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Abstract—Radio nodes can obtain illegal security gains by
performing attacks, and they are motivated to do so if the illegal
gains are larger than the resulting costs. Most existing direct reci-
procity-based works assume constant interaction among players,
which does not always hold in large-scale networks. In this paper,
we propose a security system that applies the indirect reciprocity
principle to combat attacks in wireless networks. Because network
access is highly desirable for most nodes, including potential at-
tackers, our system punishes attackers by stopping their network
services. With a properly designed social norm and reputation up-
dating process, the aim is to incur a cost due to the loss of network
access to exceed the illegal security gain. Thus rational nodes are
motivated to abandon adversary behavior for their own interests.
We derive the optimal strategy and the corresponding stationary
reputation distribution, and evaluate the stability condition of the
optimal strategy using the evolutionarily stable strategy concept.
This security system is robust against collusion attacks and can
significantly reduce the attacker population for a wide range
of attacks when the stability condition is satisfied. Simulation
results show that the proposed system significantly outperforms
the existing direct reciprocity-based systems, especially in the
large-scale networks with terminal mobility. This technique can
be extended to many wireless networks, including cognitive radio
networks, to improve their security performance.

Index Terms—Collusion attacks, evolutionarily stable strategy
(ESS), indirect reciprocity, large-scale network, wireless security.

I. INTRODUCTION

W ITH the development of cognitive radios [1], users are
gaining autonomy and control in their radio transmis-

sions, and thus are capable of causing great damage to the net-
works. Since users are rational and thus naturally selfish, they
will make any efforts including launching attacks to maximize
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their payoffs. Current wireless networks are threatened by a
wide range of attacks, such as jamming [2], spoofing [3], Sybil
attacks [4], [5], and other relay-related attacks [6], [7]. Attackers
can obtain illegal security advantages, if not being caught and
punished. Extensive works have been done to investigate the
impacts of attacks on the network performance, and many de-
tection and localization algorithms have been proposed to iden-
tify the adversaries [7]. On the other hand, we notice that most
potential attackers also desire better network services, and this
fact can be exploited to prevent nodes from attacking wireless
networks. For instance, rational nodes would hesitate to conduct
adversary behavior, if the cost due to the deprivation of network
services exceeds the illegal security gain.
With the trust modeling and evaluation method proposed in

[8], the trust/reciprocity mechanism has become a powerful
tool to improve security and stimulate cooperation in wireless
networks [6], [9]–[14]. These works apply the direct reci-
procity principle, where the main idea is “I help you because
you helped me” [15]. More specifically, each node chooses its
actions according to the interaction history with its opponents,
and is more likely to decline the requests from those who
have ever attacked it before. Unfortunately, in a large-scale
wireless network with terminal mobility, most nodes have a
small chance to meet their opponents again, and thus usually
have limited or outdated knowledge on the histories of their
current opponents. In other words, attackers are unlikely to
meet their victims again and thus are rarely punished by them
in the future. Consequently, the direct reciprocity game can
effectively defend the network security only when the node
population is small and limited without too much mobility.
We have found that this problem can be addressed by the use

of the indirect reciprocity principle [16]. First developed in so-
cial science and evolutionary biology, the main idea of the in-
direct reciprocity game is “I help you and somebody else helps
me” [15]. This strategy is promising to stimulate cooperation
in large cognitive networks [17], and can be used to improve
the Sybil-resistance for the accounting of peer contributions in
peer-to-peer networks [18]. In Sybil attacks, one node claims to
have multiple identities other than itself, in hopes of obtaining
illegal advantages in various aspects such as receiving more net-
work services or more weights in the network voting [4], [5].
In this paper, we formulate the security problem as an indirect

reciprocity game, and propose a security system1 to counteract

1We mainly focus on the modeling aspects in this paper. Due to the page lim-
itations, we do not provide in-depth discussions on the implementations or sys-
tematic issues of the wireless security “system.” Instead of indicating the related
“systematic” work, the word “system” here only implies that multiple nodes in
the network cooperate to improve the security performance by following a cer-
tain social norm in the presence of gossip channels.

