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Abstract—Heterogeneous multimedia content delivery over
wireless networks is an important yet challenging issue. One of
the challenges is maintaining the quality of service due to scarce
resources in wireless communications and heavy loadings from
heterogeneous demands. A promising solution is combining multi-
casting and scalable video coding (SVC) techniques via cross-layer
design, which has been shown to effectively enhance the quality
of multimedia content delivery service in the literature. Neverthe-
less, most existing works on SVC multicasting system focus on
the static scenarios, where a snapshot of user demands is given
and remains the same. In addition, the economic value of the
SVC multicasting system, which is an important issue from the
service provider’s perspective, has seldom been explored. In this
paper, we study a subscription-based SVC multicasting system
with stochastic user arrival and heterogeneous user preferences.
A stochastic framework based on the multidimensional Markov
decision process (M-MDP) is proposed to study the negative net-
work externality existing in the proposed system and theoretically
evaluate the corresponding system efficiency. A game-theoretic
analysis is conducted to understand the rational demands from
heterogeneous users under different subscription pricing schemes.
By transforming the original dynamic and complex M-MDP
revenue optimization problem into a traditional average-reward
MDP problem, we show that the optimal pricing strategy that
maximizes the expected revenue of the service provider can be
derived efficiently. Moreover, the overall user’s valuation on the
system, e.g., social welfare, is maximized under such an optimal
pricing strategy. Finally, the efficiency of the proposed solutions is
evaluated through simulations.

Index Terms—Markov decision processes, game theory, scalable
video coding, multicasting, pricing.

I. INTRODUCTION

W ITH the development of multimedia compression and
the advance of wireless networking techniques, multi-
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media content delivery over wireless networks becomes more
and more popular, e.g., mobile video download/upload, live
video streaming [1] and Internet Protocol TV (IPTV) [2]. One
challenging issue in such wireless multimedia delivery systems
is how to maintain the quality of service due to scarce resources
in wireless networks and heavy loadings from heterogeneous
demands.

Multicasting in wireless communications is a natural solution
to the overloading problem in wireless live video streaming
and IPTV. When multiple wireless users within a certain range
request for the same multimedia content, the transmitter can
simply broadcast one copy of the content to all receivers, which
is called multicasting. The service provider may categorize
users into several multicast groups according to their demands
in contents, and then perform multicasting in delivering. How-
ever, challenges still exist in such a group-based multicast
approach since each multicast group still requires resources
to function. How the limited resources should be allocated
to each group is an important issue. Moreover, heterogeneous
users may use devices with different computational capabilities.
Those devices with low computation capabilities may not be
able to decode high-quality contents. Therefore, the service
provider needs to deliver the same content in multiple qualities,
such as in standard resolution (SD) and high resolution (HD), to
satisfy these heterogeneous devices’ requirements. This intro-
duces serious redundancy in the delivery and therefore further
aggravates the overloading issue.

A. SVC Multicasting Service

Scalable video coding (SVC) is a promising technique to
resolve the content redundancy issue [3]. It provides a flexible
design to encode the videos into a series of data streams, each of
which represents a layer of the video. The base layer (layer 1)
can be decoded independently without the information stored
in other data streams. It also has a low decoding requirement
in computation capability. Other layers are called enhancement
layers, which contain extra information to reconstruct a higher
quality video. A receiver may derive a higher quality video by
decoding the base layer and subsequent enhancement layers.
Therefore, the redundancy in delivery can be greatly reduced
with such a technique. By combining multicasting and SVC
techniques, the cross-layer design shows great potentials in
enhancing the quality of multimedia delivery service. An ex-
ample is illustrated in Fig. 1, where a video multicasting server
is offering two SVC videos, each with two layers. Four users
are already using the service, while subscriber 2∼4 request for
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Fig. 1. A SVC multicasting platform offering two 2-layer videos.

video 1 and subscriber 1 requests for video 2. Three multicas-
ting groups, each for a specific layer of a video, are formed
according to their requests for the video and layers. Notice
that the transmission of video 2’s layer 2 is suspended because
no users are requesting it. Nevertheless, when subscriber 5
arrives the system, she sends a request to the video server
for the video 1 with both layers. If the video server accepts
the request, subscriber 5 will join the multicasting groups for
video 1’s layer 1 and layer 2. The resource allocation of each
multicasting group will then be determined according to the
channel conditions and demands of users.

