zero mean. In addition, we omit term E[n(t0)n∗(ts)] =
σ 2, which is a constant. From [17], [33], ACF of the NLOS
signal is given by

ηyN = ηyN (r0, rs) = Eα,φ[yN(t0)y∗N(ts)] = KNJ0(kp). (4)

where J0 is the 0-order Bessel function. Hereafter, as shown
in Fig. 2, r0 and rs denote the two nearby positions of the
moving object at two different time stamps t0 and ts on
the ground (xOy plane). p = |r0rs|, ε and ξ represent the
Euclidean spatial distance, range and cross-range between
r0 and rs, respectively. In addition, we define the following
angle related notations shown in Fig. 2, i.e., 6 rsr0r′s =
γ ′m,
6 rsr0r′0 = γm, 6 r′sr0r

′′

0 = β1, 6 r′′0r0r
′

0 = β, where r′0
lies in the extension line of lxmr0 satisfying that lxmr′0 ⊥ lrsr′0 .
And r′′0 is the projection of r

′

0 on the xOy plane. By using the
geometrical relationships shown in Fig. 2, we can achieve

cosγm = cosβ · cos(β1 + γ ′m), cosγ ′m = ε/p,

cosβ =

√
L2
BR + x

2
m√

L2
BR + (HB + zm)2 + x2m

,

cosβ1 =
LBR√

L2
BR + x

2
m

. (5)

III. ACFS DISTRIBUTION OF MASSIVE MIMO
A. ACFS DISTRIBUTION OF THE LOS SIGNAL
From (1), the ACF distribution of the LOS signal yL(t) is

ηyL =Eφ[yL(t0)y∗L(ts)] = KL

×

M∑
i=1

M∑
m=1

Eφ
{
exp[jk(|xir0| − |xmrs|)+j(φi−φm)]

(4π )2|xir0||xmrs|

}
.

(6)

In practice,
∣∣|xir0| − |xmrs|∣∣ which represents the path differ-

ence is within meters. |xir0| and |xmrs| denote the distance
between the antenna and target, which vary from several
meters to hundreds meters. Next, we separate the derivation
of (6) into near- and far-field cases.
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1) NEAR-FIELD SCENARIO
To compute (6), when i = m, we have

ηN1st
yL = KL

M∑
m=1

Eφ {exp[jk(|xmr0| − |xmrs|)]} . (7)

|xmrs| =
√
|xmr0|2 + p2 − 2|xmr0|pcosγm. (8)

When i 6= m in (6), i.e.,

ηN2nd
yL = KL

M∑
i=1

M∑
m=1,m6=i

Eφ{exp[j(9im +8)]}, (9)

where 9im = k|xir0| − k|xmrs| and 8 = φi − φm. Then,

the ACFS can be expressed as
∣∣∣ηNy ∣∣∣2 = ∣∣∣ηN1st

yL +η
N2nd
yL + ηyN

∣∣∣2.
In the near-field scenario, HB, zm, xm are within several

meters while LBR ≤ 10HB ≤ 50m. Therefore, cosγm in (5)
is in a complicated form, which results in that there is no

close form of ηN1st
yL , ηN2nd

yL and the ACFS
∣∣∣ηNy ∣∣∣2. In this case,

Fig. 4 numerically shows the ACFS distributions of a uniform
linear array (ULA) and a uniform circular array (UCA). More
discussions are given in Section III-B.

2) FAR-FIELD SCENARIO
In practice, far-field situation (i.e., LBR ≥ 10HB ≥ 50m)
is more popular for outdoor targets because the future 5G
cellular network will become ultra-dense with a density of
40 − 50 BSs/km2 [22]. Even though LBR ≤ 50m for some
BSs, LBR ≥ 50m can be true for some other nearby BSs at
the same time. Therefore, far-field condition can be easily
satisfied in the 5G cellular network system. In this case,
|xmrs| ≥ LBR � HB, xm, zm and p = |r0rs|. Moreover, |xir0|
and |xmrs| in the denominator of (6) are just amplitude scalers
which can be approximated as the same constant. As a result,
we will omit the denominator of (6) in the following.

