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Abstract—Driven by the demand for supporting the rapidly
increasing wireless traffic, the next generation communication
system, i.e. the 5G system, needs to accommodate a massive
number of users and judiciously manage the interference. One
promising candidate, the time reversal (TR) system, uses a
large bandwidth and designs transmitting waveforms such that
the environment acts as a matched filter and the transmitted
signal adds up coherently at the intended users. Therefore
the energy is focused only at the intended users with reduced
interference to others. The other candidate, massive MIMO
system utilize a large number of antennas to focus the energy
to the users and reduce the mutual interference. However, the
massive number of users poses a limit on system performance
due to increasing interuser interference (IUI) and the system
has to make a judicial selection of transmitting users. In this
work, we propose a scheduler that maximizes the system weighted
sum rate while satisfying the minimum rate requirements of the
transmitting users. The optimization problem is transformed into
a mixed integer quadratically constrained quadratic program-
ming (MIQCQP) with linear time complexity. We also investigate
the impact of imperfect channel information on the proposed
scheduler algorithm and reveal similar channel estimation error
distribution between the TR and massive MIMO system. We
evaluate the performance of the proposed scheduler in different
scenarios and the results show that the proposed scheduler has
several desirable characteristics, including low time complexity,
suitable on versatile system structure, and robustness against
imperfect channel information.

Index Terms—Time reversal, spatial focusing, massive MIMO,
scheduler.

I. I NTRODUCTION

RECENT achievements of manufacturing technology and
the reduced cost of wireless communication devices have

led to a revolutionary concept of Internet of Things (IoT). The
interconnected everyday appliances monitor useful informa-
tion that facilitates everyday chores, responds to environment
changes in time, and discovers activity patterns from the mas-
sive collected data. The IoT vision relies heavily on the ability
that the communication system accommodates and coordinates
the massive number of users in the system simultaneously.
Therefore, the ability of the next generation communication
system, i.e. the 5G system, to support a massive number of
users while maintaining service quality is high desirable.

The time reversal (TR) system is proposed as a candidate
system for IoT [1] as well as for 5G communication [2] that
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possesses several strengths, such as supporting a large number
of low-cost terminal devices, versatility and heterogeneity in
bandwidth use, and easy scalability in network densification.
The TR system utilizes a large bandwidth and observes a
lot of channel impulse response (CIR) taps compared to the
narrowband communication system in which only two to three
channel taps can be observed. The CIR is composed of the su-
perposition of the randomly reflected transmitted signals from
multipath-rich environments such as in the indoor environment
with structures and objects. Because the CIRs naturally embed
the information about the environment, experiments show that
the CIRs are location-specific and the CIRs can be used for
precise indoor localization [3].

The location-specific CIR benefits the TR system with the
spatial focusing effect [3] that focuses the transmitted energy
to the intended user. By selecting the waveform signature
as the time-reversed and conjugated version of the intended
receiver’s CIR, the transmitted waveform adds up construc-
tively at the exact location of the intended receiver, while
the waveform adds up randomly at all other locations. The
receiver receives maximum signal energy with small energy
leakage to surrounding users. The energy focusing due to
location-specific CIR information separates TR users operating
on the same frequency band and allows simultaneous access,
leading to the design of time reversal division multiple access
(TRDMA) system that provides service to a large amount of
users [4].

The other 5G candidate, the massive MIMO system,
achieves the energy focusing by using a large number of
antennas [5]. The massive MIMO system concentrates the
transmitted energy at the intended user by adjusting the weight
vector of the antennas, which is known as beamforming. With
the increase of the number of antennas, the massive MIMO
system directs the energy to more intended users with small
energy leakage to the unintended users, and therefore the
system is able to support lots of users.

With the ever-increasing number of users in the foreseeable
IoT future, the 5G systems cannot indefinitely support all
users simultaneously due to the fixed usable bandwidth and/or
the fixed number of antennas. Interference among the users
will increase and the energy focusing effect can no longer
support the massive users with a satisfactory quality of service
(QoS). As a result, a system scheduler that dictates when and
whom to access the system simultaneously and maximizes the
system performance is desirable. The scheduler also requires
a reasonable complexity in order to operate in real time with
strict scheduling deadlines.
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Many existing systems already have schedulers deployed,
however, none can be implemented directly on the TR and
the massive MIMO system. There are two main reasons. The
first is the fundamental differences in the physical layer design.
In existing and widely deployed OFDMA systems, such as the
LTE system, the scheduler allocates the resource blocks (RBs)
that are mutually orthogonal in time and frequency to users.
The RBs are allocated based on system requirements such
as the QoS awareness of the users [6]–[8] or the weighted
sum rate of the overall system [9]. However, in the case
of TR system, the transmission resource is not mutually
orthogonal and all the users are using the same transmission
band. Therefore a new scheduler design is needed to select a
subset of users for transmission while managing the in-band
interference. On the other hand, although OFDMA can be an
element for massive MIMO system, the interference between
users still exists for the users on the same frequency band and
interference management is still desirable.

The second reason is that with the massive number of
users in the system, it is possible that the system cannot
accommodate the users simultaneously via power control. In a
typical power control scheme, the system adjusts the transmit
power to different users in order to control the interference
introduced to unintended users [10]–[12]. However, when a
massive number of users are present in the system, all the
proposed power allocation based algorithm might not be fea-
sible due to minimum transmitted power requirements of the
users. The system therefore needs to efficiently select a subset
of users for transmission that not only maximizes the system
objective but also meets the individual QoS requirements.

In a scheduler design, it is usually assumed perfect channel
information, whereas the channel information is imperfect in
reality. Several factors contribute to the imperfect channel
information including the aging of the channel, the received
noise during channel estimation, the pilot contamination be-
tween users, and so on. The imperfect channel information not
only degrades the performance of the physical layer but also
deteriorates the scheduler performance. Robustness against
imperfect channel information in scheduler design is therefore
highly desirable to sustain the system performance when the
channel information is inaccurate.