B. Related Works

The cross-layer design of SVC multicasting system has been
discussed in the literature. A popular approach is the utility-
based approach [4], where users are assumed to have some
utilities if they receive and decode the demanded videos cor-
rectly. Under such an approach, the objective of the system
is maximizing all users’ utilities given the current demands
and the channel conditions. Generally, given a snapshot of
the multicasting system, the multiple multicast group resource
allocation problem can be reduced to a 0–1 Knapsack problem
if the selectable resource allocation pattern is not continuous,
e.g., finite set of modulation and coding schemes. Since the
0–1 Knapsack problem is NP-hard, approximated algorithms
are more desired to efficiently solve the resource allocation
problem. Several approximated algorithms with different ob-
jectives for the snapshot optimization have been proposed in
the literature. A straightforward greedy algorithm is proposed
in [5] while a pseudo-polynomial algorithm for minimizing the
total energy consumption is proposed in [6]. In [2], the authors
proposed an envelope-based approximated algorithm and gave
a tight error bound. Dynamic programming approaches, which
make use of the sequential utility increment structure in SVC
technique, are introduced in [1], [7], and [8]. This problem
becomes more challenging when it comes to cognitive radio [9].
In [10] the authors illustrate how to jointly consider the avail-
ability of channels with video multicasting. A similar oppor-
tunistic multicasting approach is shown in [11] to enhance the

quality of service in WiMAX system. Pricing is a powerful tool
to regulate the subscribers’ actions in a streaming service [12].
In [13], a pricing approach is proposed to transform the utility
into the immediate revenue with different priorities in layers.

However, most existing SVC multicasting works focus on
the static case, i.e., considering the current snapshot scenario
where the demands from users are given. In practice, the
SVC multicasting system will be highly dynamic in a long
run due to the changes of channel conditions, user demands,
and the reserved resource for the service. In a long-term SVC
multicasting service, the resource allocation should not only
address the current demand but also compensate the loss from
previous transmission failures. Scheduling, which is naturally
considered when we consider an OFDMA system with time-
frequency multiplexing [14], need to be expanded from sin-
gle frame scale to multiple frame scale. One workaround is
using an average window on the objective function to track
the utility of each users in the long-term SVC multicasting
service [15], [16]. When a user experiences transmission fail-
ures in previous slots, her degraded utility will be reflected
in the objective function, which leads to a higher priority
in the resource allocation mechanism. The deadline of each
packet can be further addressed by adding the corresponding
weights to the utility of the users in the objective function [15].
Additionally, different scheduling strategies like Max-Sum,
Max-Product, and Round-Robin, can be applied in such an
approach [16]. Despite the average window, a gradient-based
objective function can also be applied to track the changes in
utility and make the corresponding compensation in resource
allocation to users [17]. Nevertheless, most existing works
addressed the compensation in resource allocation to previous
transmission failures, while the potential loss in the future trans-
missions is not of their concerns. Additionally, they assume
that the number of users and their demands remain static in the
process of SVC multicasting service. This could be a problem
when we consider a dynamic system with users arrival and
departure, which is commonly observed in real world systems.

A stochastic analysis and design on SVC multicasting system
is more desirable in this case, since it helps us to not only
consider the past history of the system performance but also es-
timate the future outcome of the system. Through the analysis,
we can predict the system performance in a dynamic system
where users arrive and depart stochastically. The analysis can
also help us to estimate the expected long-term utility of users
if they subscribe to certain services. In the literature, there are
works investigating the policy design of stochastic multicasting
system in wired networks [18]. However, to the best of our
knowledge, there is no existing work on the stochastic analysis
on the SVC multicasting system over wireless networks.

In addition, from the service provider’s perspective, the
economic value of a SVC multicasting system may be the most
important factor. A commercial service provider will provide
such a service only when it is beneficial in profits [12]. Taking
into account such a factor, we discuss a subscription-based
economic model with different pricing schemes, where the
selfish nature of rational users is involved. Researchers have
discovered that the rational behaviors of users should be seri-
ously considered in designing any system with users applying
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actions and making decisions [19], [20]. A centralized-control
process designed to optimize the overall system performance
may fail in a user-oriented system since the rational users focus
on their own utilities instead of overall system performance
and therefore may disobey the instructions from the control
process. The selfish behaviors of users may eventually degrade
the system efficiency or service provider’s revenue [12]. Some
incentive designs may be required to regulate the behaviors
of users in order to improve the system efficiency [21]. By
considering rational users’ selfish nature, we propose to use
game theory to analyze how users react under different pricing
schemes.