In (6), when i = m, in 4xmr0rs, we have

|xmrs|2 = (|xmr0| − pcosγm)2 + psinγm2

≈ (|xmr0| − pcosγm)2. (10)∣∣∣|xmr0| − |xmrs|∣∣∣ ≈ pcosγm =
−Lε + xmξ√
L2 + x2m

≈ −ε + xmξ/L,

L =
√
L2
BR + (HB + zm)2 + x2m (11)

where L is the distance between the antenna and target.
Substituting (11) into (7), We get

ηF1styL =
KLAeexp(jkε)

d
sinc(

kξAe

2L
), (12)

where sinc(t) = sin(t)/t, Ae = Md while d = λ is the inner
element space.

When i 6= m, similar to (10) and (11), we can get that∣∣∣|xir0| − |xmrs|∣∣∣ = −ε + [xm(ξ −1xim)/L], (13)

where 1xim = |(i − m)d |. Next, we discuss 8 = (φi − φm)
in (9). Different from [33], we consider a more general case in

which φi and φm are uniformly distributed over [8min,8max].
The probability density function (PDF) of 8 is

f8(φ) =

{
φR + φ, −φR ≤ φ ≤ 0,
φR − φ, 0 ≤ φ ≤ φR.

(14)

where φR = 8max −8min. Then, (9) is given by

ηF2ndyL (i,m) = exp(j9im)
∫ φR

−φR

f8(φ)exp(jφ)dφ.

= 2exp(j9im)(1− cos(φR)). (15)

In general, it is assumed that 8min = −π and 8max =

π [33]. Therefore, φR = 2π and ηF2ndyL (i,m) = 0. Conse-
quently, ηF2ndyL =

∑M
i=1

∑M
m=1
m 6=i

η
F2nd
yL (i,m) = 0. Then,

ηFyL = η
F1st
yL + η

F2nd
yL =

KLAeexp(jkε)
d

sinc(
kξAe

2L
). (16)

In a more general case where 8min 6= −π and 8max 6= π ,
η
F2nd
yL (i,m) in (15) does not always equal to 0. Since in (15)

that 1−cos(φR) is a constant once φR is determined, we focus
on the exp(j9im) in the following by dividing (13) into −ε,
xmξ
L and − xm1xim

L . Next, we define

E9im = xm1xim/L = md |(i− m)|d/L, (17)

ηF2ndyL (m) = KL

M∑
i=1,
i 6=m

exp(jk E9im) ≈ KL

M−1∑
i=1

exp(jkδ). (18)

where δ is a small factor to approximate E9im because
m|(i− m)|d2 � L holds in far-field scenario. Extra error
may be induced by this approximation. However, simulations
in Fig. 5 show that it is tolerable. Jointly using (13) and (18)
and considering all the (i,m) pairs, we can get that

ηF2ndyL = MKL

M∑
i=1

exp [jk(ε + xm(ξ − δ)/L]

= MKL(1− cos(φR))
Aeexp(jkε)

d
sinc(

k(ξ − δ)Ae

2L
).

(19)

As a result,

ηFyL = η
F1st
yL + η

F2nd
yL = KLsinc(

k(ξ − δy)Ae

2L
) (20)

tan(
kAeδy
2L

) =
(1− cosφR)sinφy

1+ (1− cosφR)cosφy
, φy =

kAeδ
2L

. (21)

The entire normalized ACFS is then given by∣∣∣ηFy ∣∣∣2 = ∣∣∣ηFyL + ηyN ∣∣∣2 , with ηyN = KNJ0(kp). (22)

Evidently, ηyN decays much faster than ηFyL . Moreover, exten-
sive measurements [19], [21] show that usually KL ≥ KN
holds in a typical urban area. As a result, the ACFS is dom-

inated by the ηFyL , i.e.,
∣∣∣ηFy ∣∣∣2 ≈ ∣∣∣ηFyL ∣∣∣2, which is verified by

Fig. 3 and other the simulations in Section III-B.
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FIGURE 3. ACFS distribution with LOS and NLOS.