In order to address the above issues, we propose a novel
medium access control (MAC) layer scheduler design by
taking into consideration of the unique focusing effect for
both the TR and massive MIMO system. In the first part of
the paper, we focus on the scheduler algorithm that selects
a subset of users and maximizes the system weighted sum
rate. The optimization problem is transformed and formu-
lated as a mixed integer quadratically constrained quadratic
program (MIQCQP) [13] where the optimization problem is
solved using an optimization solver. In the second part, we
focus on the impact of imperfect channel information on
the scheduler performance. We analyze a channel estimation
scheme for TR system proposed in [14] and identify similar
channel estimation error distribution as in the massive MIMO
case. We evaluate the robustness of the proposed scheduler
against imperfect channel information provided by the channel
estimation scheme.

Fig. 1: System diagram of a TRDMA system.

The main contribution of this paper can be summarized as
follows:

1) We propose an efficient scheduler algorithm for the
5G system that maximizes the weighted sum rate by
selecting a subset of users for transmission. The system
objective and QoS constraints are transformed into an
MIQCQP with empirical linear time complexity.

2) We analyze the channel estimation error distribution of
the TR system. The analysis shows that the TR channel
estimation scheme reduces the channel estimation error
power and reveals a similar estimation error distribution
as in the massive MIMO case.

3) We evaluate the proposed scheduler under imperfect
channel information. Experiment results show that the
proposed scheduler is robust against imperfect channel
information with small performance degradation.

The paper is organized as follows. System description
for both the TR and massive MIMO system is given in
Sec.II. The energy focusing effect of both TR and massive
MIMO systems is illustrated via simulation in Sec.III. The
scheduler objective and user requirements are described in
Sec.IV and the MIQCQP formulation is developed. In Sec.V,
we investigate the impact of the imperfect channel information
on the performance of the scheduler. Simulation results are
presented in Sec.VI where the performance of the scheduler
is evaluated under various settings. Finally, a conclusion is
given in Sec.VII.

II. SYSTEM OVERVIEW

We give brief overviews of the TRDMA downlink system
and the massive MIMO downlink system and introduce the
spatial focusing effect of both systems.

A. Time Reversal Division Multiple Access System

A schematic view of a TRDMA downlink system is depicted
in Fig.1, whereN users/terminal devices (TD) are served. The
access point (AP) first upsamples the symbol stream for useri
by the backoff factorDi. The upsampled symbols are encoded
using the corresponding waveformsgi which are assigned to
the users. The AP transmits the summed signal with a single
antenna and the transmitted signal passes through individual
users’ channelshi. The users adjust the power using one
tap gain, downsample the received signal and then perform
detection to estimate and recover the transmitted symbols.
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(a) Normalized field strength in a5λ × 5λ area centered around the receiver of a massive MIMO system.
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(b) Normalized field strength in a5λ × 5λ area centered around the receiver of a TR system.

Fig. 2: Demonstration of the spatial focusing effect for both TR and massive MIMO systems with different DoF.

Using the time reversed and conjugated CIRhi between the
AP and useri as the waveformgi, useri obtains the maximum
signal power. However, the interuser interference (IUI) and
intersymbol interference (ISI) reduce the SINR of users and
therefore the TR waveformgi can be specifically and jointly
designed for the system to meet system requirements. Several
waveform design algorithms have been proposed in [15] and
[16] to alleviate IUI and ISI and to increase the SINR.

B. Massive MIMO system

Suppose that there areM antennas in the base station
servingK one-antenna terminal devices. The channelhM

i
from

the base station to the useri is anM by 1 vector where thej th
element is the channel from thej th antenna to thei th user. We
assume a narrowband massive MIMO system which observes
one tap channel due to the limited subcarrier granularity.
Proper beamforming vectorsgM

i
can be designed to steer the

energy to the intended useri , such as the maximum-ratio
transmission and zero-forcing beamforming in [17].

The TR system utilizes the time-reversed and conjugated
CIR as precoding waveform to transmit the energy to the
specific users. Because the CIR are location-specific [3], the
energy only concentrates at the intended users with small
energy leakage to the surroundings, which is called the spatial
focusing effect. The large bandwidth enables the TR system
to resolve more taps from location-specific channels and
focuses the energy more sharply to the intended user. On the
other hand, the massive MIMO system focuses the energy
to the intended users using the maximum-ratio-combining
beamforming weights. By installing more and more antennas,
the massive MIMO system concentrates the energy more
sharply at the intended users as the TR system does with a
larger bandwidth. The spatial focusing effect resulting from

either larger bandwidth or more antennas enables the 5G
system to pinpoint the energy to the exact users, to reduce the
interference leakage, and therefore to accommodate more users
than that in existing systems. In order to illustrate the spatial
focusing phenomenon, we conduct a simulation in both TR
and massive MIMO systems to reveal how the focusing effect
becomes prominent with the increase in either bandwidth or
the number of antennas.

III. SPATIAL FOCUSING EFFECT

With proper waveform designgi and beamform weight
designgM

i
, both the systems focus energy only at the intended

users. The ability of the energy transmission targeting at
specific users is affected by the degree of freedom (DoF) of
the design, which is the number of variables ingi or gM

i
.

The TR system increases the DoF by using a large bandwidth
which results in a massive number of observed CIR taps, while
the massive MIMO system increases the DoF by installing a
massive number of antennas. The larger the bandwidth and the
number of antennas, the larger DoF, and therefore the better
spatial energy focusing at the locations of the intended users.

To illustrate the spatial focusing effect of both systems with
different DoF, we conduct a simulation based on ray-tracing
techniques in a discrete scattering environment. 400 scatterers
are distributed randomly in a200λ × 200λ area, whereλ is
the wavelength corresponding to the carrier frequency of the
system. The wireless channel is simulated by calculating the
sum of the multipaths using the ray-tracing method given the
locations of the scatterers. Without loss of generality, we use
a single-bounce ray-tracing method to calculate the channels
for both the TR system and the massive MIMO system on
the 5GHz ISM band. We select the reflection coefficients
of the scatterers to be i.i.d. complex random variables with
uniform distribution in amplitude[0, 1] and phase[0, 2π]. For
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the massive MIMO system, the linear array is configured with
the line facing the scattering area and the interval between two
adjacent antennas isλ/2. The distance from the transmitter and
the intended location is chosen to be500λ for both systems.