Game theory has been applied in the multimedia multicast
transmission systems for enhancing the service quality. Peer-
to-peer cooperative communication, for instance, is proposed
in [22] to enhance the transmission reliability of multi-view
videos. In their proposed system, user who experience packet
loss may recover the packet through the redundant coding
information (RCI) contained in packets for other users. A game-
theoretic monetary-based process is implemented to promote
the cooperation among the users. Another relay-based cooper-
ation scheme is proposed in [23], where users form multiple
coalitions for two-hop multicast transmission. The head of
each coalition takes the responsibility to transmit the contents
from central server through multicast to all members of the
coalition. A coalition game is formulated here for analyzing
the system, and a distributed coalition formulation algorithm
is proposed to find the optimal coalition. For non-cooperation
system, the competition for resource is discussed in [24], where
IEEE 802.11-based stations compete for TXOP for their own
video transmissions. Given that each station may have differ-
ent channel quality and video requirement, it is necessary to
demand all the stations to reveal their true requirements in
order to determine the efficient TXOP allocation. By inducing
the additional transmission cost to each station, a VCG-based
mechanism is proposed to ensure 1) all stations truthfully
reveal their information and requirements, and 2) the optimal
TXOP allocation is guaranteed. Nevertheless, to best of our
knowledge, none of these game-theoretic works address the
SVC multicasting system. Additionally, a stochastic analysis
on the demands from rational users in long-term multimedia
transmission system is also lacking in this area.

C. Contributions

In light of these concerns, we study a dynamic SVC multi-
casting system with stochastic user arrival and heterogeneous
user demand in this paper. Specifically, we propose a Multi-
dimensional Markov Decision Process (M-MDP) framework
to analyze the optimal load balancing and economic efficient
policies for the dynamic SVC multicasting system. The M-
MDP framework is a stochastic extension [25], [26] to the
Chinese restaurant game [27], [28], in which the authors inves-
tigate how the negative network externality and social learning
influence the decisions of rational users. Network externality
represents the effect of number of users who make the same
decision/action on the utilities of these users. The effect could
be positive or negative, as the utility function is an increasing or

decreasing function of user amounts, respectively. The network
externality effect also exists in our framework, as the amount of
demands on each video influences the resource allocation and
thus differentiates the quality of services to the users requesting
different videos.

In this paper, we introduce a subscription system to help
the service provider to regulate the subscription requests from
the heterogeneous users. We consider two subscription pricing
schemes: one-time charge and per-slot charge scheme. We
prove that both pricing schemes achieve the same optimal
revenue. In addition, we prove that the complex M-MDP op-
timization problem can be reduced to the traditional average-
reward MDP problem when the optimal pricing strategy is
adopted, and the solution can be effectively derived through the
proposed algorithms.

In summary, our main contributions are shown as follows:

1) We develop a stochastic framework to analyze the re-
source allocation in a SVC multicasting system with het-
erogeneous user demands. By considering the stochastic
user arrival, such a framework is more general than the
existing snapshot-based approaches in the literature.

2) We propose a game-theoretic model to analyze the behav-
iors of heterogeneous users. We study how rational and
intelligent users submit their demands, i.e., subscriptions,
under two pricing schemes: one-time charge scheme and
per-slot charge scheme, and derive the equilibrium con-
ditions of the game. To the best of our knowledge, this
paper is the first work bringing game theoretic analysis to
the SVC multicast system.

3) We theoretically evaluate the economic value of the
SVC multicasting system. Specifically, we investigate
the revenue-maximized policy and pricing strategies in
both one-time charge and per-slot charge schemes, which
are hard to derive due to the coupling effects in both
terms. By proving that the maximum revenue under both
schemes is equivalent under all policies, we transform
the complex M-MDP revenue maximization problem to
a traditional average-reward MDP problem, due to which
we can derive the optimal policy and pricing strategies
in an efficient way. Both theory and simulation results
confirm that the derived solution not only maximizes the
expected revenue but also optimizes the social welfare.