B. VERIFICATION OF ACFS DISTRIBUTION
Assuming M = 100, N = 50, f0 = 28GHz [34], d = λ,
HB = 10m, LBR = 100m and KL = KN, Fig. 3 shows
the ACFS numerically computed by (2) and (6). It is easy to
conclude that the NLOS signal has little impact on the ACFS
which is consistent with our analysis in (22). Fig. 4 shows
the ACFS computed by (2) using the similar parameters with

Fig. 3 but different LBR. When LBR ≤ 50m, ULA and
UCA show different ACFS distributions while a similar beam
pattern when LBR ≥ 50m, which also matches our derivation
in (22).

From (20) and (22), the ACFS distribution is only related
to ξ given a fixed L. Hence, we set ε = 0 and study the ACFS
distribution versus different ξ . As shown in Fig. 5, the pattern
of these two matches well while there is a little bias because
of the approximation δ in (18) especially when ξ ≤ 1m.
However, the following angle estimation method is based on
the peak distance between the second and third peak. In Fig. 5,
the aforementioned peak distances obtained by (2) and (20)
are consistent. As a result, the bias and mismatch of the two
when ξ ≤ 1m does not influence our angle estimation.

IV. MOVING SPEED AND DIRECTION
ESTIMATION METHOD
We first define range and cross-range direction in Fig. 6(a).
The peak distance p and moving time t are depicted
in Fig. 6(b). Then, we introduce a new target speed estima-
tion method and further a novel moving direction estimation
approach.

A. SPEED ESTIMATION
From (22), the ACFS measured at the receiver is just a

sampled version of
∣∣∣sinc( k(ξ−δy)Ae2L )

∣∣∣2 as depicted in Fig. 5.

FIGURE 4. ACFS around the center, (a)-(c) ULA, (d)-(f) UCA.
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FIGURE 5. ACFS distribution from equation (2) and (20).

FIGURE 6. ACFS around an intended center (ε = 0, ξ = 0).

FIGURE 7. Curve smoothing.

As a result, we can compute the peak distance p =

2.034L/kAe ≈ 1.017m which matches with our simulation
(p = 1m) in Fig. 5. The moving time t̂ can be estimated
by looking for the second and third peaks of the ACFS
distribution curve. Then, the target speed is given by v = p/t̂ .
Note that a local regression [35] method is applied first to
smooth the ACFS curve to get rid of glitches caused by noise
and other interference as shown in Fig. 7.

FIGURE 8. Key steps of the proposed method.

B. DIRECTION ESTIMATION
Assuming that a target moves along −−→r0rs in Fig. 6(a), our
speed estimation is actually v′ rather than v because that the
peak distance defined in Fig. 6(b) is along the cross-range
direction (

−−→
r′0rs). However, by further using the geometry

relationships between the two nearby BSs and target shown
in Fig. 9, the true speed v can be expressed as

v = v1/sinθ1 = v2/sinθ2, 180◦ − α = θ1 + θ2. (23)
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FIGURE 9. Direction estimation.

FIGURE 10. Direction updating.

Since v1 and v2 are already estimated by our previous speed
estimation method, we can obtain θ1 and θ2 by solving the
two equations in (23). Next, we discuss how to update the
estimation of θ1 and θ2 when the target keeps moving.

C. DIRECTION ESTIMATION UPDATING
Fig. 10 shows three consecutive adjacent points r0, r1 and r2
along the moving trace. r0 is the initial point and 1θ is the
turning angle. From (23), we can obtain the estimation of θ1,
θ2 and the true speed v. Thus, we have |r0r1| = vt and the
distance between the target and BS

|B1r1| =
√
|B1r0|2 + |r0r1|2 − 2|B1r0||r0r1|cosθ1. (24)

Once we get the new |B1r1|, we update the ACFS distribution
to estimate a new pair of (v1, v2). By using triangular relation-
ships, we can also easily get β1, β2 and{
θ1+1θ=θ1 + β1

θ2 = θ2 − β2
⇒ θ1 + θ2 +1θ is obtained. (25)

Then, we can update (23). Finally, we use (v1, v2) and
θ1 + θ2 + 1θ to estimate θ1 and θ2 respectively. To have
a high-level understanding, the flowchart of the proposed
method is summarized in Fig. 8.