To show the effect of system DoF on the spatial focusing
effect, we adjust the transmitting bandwidth of the TR system
and the number of antennas in the massive MIMO system.
The transmitter of the TR system transmits with bandwidths
ranging from 100 MHz to 1GHz with one antenna, where a
wider bandwidth observes more CIR taps and increases the
system DoF. The number of antennas in the massive MIMO
system is selected from 20 to 100 with bandwidth fixed at
1MHz in the simulation. We select the matched filter waveform
and beamforming weights in the TR system and the massive
MIMO system, respectively.

We consider the received energy strength in a5λ × 5λ

area around the location of the intended user. Fig. 2 shows
the simulation results for both systems with a single channel
and scatterer realization, and we normalize the maximum
received energy to0dB. We can see that the energy focusing
effect becomes more obvious at the intended location with the
increase in the bandwidth and the number of antenna, which
is the result of larger DoF to concentrate the energy at only
the intended users.

However, a closer look at the energy field in Fig. 2 reveals
that even with large transmitting bandwidth and a massive
number of antennas, energy leakage still occurs at the sur-
rounding of the intended users. The energy leakage causes
the IUI and the interference level increases when the number
of users grows. Scheduler design is therefore desirable to
perform interference management by selecting a subset of
users for transmission. In essence, the user selection is to
choose a subset of users such that the energy leakage has
small interference to any of the other selected users in order
to reduce the IUI and to increase the total transmission rate.

IV. D OWNLINK USERSELECTION ALGORITHM

In this section, we detail the algorithm for maximizing the
weighted sum rate in the downlink system. To be specific, the
scheduler receives the normalized interference matrix and the
allocated transmission power for each of the users from the
physical layer and the minimum required transmission rate for
the user from the application layer. The scheduler maintains
weights for the users to adjust the fairness and to avoid starving
due to poor channel condition and shadowing. Based on the
information, the scheduler selects a subset of users to transmit
simultaneously and maximizes the weighted sum rate while
satisfying the minimum SINR requirement for the selected
users.

A. TRDMA System Overview

First let us characterize the received signal of the users in a
TRDMA downlink system. Suppose that there areN users in
the system and all users use the same backoff factorD. Xi[m]
is the transmitted symbols to useri , which is assumed to be

i.i.d. with unit power. Based on the system structure in Fig. 1,
the transmit signal of the AP can be expressed as

s[m] =
∑
i

∑
l

√
pigi[m− l ]X[D]

i
[l ], (1)

whereX[D]
i

represents the upsampled version of the symbols to
useri by D, pi is the allocated transmit power andgi denotes
the designed transmitting waveform with unit power for user
i . User i receives the signal and downsamples the signal for
detection, and the downsampled signal can be expressed as

Yi[m] =
N∑
j=1

∑
l

√
GjpjXj [l ](hi ∗ gj )[mD− lD] + ni[m]

=

√
GipiXi[m](hi ∗ gi)[L − 1]

+

√
Gipi

2L−2
D∑

l=0,l,
L−1
D

Xi[m− l ](hi ∗ gi)[Dl ]

+

∑
j,i

√
Gipj

2L−2
D∑
l=0

Xj [m− l ](hi ∗ gj )[Dl ] + ni[m],

(2)
wherehi is the channel from AP to useri with unit power.L
is the length ofhi , which depends on the delay spread of the
environment and the utilized bandwidth of the system. With
our measurement using TR system prototype with 125 MHz
bandwidth, we observe about 10 significant CIR taps and the
total channel lengthL is about 30. For notation brevity, we
assume thatL − 1 is an integer multiple of the backoff factor
D. Gi is the path gain from the AP to useri . Note that the
hi is unit power and the channel power is absorbed intoGi.
ni is the receiving noise of useri and is assumed to be an
i.i.d. complex Gaussian r.v. with powerσ2

i
. In (2), the first

term represents the intended signal for useri ; the second term
is the ISI; the third term is the IUI and the last term is the
receiving noise.

B. Normalized Interference Matrix Calculation

Let us characterize the interference between the users based
on the unit power channelhi and the waveformsgi. The(i, j )th
entryZi, j of the normalized interference matrixZ refers to the
interference from userj to useri . Therefore,Zi, j is determined
by the channelhi from the AP to the useri and the waveform
gj used to transmit to userj . Zi, j is calculated using unit
powerhi and unit powergj , and therefore the name normalized
interference matrix. We separatepj in the calculation of
Zi, j because the power allocation and the waveforms are
not necessarily designed together and the separation expands
the occasions where the scheme is applicable. Based on (2),
the normalized interference between users can therefore be
represented as

Zi, j =

2L−2
D∑
l=0

��(hi ∗ gj )[Dl ]
��2 , (3)
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Zi,i =

2L−2
D∑
l=0

l,
L−1
D

|(hi ∗ gi)[Dl ]|2 , (4)

where (3) and (4) are the IUI and ISI for useri , respectively.
On the other hand, the IUI for the massive MIMO system can
be calculated as

Zi, j =

���(hM
i )TgM

j

���2 , (5)

there is no ISI in the massive MIMO system due to the
assumption of limited subcarrier granularity and a single tap
channel is observed.

C. Scheduler Objective

Let us first formulate the scheduler objective and the con-
straints. Suppose that the physical layer provides the scheduler
with the normalized interference matrixZ between users,
the allocated powerp and the path gainGi between the
AP and useri . The scheduler gathers the transmission rate
requirementsRi from the application layer for proper operation
if user i is selected to transmit. For a specific transmission rate
requirementsRi, we can obtain the corresponding minimum
SINR requirementγi by the one to one mapping between rate
and SINR. The scheduler maintains a set of weightswi to
indicate the relative importance of each user. Based on the
collected information and requirement, the scheduler objective
that maximizes the system weighted sum rate is formulated as

maximize
x

∑
i

wixi log2

(
Gipi

Gi

∑
j pjZi.j xj + σ2

i

+ 1

)

subject toxi ∈ {0, 1},
∑
i

pixi ≤ Pmax,

Gipixi
Gi

∑
j pjZi, j xj + σ2

i

≥ γixi,∀i .

(6)

The first constraint requires the decision variablesxi to be
binary, andxi = 1 represents useri is selected to transmit.
The second constraint requires that the sum of the transmitting
power of the selected users to be no more than the maximum
AP transmitting power. The third set of constraints corresponds
to the minimum SINR requirementsγi that the selected users
must meet, and therefore the selected users meet the minimum
transmission rate requirementRi.