1556-6013/$31.00 © 2012 IEEE



XIAO et al.: INDIRECT RECIPROCITY SECURITY GAME FOR LARGE-SCALE WIRELESS NETWORKS 1369

a wide range of attacks in wireless networks, including jam-
ming, spoofing, Sybil, collusion attacks, relay-related attacks
such as the packet dropping attacks, and many others [2]–[7],
[19]. The reputation propagation mechanism in this system al-
lows attackers to be recognized and punished by a much larger
node population in the network, compared with the direct reci-
procity system. Consequently, our system can provide a stronger
security protection, especially for the large-scale wireless net-
works with node mobility.
We assume that multiple transmissions can take place si-

multaneously in a large-scale network without interfering with
each other. During each transmission, the intended receiver and
other observing nodes evaluate the behavior of the neighboring
nodes in this area, update their reputations, and propagate the
new reputations to the whole network through gossip channels.
More specifically, we build a public social norm and reputation
updating process to assign low (bad) reputations to the at-
tackers. As a result, most nodes in the network reject the future
requests by these “bad” nodes for network service over a long
punishment time. We apply the attack classification technique,
where different reputations are assigned to different attackers
according to their impacts on the network performance. By
punishing the attackers in different manners, we can more effi-
ciently address the most dangerous attacks against the network.
The system is designed to incur the cost to each attacker in
the punishment duration to exceed its illegal security gain of
attacks, so that rational nodes in the network are stimulated to
deviate from the adversary behavior for their own interests. Our
system is promising to improve the security performance of
many wireless networks, including cognitive radio networks.
Our main contributions can be summarized as follows:
1) We provide a game theoretic analysis regarding the secu-
rity issues of the large-scale wireless network with possible
node mobility, and propose a solution based on the indirect
reciprocity principle to counteract a wide range of wireless
attacks, including collusion attacks.

2) We present the stationary reputation distribution of our de-
sirable node behavior in the formulated game, and provide
the condition for our proposed solution to effectively sup-
press adversary behaviors.

3) Simulations are performed to show that our desirable node
action is an evolutionarily stable strategy and the attacker
population diminishes at a fast speed. Simulation results
also verify the security gain of the attack classification and
that of the discriminated forgetting factors in the reputation
updating process.

The remainder of the paper is organized as follows. In
Section II, we present the network model and game model.
In Section III, we describe our security system for wireless
networks based on indirect reciprocity. Next, we analyze its
performance in Section IV, and present the simulation results
in Section V. Finally, we conclude in Section VI.

II. SYSTEM MODEL

A. Network Model

We consider a homogenous wireless network, consisting of
randomly located nodes. Each node leaves the network with

probability and (re)enters it with probability . For simplicity,
we assume that each node is assigned a unique identity that
cannot be changed by itself, and knows the identity of its neigh-
bors via local information exchange. In the network, nodes
are allowed to simultaneously send messages to their intended
receivers, if they do not interfere with each other.
As shown in Fig. 1, each transmission scenario includes a

transmitter, an intended receiver, and neighboring nodes, in-
cluding Player 1 to . Without loss of generality, in this work,
we assume that is constant for each transmission, and
, where the transmission probability, , decreases with the

network geographical density. For simplicity, we also assume
that each neighboring node is within the coverage area of a
single transmitter.2

In each transmission, the transmitter sends a message to the
receiver, possibly with the help of some relay nodes. Instead of
restricting to a specific relay selection algorithm, in this study,
we simply use a relay indicator to denote the relay selec-
tion results that depend on factors such as the network topology,
radio channel conditions, and nodes’ reputations. More specifi-
cally, if Player is selected by the transmitter to relay,
and if otherwise. We mainly focus on how each node
reacts to the transmission.
In this study, we consider a wide range of attacks, such as

jamming, spoofing, Sybil attacks, malicious packet dropping,
and collusion attacks [6], [7]. Each node is able to launch any
type of attacks at each time. Extensive work has been done in the
literature to detect attacks and/or to identify the attackers, and
various algorithms have been proposed for each type of attack,
such as jamming [19]. Instead of being restricted to a specific
algorithm, our security system can incorporate most existing
attack detection/identification algorithms.
To improve the security performance, we split attacks into

different categories, according to their impacts on the network
performance and their costs to the attackers. Without loss of
generality, let Level- attacks be more dangerous to the network
than Level- attacks, with . For example, a jammer can
be labelled with a lower level than a spoofer, if the latter is con-
sidered to be less dangerous to a given network.