V. SIMULATION RESULTS
In this section, we simulate a 5G communication system
to evaluate the proposed method. In all the experiments,
we set M = 100, N as a random integer within 10 ∼ 100,

f0 = 28GHz [34], d = λ, HB = 10m, LBR ≥ 50m,
SNB = 10dB and sampling rate fs = 500Hz, if not otherwise
indicated. In the following, we study the performance of the
proposed system in six perspectives: 1) speed and direction
estimation results; 2) impact of antenna number, 3) impact of
the sample rate, 4) impact of SNR, 5) impact of antenna array
configuration and 6) comparison with existing works.

A. SPEED AND ANGLE ESTIMATION RESULTS
We first construct a practical case in which the target starts
moving with a low speed of 5m/s, accelerates for 2 seconds,
keeps constant speed for 1 second and finally decelerates.
Fig. 11 shows that our method can achieve less than 1.5m/s
speed estimation error. The direction estimation suffers from
a relative large error at the beginning when (θ1 + θ2) is very
close to 90◦. Obviously, from (23), sin(θ1 + θ2) changes
smoothly when (θ1 + θ2) approaches to 90◦. In other words,
if there are errors in our previous v1 and v2 estimations,
sin(θ1 + θ2) just deviates a little. However, when (θ1 + θ2)
is far away from 90◦, our method becomes more accurate as
shown in Fig. 11(c). Fig. 12 shows the empirical cumulative
distribution function (CDF) of our method obtained from
1000 Monte Carlo trials for five different speeds. Overall,
the 80 percentile of speed estimation error is within 1.0m/s
while the direction estimation error is less than 1.3◦.
Note that ‘moving distance’ along x-axis means how far

the target moves away from the starting point. Here, we only
show the results when the moving distance is within 60m.
However, situations with larger moving distances are also
explored. While we omit corresponding plots, the direction
estimation error accumulates at a moderate rate as the object
moves too far away from the starting point. This is mainly
because the drop of SNR when the target moves close to
the cell edge of the allocated BSs. However, this problem
can be solved by deploying multiple cooperative 5G BSs
on the base of an ultra-dense network which can provide
40− 50 BSs/km2 [22].

B. IMPACT OF ANTENNA NUMBER
Fig. 13 depicts the Root Mean Square Error (RMSE) of the
speed and direction estimation results versus different M.
It can be seen that both speed and direction estimations
become more accurate with the increment of M. With more
antennas equipped on the BS, we can harvest more signal
components, which provides us a more accurate ACFS esti-
mation. As a consequence, we can localize the peak more
accurately and achieve better speed and direction estimations.
When M ≥ 150, further increasing the antenna number is
not much helpful to improve the accuracy. This is reasonable
because the ACFS estimation turns to be stable when M is
large enough.

C. IMPACT OF SAMPLE RATE
In general, a higher sample rate leads to a better accuracy.
Given a specific sample rate, object moving at a higher speed
tends to be more vulnerable. Assume the window length is
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FIGURE 11. Speed and direction estimation results with variable speeds.

FIGURE 12. CDF of estimation error.

FIGURE 13. Estimation error versus antenna number.

1t during which the moving speed is constant. If the peak
estimation is somehow deviated from the ground truth about
one sample, then the velocity error is 1v = v

fs1t
, indicating

that a higher speed leads to a larger speed estimation error.

As a result, the corresponding direction estimation perfor-
mance also degrades. Fig. 14 shows that the minimum sample
rate for the proposed system is about 500Hz and further
reducing the sample rate leads to larger estimation errors.
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FIGURE 14. Estimation error versus sample rate.

FIGURE 15. Estimation error versus SNR.

However, when the sample rate fs ≥ 500Hz, our system
shows stable performance with a speed estimation error about
0.9m/s and direction estimation error 0.86◦. Since no other
dedicated devices such as accelerometer and gyroscope are
needed, it provides a promising candidate for moving speed
and direction estimation in the future.

D. IMPACT OF SNR
Fig. 15 shows that the SNR threshold for our method to
work well is 10dB. If SNR ≤ 10dB, both the speed and
direction estimation performance degrade seriously. Fig. 15
also indicates that the estimation error increases when the
target moves at a higher speed, which is consistent with our
previous analysis.