D. Mixed Integer Optimization

Let us describe the optimization transformation here. By
enumerating all possiblex vectors, we can find the optimal
decision vectorxopt that maximized the objective and meet all
the SINR constraints. However, the complexity for complete
enumeration grows exponentially with the number of usersN
and therefore enumeration is not feasible when the number
of users grows big. In this section, we propose a simple yet
effective problem formulation that transforms the objective and
the constraints into an MIQCQP problem.

One property for binary decision variables that is used in
the optimization formulation is as follows,

x2
i = xi, ∀i . (7)

This relationship helps convert some of the quadratic terms
into linear terms in the system objective and the constraints.

We consider that the scheduler operates in the high SNR
region where we omit the noise termσ2

i
at the receiver and

the plus1 term in the logarithm function. Also, the path gain
Gi cancels each other and the optimization objective becomes

maximize
x

∑
i

wixi log2

(
pi∑

j pjZi, j xj

)

subject toxi ∈ {0, 1},
∑
i

pixi ≤ Pmax

pixi∑
j pjZi, j xj + σ2

i
/Gi

≥ γixi,∀i

(8)

We decompose the objective function into two terms using
characteristics of the logarithm function as the following

maximize
x

∑
i

wixi log2

(
pi∑

j pjZi, j xj

)

≡ maximize
x

∑
i

wixi ln pi −
∑
i

xiwi ln

(∑
j

pjZi, j xj

)
.

(9)

Next, we linearize the second logarithm term using the Tay-
lor expansion of logarithm atx0 = 1 and use the constant term
and the first order term. Note that the Taylor expansion for
logarithm function to the linear term is a global overestimator
of the logarithm function.

Let p, w be the power and weight vector of lengthN of the
users respectively. The second term in (9) can be simplified
as ∑

i

wixi ln

(∑
j

pjZi, j xj

)

≤
∑
i

wixi

(∑
j

pjZi, j xj

)
− wTx

= xT (diag(w)Zdiag(p)) x − wTx,

(10)

where diag(·) operation generates a diagonal matrix using
the elements in the vector. The inequality comes from the
upper bound of Taylor expansion of the natural logarithm to
the linear term. DefineA = diag(w)Zdiag(p) and ◦ as the
Hadamard product of two vectors. The objective function can
be represented as∑

i

wixi ln

(
pi∑

j pjZi, j xj

)
(11a)

≥ (ln(p) ◦ w)Tx − xTAx + wTx (11b)

= (ln(p) ◦ w + w)Tx − 1

2
xT (A + AT )x, (11c)

where (11b) follows the property of Taylor expansion. The
original objective function is transformed into (11c). However,
it is not guaranteed that the optimal vectorxopt for (9) and
(11c) are the same.

Define IN as an identity matrix of sizeN and 1 be an all
1 vector of corresponding size, we add

c
2

xT INx and subtract
c
2

1Tx which have the same value by the property in (7), where

c is a constant larger than the smallest eigenvalue ofA +AT .
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Since the same value is added and subtracted in the objective,
it does not change the objective value nor the feasible set.
The reason for this redundancy will be discussed in Sec.IV-E.
DefineQ = A + AT

+ cIN , we arrive at the final formulation
as

maximize
x

(ln(p) ◦ w + w)Tx − 1

2
xT (A + AT )x

≡ minimize
x

1

2
xT (A + AT

+ cIN )x

− (ln(p) ◦ w + w +
c
2

1)Tx

≡ minimize
x

1

2
xTQx − (ln(p) ◦ w + w +

c
2

1)Tx.

(12)

The second constraint can be written as

pTx ≤ Pmax (13)

For the third constraint, we have the minimum SINR
constraint for useri as,

pixi∑
j pjZi, j xj + σ2

i
/Gi

≥ γixi (14a)

≡ xi
∑
j

pjZi, j xj + (
σ2
i

Gi

− pi
γi
)xi ≤ 0, (14b)

Let 0n,m be an by m all zero matrix. DefineBi as an all
zero matrix withi th row to be the Hadamard product ofzi,
the i th row of Z, and the transpose of the power allocation
vectorp as follows

Bi =


0i−1,N

zi ◦ pT

0N−i,N


. (15)

Defineqi as an all zero vector of lengthN, except for the
i th component beingσ2/Gi − pi/γi,

qi =



0i−1,1

σ2

Gi

− pi
γi

0N−i,1


. (16)

Then the constraint can be represented as

xTBix + qT
i x ≤ 0, ∀i

≡ 1

2
xT (Bi + BT

i + ciIN )x + (qT
i − ci

2
1)x ≤ 0, ∀i

≡ 1

2
xTQix + (qT

i − ci
2

1)x ≤ 0, ∀i

, (17)

whereQi = Bi +BT
i
+ ciIN . ci is a constant that is larger than

the minimum eigenvalue ofBi + BT
i

.
Based on the above transformation, the whole optimization

problem is formulated as

minimize
x

1

2
xTQx − (ln(p) ◦ w + w +

c
2

1)Tx

subject toxi ∈ {0, 1}, pTx ≤ Pmax

1

2
xTQix + (qT

i − ci
2

1)x ≤ 0,∀i,

(18)

which is an MIQCQP problem if and only ifQ and Qis are
positive semidefinite.

E. Positive Semidefiniteness ofQ and Qi

To ensure the transformed optimization problem to be an
MIQCQP problem, we need to ensureQ andQi are all positive
semidefinite. We first introduce the Weyl theorem [18] which
states as follows.

Theorem 1:Let U, V be Hermitian matrices of sizeN and
let the eigenvaluesλi(U), λi(V), andλi(U+V) be arranged in
non-decreasing order. Fork = 1, 2, · · · , N, we have

λk(U) + λ1(V) ≤ λk(U + V) ≤ λk(U) + λn(V) (19)

Take U as A + AT and V as cIN . It is clear that if c ≥
λ1(A + AT ) then Q will be positive semidefinite. The same
also applies toQi and the constantsci for the constraints.

The calculation for the eigenvalue for both the objective
function and each of the constraints might seem time consum-
ing. Nevertheless, we can simply use a predefined constant
rather than calculating the eigenvalue for each optimization
problem. In our simulation, simply choosingc = ci = 1 is
sufficient to ensure a valid MIQCQP formulation.