B. Game Model

Each transmission process can be formulated into one round
of the indirect reciprocity game with rational players: the
transmitter and nodes in the neighboring area. The transmitter
selects a subset of neighboring nodes as its relays. In response,
Player chooses an action at time , denoted as , from
the action set . As shown in Table I, the action
( ) corresponds to Level- attack. The action is to
disobey the request from the transmitter, while the action is
to follow the request from the transmitter. Note that each action
can actually correspond to a different communication action,
according to the relay indicator. For example, a nonrelay node
with action has to keep silence, while a relay node with action
actually transmits.
In the absence of the other nodes, an individual node taking

the action ( ) can receive an instant payoff, denoted

2Our analysis can be extended to the other cases.
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Fig. 1. Communication topology in the game formulation, including a trans-
mitter, an intended receiver, and nodes in the communication region (in-
cluding Player 1 to Player ), with some neighboring nodes selected to relay
(Player 1 in this example).

TABLE I
ACTION SET OF EACH NODE

as , which is the security gain minus the related cost. At
the same time, with such an action , the transmitter receives
an instant payoff, denoted as , which can be the transmission
gain or the security loss. A node with a positive payoff gains
from that action, while a negative payoff indicates a loss to the
node. Note that the payoff of an action to the player itself also
depends on the relay indicator . For instance, the action ,
i.e., to follow the request, costs more energy to the relay node,
compared with the nonrelay node with . For simplicity
of notation, we use (or

).
In this game, if a node follows the request by the transmitter,

the latter benefits (i.e., ), while a relay node has to con-
sume energy to transmit and thus takes a higher cost compared
with a nonrelay node, i.e., .
Note that our system is designed to punish the nodes that at-
tack the network or reject the request by a good node. There-
fore, a rational node never launches any of those actions un-
less obtaining a positive instant payoff, i.e., , for
an action . In this case, the transmitter suffers from the
security or throughput loss, implying , for .
In addition, the action with a lower label is more dangerous
to the network and brings more (illegal) security advantages
to the player itself, and thus and

.
For simplicity, we assume perfect radio propagation in this

area. That is, the transmission is successful if all the nodes in
the area follow the requests. The performance of the transmitter
depends on its worst neighbor, or the worst action taken by its
neighbors. For instance, the transmission fails if any neighbor

disobeys the request. Another example is that a single attacker
can ruin the whole transmission. Therefore, the payoff to the

transmitter at time , denoted as , is assumed to be the
minimum instant payoff as follows:

(1)

where is the action taken by Player at time . In addition,
we denote the payoff of the action to the player itself as
and assume it to be independent of other nodes, i.e.,

(2)

where is the current relay indicator of the player. The in-
tended receiver and the observing nodes monitor the transmis-
sion and evaluate the behavior of each node. For ease of refer-
ence, the commonly used notations are summarized in Table II.

III. SECURITY SYSTEM BASED ON INDIRECT RECIPROCITY

We design a security system that applies the indirect reci-
procity principle to reduce the potential attacker population in a
wireless network, where attackers are not only punished by their
direct victims, but also by most other nodes in the network. This
system does not require a centralized process or a central unit.
Each node in the network checks the action of its neighbors,
updates their reputations, and broadcasts the new reputations to
the network via gossip channels.
In this reputation-based system, the reputation vector that

is allocated to each node according to its action history de-
termines its probability to receive the network services. More
specifically, the transmitter with a higher reputation value is
more likely to obtain the node cooperation in the network. On
the other hand, the reputation of a node decreases if it attacks
the network or disobeys the transmitter with a good reputation.
Meanwhile, the reputation also decreases if the node helps a
“bad” node. In this way, our system motivates nodes not to at-
tack.
Each transmission consists of two stages: the message trans-

mission stage and the reputation evaluation stage. In the latter
stage, a node’s reputation is updated and broadcast via gossip
channels, based on its current reputation and the instant reputa-
tion due to its action in the first stage. A forgetting factor, which
can be either fixed or related to the value of the instant reputa-
tion, is introduced to weight the current reputation in this cal-
culation. Assuming that most nodes are rational and requiring
network services, our system forgives a former “bad” node and
allows it to regain the network resources, if it follows what is
required by the network social norm during the punishment pe-
riod. The punishment duration is determined by the forgetting
factors in the reputation updating process.
With a reputation set , our system assigns

to each node a scalar reputation and a reputation
vector , where is the probability for
the node to have a scalar reputation . Clearly, we have