E. IMPACT OF ANTENNA ARRAY CONFIGURATION
In this section, we study the impact of array configuration
on our algorithm. In total, we consider three different array
configurations including ULA, UCA and uniform rectangular
array (URA) with M = 100, HB = 10m and LBR ≥ 50m

(far-field scenario). Note that for the URA, the longer side
consists of 41 antennas while there are 11 antennas on the
shorter side because antennas on the four vertexes are shared
by two adjacent sides of the rectangular array. Fig. 16 shows
that all the three configurations achieve comparable perfor-
mances. This is consistent with our analysis in Section III-B
that different antenna array configurations show a similar
focusing beam pattern in far-field scenario. As a result, our
algorithm is independent on antenna configuration.

F. PERFORMANCE COMPARISON
First, we compare the speed estimation performance with
the SenSpeed [29] and GPS based method [30]. Clearly, our
algorithm shows better performance as shown in Fig. 17(a).
Mainly, there are two reasons. First, SenSpeed relies on
the assumption that the error between the integral value of
acceleration and true speed increases almost linearly over
time, which is not always true in practice. Second, GPS
is vulnerable to urban canyon environments because of the
NLOS distortions. Differently, our method uses the statistical
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FIGURE 16. Estimation error versus different arrays (ULA, UCA and URA).

FIGURE 17. Performance comparison with related methods.

TABLE 1. Overall comparisons with existing works in RMSE.

ACFS of the received signal to fully consider theNLOS signal
components, which is more robust in real applications.

Fig. 17(b) compares the direction estimation performance
of our method with four typical DOA estimation methods,
i.e., Capon [25], MUSIC [26], ESPRIT [27] and Unitary
ESPRIT [28]. In addition, Cramer-Rao Bound (CRB [36])
is also given to evaluate our method intuitively. Our method
outperforms the DOA estimation methods mainly because
that NLOS signal components are proved to have little impact
on the ACFS of the received signal. However, most DOA

estimation methods require accurate time measurements of
the LOS signal, which is very difficult to be extracted
in the presence of NLOS signal components and noise in
practice.

Table 1 compares our method with different moving speed
and direction sensing schemes in both accuracy and com-
plexity. Note that the complexity is based on the data col-
lected in 1s. We do not show the complexity of INS and
vision based methods because INS uses mechanical principle
while the vision based methods rely on the image resolution.
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As a result, their complexities are not only related to M and
fs but also other intrinsic factors.

Clearly, our method outperforms the INS system in accu-
racy. Although partial vision based algorithms show better
performance in accuracy, they require dedicated camera to
capture high resolution images and high computational power
to process the graphs, thus hindering their practical appli-
cations. In addition, massive MIMO based DOA estimation
methods deploy a large number of antennas on the receiver
side to improve the angular resolution. Thus, the deployment
cost and complexity increase rapidlywith the increment ofM .
However, our method takes advantage the existing massive
antennas in 5G BS and uses only one received antenna on
the receiver side to get a comparable performance. Over-
all, our method has two advantages. First, we do not need
any dedicated devices but only one antenna on the receiver
side. Second, the proposed method is independent on the
environment and only needs to compute the statistical ACFS
which greatly reduces the computation complexity and shows
a great potential in real-time systems when 5G base station is
available.

VI. CONCLUSION
This paper proposes a novel RF signal-based moving speed
and direction estimation method on the base of 5G massive
MIMO communication system. We first prove that the ACFS
of the received signal is highly related to the geometric shape
of the antenna deployment in near-field scenario while it
is a stationary sinc-like focusing beam in far-filed scenario.
A speed estimation algorithm is then explored based on the
focusing beam. We further develop a novel moving direction
estimation method by jointly using the location information
of the nearby BSs in the ultra-dense 5G network. A massive
MIMO system with carrier frequency about 28GHz is built to
verify the proposed method. The impact of antenna number,
sample rate, SNR and array configuration is also extensively
studied. The results show that the proposed method can
achieve about less than 1.5m/s speed estimation error and
about less than 2◦ direction estimation error in different envi-
ronments. The proposed RF based method does not require
any dedicated device nor high computational power, it is an
ideal candidate for future navigation applications.
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