F. Extension to Multi-Cell Scenarios

We propose a scheduler based on the MIQCQP formulation
in a downlink, single-cell setting in previous sections. The
same formulation methodology can be applied to downlink
cooperative multipoint (CoMP) scenarios with changes in the
definition of variables and in the derivation of the normalized
interference matrixZ. Let us consider a downlink scheduler
in a multi-cell network withC full frequency-reusing and
synchronized cells. Suppose thatNk users are in cellk, k =
1, · · · ,C, and there is inter-cell interference (ICI) due to full
frequency reuse among cells.

To distinguish the users in different cells, we use superscript
to indicate the index of the cell and use the subscript to indicate
the user in a specific cell. Definehk,l

i
as the normalized CIR

from cell l to useri in cell k and definegl
j

as the transmitting

waveform assigned to userj in cell l . DefineGk,l
i

as the path
gain from cell l to the useri in cell k. Suppose all users in
all cells use the same backoff factorD, then the downsampled
received signal for useri in cell k can be expressed as (20),
where the first term is the received signal, the second term the
ISI, the third term the IUI, the fourth term is the ICI, and the
last term is the receiving noise.

Let Zk,k denote theNk by Nk normalized interference
matrix within cell k as defined in Sec.IV-B. LetZk,l be the
Nk by Nl ICI matrix. Z

k,l
i, j

, the (i, j )th term of Zk,l, represents
the ICI to the useri in cell k due to the transmitted signal to
user j in cell l . Z

k,l
i, j

is defined as

Z
k,l
i, j
=

2L−2
D∑
t=0

Gk,l
i

Gk,k
i

���(hk,l
i

∗ glj )[Dt]
���2 ,

whereGk,k
i

in the denominator is to cancel the same term later
in the formulation. We can define the normalized interference
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Yk
i [s] =

C∑
c=1

Nc∑
u=1

∑
t

√
Gk,c

i
pcuXc

u [t](hk,c
i

∗ gcu)[sD− tD] + nk
i [s]

=

√
Gk,k

i
pk
i
Xk
i [s](h

k,k
i

∗ gki )[L − 1] +
√

Gk,k
i

pk
i

2L−2
D∑

t=0,t,
L−1
D

Xk
i [s− t](hk,k

i
∗ gki )[Dt]

+

∑
j,i

√
Gk,k

i
pk
j

2L−2
D∑
t=0

Xk
j [s− t](hk,k

i
∗ gkj )[Dt] +

C∑
c=1,c,k

∑
j

√
Gk,c

i
pc
j

2L−2
D∑
t=0

Xc
j [s− t](hk,c

i
∗ gcj )[Dt] + nk

i [s],

(20)

maximize
x̂

∑
k

∑
i

w
k
i xki log2

©«
Gk,k

i
pk
i(

Gk,k
i

Z̃diag(p̂)x̂
)
[∑k−1

c=1 Nc + i] + (σk
i
)2
+ 1

ª®®
¬

subject toxki ∈ {0, 1},∀i, k,
∑
i

pki xki ≤ Pk
max,∀k,

Gk,k
i

pk
i
xk
i(

Gk,k
i

Z̃diag(p̂)x̂
)
[∑k−1

c=1 Nc + i] + (σk
i
)2

≥ γki xki , ∀i, k,

(21)

matrix Z̃ in the multi-cell scenario as

Z̃ =



Z1,1 Z1,2 · · · Z1,C

Z2,1 Z2,2 · · · Z2,C

...
...

. . .
...

ZC,1 ZC,2 · · · ZC,C


.

Let Ñ =

∑C
k=1 Nk be the total number of users in all

cells, and we define the new decision variable vector of
length Ñ as x̂ = [xT

1
xT

2
· · · xT

C
]T , and the new power

vector of lengthÑ as p̂ = [pT
1

pT
2

· · · pT
C
]T . The total

interferenceIk
i

including ISI, IUI and ICI to useri in cell k is(
Gk,k

i
Z̃diag(p̂)x̂

)
[∑k−1

c=1 Nc+i], where the term in(·) is a vector

of length Ñ, and the operator[·] takes out the corresponding
element in the vector.

The weighted sum rate maximization in (6) can be refor-
mulated using the newly defined variables and interference
matrix as (21), where useri in cell k has its own corresponding
weightwk

i
, SINR requirementsγk

i
, and receiving noise(σk

i
)2.

The same procedure follows to transform the optimization
problem into the MIQCQP formulation. In the CoMP setting,
it is assumed that the scheduler has the full knowledge of
the path gain, channels, and waveforms of the system. If the
full knowledge of the system is too expensive to obtain, some
of the components can be approximated and the MIQCQP
formulation still applies.

V. I MPACT OF IMPERFECTCHANNEL INFORMATION

In the previous Section, we assume that the CIR information
provided by the physical layer to be perfect. However, the CIR
information provided by the physical layer is subject to receiv-
ing noise. The mismatch between the true and the estimated
channel causes worse energy focusing in the 5G system, which
results in a lower SINR in communication. Moreover, the
mismatch also degrades the scheduler performance by noisy
physical layer parameter inputs.

To investigate the impact of imperfect channel information,
we start from analyzing the channel estimation error of the
physical layer. There is existing literature on the distribution
of the channel estimation error for the massive MIMO system
[19], but there is no existing analysis or models on the channel
estimation error on the TR system. Therefore, we first analyze
a Golay sequence based channel estimation scheme for TR
system proposed in [14] and analyze its impact on the accuracy
of scheduler parameter inputs.

A. Golay Sequence Based Channel Estimation

The Golay complementary sequence is first proposed in
[20], which suggested a set of complementary sequence pairs
Ga and Gb of the same lengthLG . The correlation ofGa

with itself, i.e. Corr(Ga,Ga) has a prominent peak but noisy
sidelobes. However, Corr(Ga,Ga) + Corr(Gb,Gb) produces a
single maximum peak with no sidelobes. This prominent peak
is useful in channel estimation because a clean copy of channel
estimation can be obtained at the peak without the interference
from the sidelobes.

Generation ofGa and Gb is based on two different se-
quencesDn andWn of lengthn, and the length of the generated
Golay sequence isLG = 2n. Fig. 3 shows an example of
Ga and Gb pair using randomly generatedDn and Wn with
LG = 256, and Corr(Ga,Ga) + Corr(Gb,Gb) shows a clear
peak with no sidelobes. Please note that the amplitude of the
peak is2LG and the length of the zero at the two sides of the
peak isLG − 1.