Our previous work [29] includes the basic system model, per-
slot charge pricing scheme, and a naive algorithm to identify
the optimal pricing strategy. The per-slot charge scheme is
not practical in real system. The convergence of the naive
algorithm is not guaranteed neither. In this paper, we propose
one-time charge pricing scheme as a practical and efficient
pricing scheme for the subscription system. Based on the new
pricing scheme, we transform the original M-MDP problem
into an average-reward MDP problem, and therefore propose a
novel algorithm which identifies the optimal pricing strategy in
a significantly higher speed. The convergence of the proposed
algorithm to the optimal strategy is also guaranteed. Extensive
simulations with real data are also provided in this paper for
evaluating the performance of the proposed algorithm and both
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pricing schemes, comparing with two other traditional pricing
schemes.

The rest of the paper is organized as follows. In Section II,
we describe a general SVC multicasting system where users
have heterogeneous preferences and computation capabilities.
In Section III, we formulate the system as a game-theoretic
M-MDP framework for investigating the rational behaviors
of users under such a subscription-based SVC multicasting
system. Then, the equilibrium conditions of the system are
derived in Section IV, where the expected subscription requests
from users under certain pricing scheme strategies are analyzed.
In Section V, the optimal pricing strategies that maximize the
revenue of the service provider under both pricing schemes are
derived. By applying optimal pricing strategies, we reduce the
complex M-MDP problem into a traditional average MDP prob-
lem and derive the revenue-maximized subscription regulation
policy in Section VI. Finally, simulation results are discussed in
Section VII. We draw conclusions in Section VIII.

II. SYSTEM MODEL

We consider a video multicasting service with one video
server and multiple potential users who arrive and depart
stochastically. The service is offering multiple choices of SVC-
encoded videos. Given the limited resource (time, bandwidth,
etc.), the service provider needs to determine the video server’s
resource allocation given the current demands for videos. In
addition, the provider also determines the prices of video mul-
ticasting services, which is dynamically adjusted.

Users make request for the service when they arrive the sys-
tem. Their requests are based on their preferences, computation
capabilities, and the price of the service. The objective of the
service provider is maximizing her revenue, while the users
aim to seek for best experience, i.e., highest utility, in the video
multicasting service.

A. Video Server

Let us consider a video server which is capable of serving
at most N subscribers.1 The server provides multiple videos
denoted by J = {1,2, . . . ,J}. Each video is encoded by SVC
into a video stream. An encoded video steam contains K layers.
The server transmits the layers of each video periodically on the
same channel, and all packets of layers are transmitted with the
same interval.

A subscriber can decode a video if she receives at least the
base layer (layer 1), while the quality of the video will be
enhanced if she successfully decodes more subsequent layers.
Let layer k be the k-th layer of the video, we assume that a
subscriber may decode the video up to layer k only when all
layer 1 ∼ k are successfully received. In Fig. 1, we illustrate a
SVC multicasting server with 5 subscribers, while the server is
offering J = 2 videos, each with K = 2 layers.

1Notice that here we impose a constraint on the number of subscribers to
simplify the analysis. It is also feasible to apply the subscriber limitations
based on the amount of consumed/required resource. In such a case, different
boundary conditions will apply in the proposed model, while the main structure
and results of the proposed model will be unaffected.

The reception of the layer is determined by two factors:
the supported modulation and coding scheme (MCS) at the
subscriber side and the MCS applied on the layer at the video
server side. On the subscriber side, let gi ∈ G be the maximum
MCS supported by subscriber i, where G is the universe set of
the MCSs. In this paper, we assume that the channel quality gi is
a random variable with a common probability density function
f (g). We consider a slotted time wireless system where the slot
time Ts is equal to the coherence time of the channel quality.
Additionally, the channel distribution we considered is the prior
estimation on the channel quality of average users within the
service area. We believe that it is reasonable to assume that
the service provider has collected such information in advance
since the service provider must predict the potential service
quality in advance so they can estimate the profitability of the
service before deploying it.

On the video server side, the video server needs to determine
the MCS applied on each layer of each video. Let g j,k be the
MCS applied on layer k of video j. When the layer k of video
j’s data stream is transmitted with the MCS g j,k, all users with
channel quality gi ≥ g j,k can receive this stream.