and . The scalar reputation is a
realization of an integer random variable whose probability
mass function (PMF) is the corresponding reputation vector
. In general, a node whose reputation vector has a larger
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TABLE II
SUMMARY OF SYMBOLS AND NOTATIONS

mean value is more likely to have a higher scaler reputation.
Compared with the scalar reputation that only describes
the instant or average value, the reputation vector includes
the likelihood of each reputation, and thus contains more
information on the past actions of the node. Therefore, the
reputation vector can provide better performance.
Each node chooses its action according

to its own scalar reputation and the transmitter’s reputation .
During each transmission, the nodes’ reputations are updated
based on the same social norm, denoted as ,
where is the instant scalar reputation as-
signed to the node who takes action towards a transmitter with
a scalar reputation .
In this reciprocity system, the social norm is designed to

guide the node behavior and to suppress attacks in the network.
In general, nodes can receive high reputations by helping the
good nodes or disobeying the transmitters with bad reputations.
On the other hand, in order to maintain a healthy network, the
system reduces the reputation of each identified attacker even
in the presence of a “bad” transmitter. For simplicity, we assign
an instant reputation to the node that launches Level- attacks,
with .
When the transmitter has the highest reputation , we en-

courage the other nodes to help it. More specifically, nodes that
follow the request by the transmitter whose reputation is ob-
tain the highest instant reputation ( ), while nodes that refuse to
cooperate receive the reputation . Otherwise, when the rep-
utation of the transmitter is less than , our desirable action is
to keep silence, and hence relay nodes receive the highest repu-
tation by taking the action . Based on the above principles,

we build the following social norm for relay nodes:

On the other hand, nonrelay nodes with the action do not
transmit and thus receive the highest reputation. Meanwhile, the
action of the nonrelay nodes results in packet collisions.
Therefore, the node with receives an instant reputation
by taking the action , with , regardless of
the transmitter’s reputation. In summary, the social norm can be
written as

(3)

Similarly, our desirable action strategy, denoted as , can be
written as

(4)

Each node newly entering to the network obtains a high initial
reputation, . During the transmission at
time , the observing nodes in this area monitor the action of
each node, and assign an instant scalar reputation
to the node with a relay indicator , who takes an action to a
transmitter with a reputation .
The reputation updating process is illustrated in Fig. 2, where

the instant vector reputation is the standard basis vector
based on the scalar reputation. The new vector reputation at
time relies on both the instant reputation and the
current reputation . The latter is weighted by , the th
element of the forgetting factor vector .
The current action has less impacts on , under a
larger forgetting factor value . The nodes’ reputations are
then broadcast to the network via gossip channels, with the
reputation propagation matrix denoted as . As shown in
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Fig. 2. Reputation updating process in our security system.

Fig. 2, the new reputation of the node propagated via gossip
channels is given by

(5)

The reputation propagation matrix , where
is the probability for the reputation to be taken as ,

due to both the behavior detection error and the gossip channel
propagation error. Denoting the probability for the action to
be correctly recognized by the whole network with , we can
model the reputation propagation process as follows:

(6)

Note that our system is not restricted to (6) and can be easily
extended to other models. In addition, each node can be a trans-
mitter, a receiver, a neighboring node for a transmitter (either a
relay or a nonrelay), or an isolated node that is far away from
all the other nodes and is not inspected at the time slot. If a node
is not inspected, its reputation does not change during this time
slot.
In our system, all the nodes in the network know the social

norm, the forgetting factor vector, and the reputation updating
algorithm as shown in Fig. 2. In addition, each node that up-
dates the reputation for its neighbor is assumed to know the cur-
rent reputation vector, the relay indicator and the action of the
node under study, as well as the reputation vector of the corre-
sponding transmitter. More specifically, as a heuristic method,
the reputation vectors of all the nodes in the network are stored
in a central server. Each node observes the behaviors of its
neighboring nodes and updates their reputations according to
the reputation updating process, after retrieving their current
reputation vectors and the reputation of the transmitter if they
are absent. An in-depth study on the implementation will be car-
ried out in the future.