B. Channel Estimation via Golay Sequence

A channel estimation scheme using a8LG by 1 probing
sequenceφ is proposed in [14], which is composed of the
corresponding pair of Golay sequencesGa,Gb as

φ = [GT
a GT

b −GT
a GT

b GT
a −GT

b GT
a GT

b ]
T . (22)
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Fig. 3: An example of Golay sequence.

Fig. 4: Diagram for Golay based channel estimation.

Fig. 4 shows the block diagram of the channel estimation.
The transmitter transmits the channel estimation sequenceφ

and the receiver receives theL+8LG−1 by 1 signals = φ∗h+n,
whereL is the length ofh. We assumen is AWGN with zero
mean and varianceσ2.

The received signals is divided into two branches. One
branch goes through a delay of2LG and is summed with the
other branch asRd.

Rd =

([
IL

02LG,L

]
+

[
02LG,L

IL

])
s. (23)

We calculate the correlation ofRd with Ga and Gb using
the Golay correlator block, which produces two branchesRa

andRb , respectively. DefineCa andCb as theL+3LG −1 by
L + 2LG convolution matrix constructed by the time-reversed
version ofGa andGb, and the outputs of the Golay correlator
can be expressed asRa = CaRd and Rb = CbRd. Rb is
delayed by3LG to summed withRa in order to produce the
final channel estimation result. Therefore, the whole estimation
block can be expressed as

y =

[
IL+3LG−1

02LG,L+3LG−1

]
CaRd +

[
02LG,L+3LG−1

IL+2LG−1

]
CbRd

= T(φ ∗ h + n) =

T1

Φ

T2


(φ ∗ h + n).

(24)

The matrixT is the total transfer function from the esti-
mation block inputs to the block output, and it is separated
into three partsT1,Φ, andT2 by the rows.T1 andT2 represent
the noisy part of the channel estimation scheme which is the
sidelobes of the correlation ofGa andGb, and these two parts
are of no interest in channel estimation.Φ is the (7LG)th to
the (8LG)th rows that correspond to the clean peak of the
correlation of the Golay sequences without sidelobes, as shown
in Fig. 3(c).Φ is a matrix that is determined by the Golay
sequence pair, and each row ofΦ has exact4LG none zeros
entries with amplitude1.

The channel estimation̂h of lengthLG + 1 can therefore be
represented as

ĥ = Φ(φ ∗ h + n) = 4LGh′
+Φn = 4LGh′

+ ne, (25)

whereh′ is of lengthLG +1 which is formed by zero-padding
h to match the matrix dimension, andne is the channel
estimation error due to the received noisen at the receiver.

C. Channel Estimation Error Analysis

We investigate the mean and variance ofne to show the
effect ofn andLG on the quality of channel estimation. By the
assumption thatn is AWGN with zero mean and varianceσ2,
the mean of estimation errorne is also zero. The covariance of
the channel estimation errorne is ΦCov(n)ΦH . It is assumed
that n is i.i.d. AWGN with varianceσ2, and therefore the
covariance ofne is σ2

ΦΦ
H .

To give an example of the correlation ofne, we randomly
generate a Golay sequence pair withLG = 256. Fig. 5 is
the correlation ofne with n to be i.i.d. Gaussian with unitσ2,
namelyΦΦH . The prominent diagonal components have value
4LG and each element of the diagonal is the noise variance
σ2
e of ne. The off-diagonal components have extremely low

value, which shows that different components ofne are almost
uncorrelated. Therefore, the channel estimation errorsne on
each tap of the estimated channelh′ are nearly uncorrelated,
which is nearly independent due to the assumption thatn is
i.i.d. AWGN.

D. SNR Enhancement of Golay Sequence Based Channel
Estimation

The Golay sequence based channel estimation scheme in-
creases the SNR of the channel estimation. Suppose that the
SNR at the receiver isP/σ2 whereP andσ2 are the power of
the received signals and the noisen, respectively. The channel
estimation output has a peak with amplitude4LG, by which
the power of the channel estimation is16L2

G
P. Each row of

Φ consists of exactly4LG none zero elements with amplitude
1, thereforeσ2

e is 4LGσ
2. As a result, the SNR at the channel

estimation output is boosted for4LG times.
The channel estimate using the proposed Golay channel

estimation scheme is contaminated with noise which has zero
mean and variance4LGσ

2. Therefore, the length of the Golay
sequence affects the SNR boost at the estimation output,
and the TR system can adapt the Golay sequence lengthLG
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E
[
Ẑi, j

]
= E



2L−2
D∑
l=0

��(ĥi ∗ gj )[Dl ]
��2

= E



2L−2
D∑
l=0

��� ((hi + ne) ∗ gj

)
[Dl ]

���2


=




Zi, j +
σ2

4LG

(
L − 1

D
− 1

)
+

σ2

4LG

L−1
D∑
l=0

���gj[Dl ]
���2 , if i = j

Zi, j +
σ2

4LG

(
L − 1

D

)
+

σ2

4LG

L−1
D∑
l=0

���gj[Dl ]
���2 , if i , j

<




Zi, j +
σ2

4LG

(
L − 1

D

)
, if i = j

Zi, j +
σ2

4LG

(
L − 1

D
+ 1

)
, if i , j

(26)
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Fig. 5: An example ofΦΦH .

based on the system requirement on channel estimation. More
importantly, ne on each tap of the channel estimation are
nearly independent, which is the result of the structure of the
transfer functionΦ of the Golay channel estimation scheme.

The channel estimation error for the massive MIMO system
is investigated in [19]. The channel estimation errors on the
links from the base station to a user are i.i.d. complex Gaussian
with zero mean and same variance which is determined by
the shadowing effect of the user. The channel estimation error
of the TR system and the massive MIMO system share the
similarity in that the estimation errors of the channel are
i.i.d variables with zero mean and the same variance. This
similarity in channel estimation error therefore extends the
discussion and simulation results on the scheduler performance
degradation to massive MIMO counterparts.

E. Effect on the Scheduler Parameter

The proposed scheduler algorithm generates the transmis-
sion profile for the users based on the estimated channel and
the assigned power from the physical layer. Inaccurate channel
estimation deteriorates the efficiency of the scheduling in the
MAC layer, and it is desirable to investigate how the channel
estimation error affects the input parameter of the proposed
scheduler.