IV. PERFORMANCE ANALYSIS

Our proposed system provides the “good” nodes that have
higher reputations with the benefits of receiving better network
accesses in the future. On the other hand, attackers are labelled
with very low reputations and lose their network services during
the punishment time, whose duration depends on the forgetting
factor in the reputation updating process. If the cost to be pun-
ished is larger than the illegal security gain, rational nodes have

incentives to choose the desirable actions and abandon adver-
sary behaviors.
In this section, we evaluate whether the desirable “good” ac-

tion (i.e., to follow the social norm) cannot be invaded by any
“bad” strategy (such as a type of attacks) that is initially rare, if
the “good” one is adopted by a large number of nodes. To this
end, we apply the evolutionarily stable strategy concept [18]
to investigate the stable equilibrium of the proposed security
system, and use the Wright–Fisher model [20] to study how the
action rules spread over the network. We derive the stationary
reputation distribution of the optimal action, and investigate the
stability condition for this system to efficiently counteract at-
tacks. This section also covers related issues such as the robust-
ness against collusion attacks.

A. Evolutionarily Stable Strategy

An evolutionarily stable strategy (ESS) cannot be invaded
by any alternative strategy that is initially rare, and natural se-
lection alone is sufficient to prevent alternative strategies from
invading [20]. To evaluate the stability property, we apply the
Wright–Fisher model [20] for the action spreading, where the
probability for a node to choose a strategy is proportional to
the expected payoff to the population using that strategy. More
specifically, the probability for a node to choose action strategy
at time , , is given by

(7)

In this way, we can perform simulations to investigate the ESS
property of our desirable action strategy in the formulated game.
More details are given in the next section.

B. Optimal Action and Stationary Reputation Distribution

In what follows, we evaluate the optimal action strategy in our
security game and provide the corresponding stationary reputa-
tion distribution . The optimal strategy, , is de-
fined to maximize the expected long-term payoff for the player
under various scenarios, where is the optimal strategy for
the node with a scalar reputation when meeting a node with a
reputation . Let denote the expected maximal reward to a
node with a reputation in presence of node with a reputation
. By definition, we have

(8)
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where is the expected reward to a node with a reputation
against a node with a reputation , when the action is taken.
The optimal action here satisfies

(9)

For simplicity, we assume in this section that each node is ran-
domly and independently selected to relay with a probability ,
and that the forgetting factor is constant for each reputa-
tion level . Let denote the reputation transfer vector, which
provides the new reputation vector for a node with initial scalar
reputation , which takes the action towards a transmitter with
a reputation . According to the reputation updating process de-
scribed in (5), the reputation transfer vector can be written as

(10)

where is the probability for the reputation of the player
that takes the action towards a transmitter with a reputation to
change from to . The first term in the parentheses results
from the current reputation, whereas the second term depends
on the current action and is averaged over all the relay selection
results.
Assume that a node with a reputation would take an action
towards a node with a reputation , with the latter following

the optimal strategy. First, the average one-shot reward of the
action to the node itself can be written as

. Assuming that the probability for a node to stay
or (re)enter the network, denoted as , is the discounting factor
of the future, as the stationary reputation distribution does
not change over time, we obtain the reward to the nontransmitter
node as .
On the other hand, the expected maximal one-shot reward

for the optimal action to the transmitter is
. As the reputation of a transmitter does not change,

nor does the stationary reputation distribution , the reward
to the transmitter is given by

.
Let be the probability for a node to transmit and be its

probability to be a neighboring node. Then, according the above

discussion, the Bellman equation of the expected reward to the
node can be given by

(11)

According to the reputation updating process given by (5),
the stationary reputation distribution corresponding to the op-
timal action averaged over both and , can
be written as (12), shown at the bottom of the page, where

is the probability for the node with

a relay selection indicator to obtain a reputation by taking
the optimal action . In this way, the optimization of the op-
timal actions can be formulated as a Markov Decision Process
(MDP).
According to (10)–(12), we can compute the optimal action
and the stationary reputation distribution alternatively by

iteratively fixing one and solving the other. More specifically,
similar to [17], we first apply the gradient descent algorithm to
find the stationary reputation distribution for a given (initial) op-
timal action, and then use the dynamic programming technique
to derive the optimal action under this stationary reputation. The
iteration continues unless the solution converges.
There might be multiple stationary reputation points in this

system. Our system motivates users to follow our desirable re-
sult by setting an appropriate social norm and reputation prop-
agation mechanism. We will show later that the desired action
strategy is evolutionarily stable, i.e., the system can reach our
desired point if a large number of the nodes follow the desirable
action strategy and the costs satisfy some conditions presented
in the following. The stationary reputation distribution for
is unique and depends on the social norm and the reputation
propagation matrix , as shown by (12).