Based on the previous investigation of the channel estima-
tion error, we model the estimated channelĥ as

ĥ = h + ne,

where we assume thatne is i.i.d. complex Gaussian noise with
zero mean and varianceσ2

e . According to the optimization
formulation of the scheduler in (6), channel estimation errorne

affects the scheduler performance by affecting the calculation
of the normalized interference matrixZ. Define Ẑ as the
normalized interference matrix obtained using the channel
estimationĥ, and we calculate the expectation ofẐ to show
the impact of channel estimation error on the normalized
interference matrixZ. Z is shown in (26), where the last
inequality results from the normalized waveformgj and serves
as an upper bound forE

[
Ẑ
]
.

The formula suggests that the error in the normalized
interference matrix∆Z = E

[
Ẑi, j

]
−Zi, j relates to three factors,

the backoff factorD, the channel lengthL, and the length
of the Golay sequenceLG . A larger backoff factor not only
reduces the IUI and ISI but also reduces the impact of the
channel estimation error on the normalized interference matrix.
The longer the channel length, the larger the IUI and ISI, thus
the bigger∆Z. The last factor is the Golay sequence length
LG, which affects the additive noise power at the channel
estimation. The dependence ofne on LG gives the system
the flexibility to adapt the length of Golay sequence to the
users’ SNR conditions.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
scheduler algorithm from several aspects. First, we compare
the time complexity of the proposed scheduler algorithm
with that using enumeration. We also evaluate the scheduler
performance under different physical layer structures. Then we
investigate the impact of channel estimation error. We use the
following model and system parameters. We generateh of the
TR system based on the channel model proposed in [4], where
hi[k] =

∑L−1
l=0 hi,lδ[k− l ]. hi[k] is the k-th tap of the CIR with

length L, and δ is the Dirac delta function. We assume that
hi[k] are independent circular symmetric complex Gaussian
(CSCG) random variables with zero mean and variance as

E[|hi[k]|2] = e−
kTS
σT , 0 ≤ k ≤ L − 1. TS is the sampling

period of the system, which is 8 nanoseconds for the 125
MHz system.σT is the root mean square delay spread of the
channel, which is about 30 to 50 nanoseconds in an indoor
environment. We selectL to be 30 since most of the channel
energy is concentrated in this part. The waveformg is the time
reversed and conjugated version ofh. For TR system, users
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Fig. 6: Run time comparison for different number of users.

are distributed randomly within a20 meter by20 meter area
with the transmitter located at the center to simulate an indoor
environment. For massive MIMO system, users are distributed
randomly within a300 meter by300 meter area to simulate an
outdoor environment. The transmitter is located at the center of
the area in both cases. The path loss exponent is3.5. The rate
requirements for the usersRi are generated uniformly from the
range of 1 Mbps to 2 Mbps. The weight vectorw is generated
uniformly from 0 to 1. The power vector is generated from a
uniform distribution from0.1 to 0.3 for each user andPmax

is set to1. The SNR is0 dB for each of the users unless
mentioned otherwise. The system bandwidth of the TR system
is 125 MHz in the simulation. The simulation is repeated for
2000 channel realizations for each of the settings. Lastly, we
select the Gurobi solver to solve the MIQCQP problem [21].

A. Time Complexity

Time complexity is an important performance indication for
a scheduler that performs in real time with a strict deadline.
Moreover, the importance grows with the foreseeable sharp
increase in the number of users in the system. Fig. 6 shows
the comparison of the running time with number of usersN
ranging from3 to 10 and D = 4. The proposed scheduler
consumes more time than that of exhaustive search when the
number of users is small due to the model setup and shows an
empiricalO(N) complexity. The result showsO(2N ) complex-
ity for exhaustive search and the execution time outpaces the
proposed scheduler. TheO(N) complexity makes the proposed
scheduler suitable for application with a strict deadline.

B. Scheduling Performance Comparison

To evaluate the performance of the proposed scheduler, we
compare the weighted sum rate of the proposed schedulerRS

with the weighted sum rate obtained by exhaustive searchRopt

by calculating the average of the ratioρ = RS/Ropt . We chose
the backoff factorD = [4, 8, 12, 24, 30] and number of users
N = [3, 5, 7, 9]. Fig. 7(a) shows theρ with different N and
D. For a smallD, the deviation from optimality with largeN
comes from the errors at the linearization of the logarithm term
around1, because the actual sum is far from1. However, when
D increases, the entries ofZ becomes smaller and the error

due to expansion at1 gets smaller. For largerN, which is the
targeted use case for the next generation system,ρ increases
rapidly to above0.9 in all cases whereD is larger than8.

To evaluate the performance of the proposed scheduler
under different SNR conditions, we perform simulations where
all users have the same SNR selected from[−5, 0, 5, 10] dB.
We simulate with different backoff factorsD = [4, 8, 12, 24, 30]
and N = 9, and the result is presented in Fig. 7(b). In the
low SNR region, the approximation in (8) is not as accurate
and there is a gap between the performance of the proposed
scheduler and that of exhaustive search. However,ρ increases
over 0.9 when D is larger than8 in most SNR cases.

The proposed scheduler separates the physical layer imple-
mentation, and the separation makes the scheduler suitable for
different waveform design and power allocation algorithms.
Fig. 8(a) showsρ with a downlink system using the waveform
design and power allocation proposed in [16]. The original
uplink max-min SINR algorithm in [16] is modified using
the uplink-downlink duality for downlink purpose. The figure
shows a similarρ as in Fig. 7(a), which shows that the
proposed scheduler algorithm is versatile for different physical
layer implementation.

We also evaluate the scheduler performance on the massive
MIMO system. We assume flat fading channels, i.e. one tap
channel, on each link of the massive MIMO system. Each link
is modeled as a complex Gaussian random variable with zero
mean and unit power asCN(0, 1). The beamforming vectorgi
is selected as the maximum ratio combining (MRC) scheme,
where gi is simply the complex conjugate of the channel
link h∗

i
. We set the number of usersN = [3, 7, 10, 13] and

the number of antennasM = [10, 20, 30, 40] and simulate
2000 channel realizations. Fig. 8(b) showsρ of the proposed
scheduler and it is obvious thatρ approaches to1 in all cases
we simulated.