C. Stability Condition

In this subsection, we analyze the condition that our desired
strategy , in (4), is evolutionarily stable, i.e., each node is moti-
vated to adopt the desired strategy, . As indicated by (4),

(12)
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nodes select their actions regardless of their own reputations.
Therefore, the optimal action in this game can be expressed as

(13)

where is the optimal action for the node with relay indi-
cator against a transmitter with a reputation . In addition, we
assume that the probability for each reputation to be accurately
broadcast is , where is the probability to successfully
identify an attacker, and thus can rewrite the reputation propa-
gation matrix (6) as

(14)

Proposition 1: Given any scalar reputations, and
, we have

(15)

Proof: According to (10), (13), and (14), the difference
between two reputation transfer vectors in terms of their optimal
strategies is given by

(16)

where the vector . For convenience, let denote
the th element of a vector in the following proof.
By combining (11), (13), and (16), we obtain (17), shown at

the bottom of the page.

As shown in (17), is independent of . Therefore,
(17) can be further simplified into

(18)

which leads to (15).
The above proposition indicates that by choosing our desir-

able strategy, (13), each node whose reputation is less than
the highest, can obtain an expected reward, i.e.,

no matter how low its current reputation is, or who its opponent
is. In this way, our system can motivate the nodes to behave
nicely and not to attack the network.
Theorem 1: The sufficient condition for the desired strategy

to be an ESS in our indirect reciprocity-based security system
as described in Section III is

(19)
Proof: According to the one shot deviation principle for

MDP [21] and the definition of ESS [22], is an ESS if the
following inequality holds:

(20)

for all that is not equal to .
We first consider the case that the opponent has a reputation
, and . By (13), is the desirable
strategy here, and thus should be pos-
itive, for any action . Therefore, according to (11), we
have (21), shown at the bottom of the next page. Thus, according
to (3), (10), and (21), we can obtain

(22)

(17)
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By incorporating (15) into (22), we have

(23)

and hence

(24)
As and , (24) implies that

(25)

Next, we study the second case, where the opponent has a
reputation and . It is indicated by (13) that is
the desirable strategy here. That is, ,
for , which can be rewritten by (11) as

(26)

By combining (3), (10), and (26), we obtain

(27)

As , by (15), (27) becomes

(28)

(29)

In the third case, the opponent has a reputation , and
. By (13), is the desirable strategy, which

means , for any action
. We have, by (11), (30), shown at the bottom of the page,

which can be simplified into

(31)

Therefore,

(32)

As , we have

(33)

On the other hand, the fact that , for ,

also indicates . Similar to the

(21)

(30)
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previous discussion, we obtain (34), shown at the bottom of the
page, which can be simplified into

(35)

Consequently

(36)

Nowwe consider the last case with and . Similar
to the third case, we have

(37)
and

(38)
As , , by summa-

rizing (24), (25), (29), (33), (36), (37), and (38), we can obtain
(19) as the condition for the desirable solution to be an ESS in
our security game.

D. Discussions on Security Issues

First, the stability condition, (19), provides the lower perfor-
mance bound of the gossip channels. When , due to the
low attack detection rate and/or the deteriorated gossip chan-
nels, our reputation mechanism and hence the proposed secu-
rity system collapse. In addition, another condition, as shown
in (19), is that the payoff to the most dangerous attackers does
not far exceed that to the good nodes with the highest reputa-
tions, and the threshold relies on the payoff to the transmitter
with the highest reputation. Otherwise, if an attacker receives
a high enough illegal payoff, rational nodes would have incen-
tives to take risks to launch attacks.
With simulation results against various wireless attacks pro-

vided in Section V, we here focus on the collusion attacks,
which are highly dangerous to the reputation-based networks.

First, we consider a typical scenario, where several nodes col-
lude to spread the false information regarding a third-party node,
in hopes of ruining its reputation and thus its future transmis-
sion. In such a case, when noticing the reputation loss, the victim
node sends alarm to initiate investigations on the colluders.
In another typical example, several colluders report faked in-

ternal cooperations, aiming to improve the reputation of each
other. Although the gaining nodes never complain, the system
reduces the reputation of the nodes that have obtained abnormal
amounts of internal helps.
In both cases, our system assigns the lowest reputation values

to the detected colluders, and the low reputations punish the
nodes with stopped network accesses. The punishment duration
is set to be long enough to counteract the illegal collusion gain.
Therefore, our system can also resist these collusion attacks.
Note that the above discussions only provide initial study on the
collusion resistance and we will further investigate this issue in
the future.