To evaluate the performance of the scheduler with a large
number of users, we evaluate the scheduler performance with
the number of usersN = [15, 20, 25, 30] and D = [16, 20, 25].
We compare the average weighted sum rate of the scheduler
output with a first-come-first-serve system that tries to accom-
modate as much as users as possible given the users’ require-
ments are satisfied. We simulate 4000 channel realizations for
each set ofN and D and Fig. 9 shows the results of the
two schedulers. The result shows that the proposed scheduler
outperforms the first-come-first-serve system in every setting
by a large margin, showing the effectiveness of the scheduler
with a largeN. With a fixedD, the weighted sum rate increases
with N and saturate whenN is large. The SINR requirements
of the users limit the achievable regions of the system and
results in the weighted sum rate saturation at largerN. With
a fixedN, the system weighted sum rate decrease with larger
D because of less frequent transmission.

To evaluate the scheduler performance with existing sched-
ulers, we compare the performance with the massive MIMO
scheduler proposed in [22]. The authors proposed a pair-wise
semi-orthogonal user selection (pair-wise SUS) scheduler that
selects transmitting users with mutual channel correlations
lower than a cut-off valueβmin. We selectβmin to be 0.45
which shows the best performance across a different number
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Fig. 7: Performance of the proposed scheduler compared with exhaustive search result.
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(a) Performance using waveform design algorithm proposed in
[16].
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(b) Performance on massive MIMO system.

Fig. 8: Performance of the proposed scheduler with different physical layer implementations.
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Fig. 9: Performance of proposed scheduler compared with a
first-come-first-serve system.

of antennas at the transmitter in [22]. We impose the rate
constraints on the users selected by pair-wise SUS scheduler
and remove users one by one until all users’ rate constraints
are satisfied. We simulate 150 antennas at the transmitter, and
30 to 100 users in the system. We assume that each user

has the same weight and simulate 2000 channel realizations.
The performance metric is measured by the complexity and
the average ratioρSUS = RS/RSUS of the system sum rates
between the proposed scheduler (RS) and the pair-wise SUS
scheduler (RSUS).

Fig. 10(a) shows the mean execution time of the pair-wise
SUS scheduler and the proposed scheduler. Simulation result
shows that the proposed scheduler hasO(N) complexity, while
pair-wise SUS scheduler hasO(N2) complexity, whereN is
the number of users. TheO(N2) complexity of the pair-wise
SUS scheduler is the result of the need to search through all
pairs of users’ channels to find the high correlated pairs and
to remove one of them in the selected user set.

Fig. 10(b) shows theρSUS of the pair-wise SUS scheduler
and the proposed scheduler. The simulation shows that the
proposed scheduler outperforms the pair-wise SUS scheduler
in all cases, andρ increases with the increase of users. The
pair-wise SUS scheduler removes users with high channel
correlation one-by-one, and therefore the selection process of
the scheduler may reach a local optimum. On the other hand,
the proposed scheduler selects users together, and therefore
the global optimal value of the MIQCQP formulation can be
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Fig. 10: Performance comparison between the proposed scheduler and the pair-wise SUS scheduler.

LG 16 32 64 128 256
ri, j 0.187 0.145 0.0118 0.093 0.081

TABLE I: Maximum absolute value of the off-diagonal com-
ponents of the estimated channel estimation error correlation
with different LG.

reached.

C. Channel Estimation Error

To investigate the distribution of the channel estimation
error, we simulate the estimation error of the Golay channel
estimation block output as follows. We generate i.i.d. AWGN
n with zero mean and unit variable at the receiver input.
We randomly generate 100 pairs of Golay sequence with
length LG = [16, 32, 64, 128, 256]. For each pair of the Golay
sequences, we generate 10000 realizations ofn and estimate
the correlation coefficient of the channel estimation error at
the output, i.e. the correlation ofne.

Table. I shows the maximum absolute value of the off-
diagonal element of the estimated correlationri, j, i , j of ne

over all the 100 random realizations of the Golay sequence.
With the increase ofLG , max(ri, j ), i , j decreases to less than
0.1 which indicates that the channel estimation error has low
correlation value. This justifies our previous assumption that
the channel estimation error on each tap of channel estimation
at the output of the Golay based estimation block can be
modeled as independent. Also, the Golay sequence in the
simulation is generated via random realizations ofDn andWn,
and exhaustive search onDn andWn can further reduceri, j if
desirable.

We evaluate the effect of channel estimation error on the
stability of the scheduler performance as the following. We
assume the SNR at the receiver is0dB and calculate the
corresponding channel estimation noise power with different
Golay sequence lengthLG . Then we calculateZ with the
estimated channel̂hi and gj being the time-reversed and
conjugated CIR. Then we calculate the ratioρE between the
scheduler output with channel estimation errorRE and the
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Fig. 11: Performance ratioρE between perfect channelRS and
channel estimation errorRE .

scheduler output with perfect channel informationRS. We
perform 2000 realizations and calculate the mean ofρE in
all cases.

Fig. 11 shows the ratioρE with N = 9, where the y-axis
runs from 0.5 to 1. A small LG does affect the scheduler
performance, but the performance reduction reduces with a
larger LG. Moreover, for the range whereD > 8 which
is a preferable operating point forN = 9, the reduction in
performance is marginal. The result shows that the proposed
scheduler is robust against channel estimation error and the
system can adjust the Golay sequence length according to the
SNR of the received signal.

VII. C ONCLUSION

In this paper, we propose a novel scheduler for the 5G
downlink system. The scheduler objective of maximizing
system weighted throughput and the SINR constraints of the
users are transformed into an MIQCQP problem. The proposed
schduler has a linear complexity compared to the exponen-
tial complexity of exhaustive search with slight performance
reduction. Secondly, we investigate the impact of imperfect
channel information and analyze a channel estimation scheme
of TR system using Golay sequence pairs. The Golay sequence
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based channel estimation error has a similar distribution as the
channel estimation error of the MIMO system. The proposed
scheduler is shown to be robust against channel estimation
error and is versatile for different physical layer structures. The
robustness, versatility, and the low time complexity make the
proposed scheduler suitable for deployment in systems with a
massive number of users and strict scheduling deadlines.
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