V. SIMULATION RESULTS

Simulations have been performed to evaluate the perfor-
mance of the proposed security system under different network
scenarios. More specifically, we provide the evolutionarily
stable property of different action strategies in a network with
nodes. In the simulations, we can assume large-scale mobile

wireless networks with nodes whose locations
change randomly over time, and of the nodes newly
entering the network and of the nodes leaving the
network at each time slot.
Suppose that of the nodes are far away from each

other during a time slot and thus are allowed to transmit simul-
taneously during each time slot. The system has a probability of

to successfully identify an attacker. Each transmitter
selects a neighboring node as relay with and .
Thus in each run of the simulation, there are transmitters,

neighboring nodes that are chosen as relays and are in-
spected, and nodes whose reputations do not change
over the time slot.
The action spreading is assumed to follow the Wright–Fisher

model, (7). In addition, at the beginning of each simulation
process, 70% of the inspected nodes choose the optimal
strategy while the remaining nodes randomly select from the
whole strategy set. In the following, we first investigate the
efficiency of our system in the simplified scenarios without
attack classification, and compare its performance with the
direct reciprocity-based security scheme. Then we provide
the security gain of the attack classification, and validate our
derived stability condition of our security system.

(34)
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A. Case 1: No Attack Classification

In a case without attack classification, and the action
set is {1, 2, 3}, whose elements represent attacks, request rejec-
tion, and to follow the request by the transmitter, respectively.
According to (3) and (13), the social norm and our desirable ac-
tion rule are given, respectively, by

(39)

and

(40)

Simulation results first show that the stationary reputa-
tion distribution corresponding to is

, with the forgetting vector
. This result indicates that most users

can obtain the highest scalar reputation .
As comparison, we also consider a security system based on

the direct reciprocity principle, where each node chooses its ac-
tions according to its past direct interaction with its current op-
ponents. As shown in Fig. 3, this system fails to work in the net-
works with nodes, and the network corrupts shortly
after the start of the process with an eruption of attacks. That
is because the long-term punishment cost to an attacker in the
direct reciprocity-based approach is small, compared with its il-
legal security gain in this game, as nodes are unlikely to meet
each other again very soon in the large-scale network.
Fortunately, our indirect reciprocity-based system can

address this problem and efficiently combat attacks in the
large-scale network. For example, our system reduces the
attacker population from around 5% to less than 0.05% shortly
after 400 time slots, as shown in Fig. 3(a). It is shown in
Fig. 3(b) that more than 90% of the population chooses the
desirable strategy, shortly after the start of the process in our
system. In addition, we see in Fig. 3(c) that most nodes obtain
the highest reputation in the network soon after the start of
the game, indicating that our system can maintain a healthy
reputation mechanism.
We then evaluate the impacts of the differentiated forgetting

factor vector in the reputation updating process of the indirect
reciprocity game. As shown in Fig. 3, our scheme that applies

has a better security performance than the
case with . The reason for the significant
drop of the attacker population is that our system takes into ac-
count the attacking behavior with more weights in the reputa-
tion updating, and thus punishes attackers with longer punish-
ment duration. This figure exhibits marked stepwise behavior,
suggesting that the simulation progresses by a series of one shot
games that are used to update the instantaneous reputations and
system-wide reputation updates. The results verify the discus-
sions in Section IV.
Fig. 4 verifies that our system has a better performance in the

network with a smaller scale. For instance, the attacking rate
here with nodes decreases in a much faster speed than
the case with as in Fig. 3(a). On the other hand,
the performance gain of our system over the direct reciprocity

Fig. 3. Population evolution of our security system in a network with
nodes, whose transmission probability , for both the direct

reciprocity system and the indirect reciprocity system, with different forgetting
factor vectors ( ) in the reputation updating process, the size of the action
set . and the attacker identification rate . (a) Percentage of
the attacker population. (b) Percentage of the population using our desirable
strategy. (c) Percentage of the population with the highest reputation. (d) Total
network utility.

system increases with the network size. In summary, our secu-
rity system can efficiently improve the security performance of
wireless networks.
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Fig. 4. Population evolution of attackers in our security system in a network
with nodes, and the other network settings are the same as Fig. 3.

Finally, it is indicated in Fig. 3 that compared with the
direct reciprocity-based security scheme that actually collapses
in such a network, our system significantly reduces the at-
tacker population, increases the population using our desirable
strategy, and improves the total network utility. Our system is
more robust, because the indirect reciprocity game can better
stimulate cooperation in networks, especially in the large-scale
networks with mobility.

B. Case 2: Attack Classification

We now consider a more interesting case, where each node
is able to perform jamming, Sybil, and spoofing attacks. In this
case, and the action set is {1, 2, 3, 4, 5}, corresponding to
jamming, Sybil, spoofing, rejection of the request, and to follow
the request.3 The corresponding instant payoffs to the node it-
self and the transmitter are and

, respectively. Using (3) and (13),
we obtain

(41)

and

(42)

We study the performance of attack classification, where the
system evaluates the impacts of each type of attack and sets the
value of the forgetting factor in the reputation updating process
as . As a benchmark, simulation re-
sults are provided for the strategywith the same forgetting factor
for all the attacks, . It is indicated in
Fig. 5 that the attack classification can significantly reduce the
population that launches the most serious attacks, just as ex-
pected. In addition, simulation results in Fig. 6 show that the
proposed scheme can significantly increase the population that

3These attacks are very different from one another, and can be detected with
different probabilities over different timescales. In reality, the model is com-
pletely agnostic to these distinctions. These are only representative labels that
can be used to exemplify the kinds of behaviors that can be defended against.

Fig. 5. Security performance of our system in a network with
nodes, whose transmission probability , against three types of

attacks, with and . Our scheme applies attack classification
with forgetting factor vector in the reputation
updating process, whereas the benchmark scheme does not apply attack
classification with . (a) Percentage of the jamming
population. (b) Percentage of the Sybil-attacking population. (c) Percentage of
the spoofing population.

take our desirable actions, and reach the desirable network per-
formance with a much faster speed.
Finally, we have also done simulations to validate

the stability condition given by Theorem 1, with
, ,
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Fig. 6. Game-theoretic performance of our scheme in the same network sce-
nario with Fig. 5. (a) Percentage of the population with the desired strategy.
(b) Total network utility.

, and the probability for a node to be
the transmitter is 0.5. It is given by (19) that the system has to
satisfy . If the condition holds, e.g., , our se-
curity system can efficiently improve the network performance
and reduce the attacker population, as indicated in Fig. 7.
Otherwise, if the condition does not hold, e.g., ,
our desirable strategy no longer dominates over time and the
network collapses in the end. In general, the network secu-
rity performance improves, when the attacker obtains less
payoff, .

VI. CONCLUSION

In this paper, we have proposed an indirect reciprocity-based
security system for large-scale wireless networks, and devel-
oped a social norm and a reputation updating process to address
a wide range of attacks. The main idea is to suppress the at-
tacker population by exploiting the requirement for network ser-
vices by most users. The optimal action and the corresponding
stationary reputation distribution are presented in the formu-
lated game. We also provided the condition that our security
can effectively defend the network, and showed that our system
is robust against collusion attacks. In addition, simulation re-
sults show that our desirable action strategy is evolutionarily
stable, i.e., the natural selection itself is sufficient to prevent ad-
versary behaviors from invading. Our system can significantly

Fig. 7. Game-theoretic performance of our scheme in the same net-
work scenario with Fig. 5, except the payoff to the transmitter,

, the payoff to the node itself,
, and . (a) Percentage of the

population with the desired strategy. (b) Percentage of the total attacker
population. (c) Total network utility.

suppress a wide range of attacks in various network scenarios,
and is much more robust than the system based on the direct
reciprocity principle, especially in the large-scale networks with
node mobility. For instance, our system can reduce the attacking
rate from more than 5% to less than 0.05% in a network with
5000 nodes, whereas the system based on direct-reciprocity col-
lapses in this case. Moreover, the discriminated forgetting fac-
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tors in the reputation updating process has been shown to im-
prove the efficiency to counteract attacks. Finally, we have ver-
ified the security gain of the attack classification and the derived
stability condition for our security system via simulations.
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