The applied MCS g j,k determines the required resource
(transmission time) to transmit the layer. We denote Cj,k(g j,k)
as the required resource to transmit layer k of video j to users
with MCS g j,k. The Cj,k(g j,k) should be a decreasing function
of g j.k since a layer can be transmitted in a shorter time if
a higher-level MCS with higher throughput is applied. The
video server may choose to stop transmitting layer k. We define
Cj,k(gc) ≡ 0. The gc represents the case that the transmission
of this layer is disabled and therefore no users can receive this
layer. Finally, let Ctotal be the total available resource, which
is the total transmission time in our system. As the overall
resource is limited to Ctotal , we have a firm constraint that
Ctotal ≥ ∑ j,k Cj,k(g j,k).

Notice that this formulation can be used to capture the
rate and delay constraints of specific video streams. Let the
resource C be the transmission time in the system in a period.
In such a setting, the required transmission time for layer k
of video j in each period should be the number of bits in
each period divided by the supported transmission rate under
the applied MCS g j,k. When the required transmission time
is larger than the delay requirement of video j, the video
quality will becomes unacceptable. In such a case, the required
resource can be defined as infinity at these channel qualities to
indicate that the targeting video quality can never meet under
these channel qualities. Specifically, let ḡ be the minimum
required MCS for layer k of video j to meet the delay constraint,
we have Cj,k(g′j,k) =∞ if g′j,k < ḡ. Through this formulation, we

capture the rate and delay constraints in our framework.
Notice that the resource should be dynamically allocated

according to the current realization of users’ channel qualities
in order to maximize the delivery efficiency. Let s = {ns

j,k} be
the current system state, where ns

j,k be the number of users
requesting video j’s layer k stream. The state s represents
the current loading of the video server. Then, we denote the
dynamic resource allocation rule as D(s) = {g j,k|∀ j,k}. The
allocation rule takes the current system state s as input and
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outputs the corresponding MCS for each layer. The D(s) may
be implemented with different objectives, such as efficiency
maximization or fairness constraints. In a utility-based system
[2], [5], a common and reasonable choice of D is the overall
utility maximization, that is,

D(s) = argmax
g j,k

E

[
ui

(
{g j,k}

)]
(1)

under the resource constraint Ctotal ≥ ∑ j,k Cj,k(g j,k), where ui

is the utility of user i. In a wireless system with finite choices
of the lowest channel quality, e.g., limited choices of MCS
in WiMAX, this problem has been shown to be NP-hard [2].
Therefore, heuristic approaches are required and can be found
in the literature [1], [2], [5], [7], [8].

B. User Valuation

In our system, users with different preferences arrive stochas-
tically. In general, there are some users who have strong
preference on a certain type of videos, e.g., sport fans always
subscribe to the sport news channels. On the other hand, there
are also some users that may not have a strong preference on
the type of videos. They can enjoy all videos they successfully
receive and decode.

Users with similar preferences usually have similar valua-
tions on video content and quality. However, their devices may
have different capabilities in receiving and decoding the videos.
For instance, users who prefer the sport news may subscribe to
the same channels, but some of them are only equipped with
mobile phones. With such a limited capability device, only base
layer can be decoded and displayed correctly. Therefore, users’
abilities to have better video quality is limited.

We model all the aforementioned properties with the follow-
ing notations. Users are categorized into types, which is denoted
by t ∈ {1,2, .., ,T}= T . A type t = (J t ,kt) user prefers videos
jt ∈ J t and is equipped with a device capable of decoding the
SVC-encoded video up to layer kt . We denote the valuation
function on video j ∈ J with maximum decoded layer k as
v j(k). The valuation function represents the amount of utility
the user gains if she decodes the video correctly in this slot.
Then, a type t user’s valuation on video j with maximum
consecutively received layer k is denoted as

vt( j,k) =

⎧⎨
⎩

v j(k), j ∈ J t , k ≤ kt ;
v j(kt), j ∈ J t , k > kt ;
0, else.

(2)

Note that a user has positive valuations on the service only
if she receives and decodes her preferred video jt ∈ J t suc-
cessfully. Finally, we assume users with different types arrive
independently. We describe the arrival process of type t users
with a Poisson process with the average arrival rate λ̄t . Notice
that the popularity of a video can be characterized by the arrival
rate of the corresponding user type which prefers such a video.
A higher arrival rate of a specific type of users means a higher
popularity of the video these users preferred.

Additionally, a user may leave the system at any time. We
assume the time period of a user staying in the system is an
exponential process with the average departure rate µ̄.

C. Payment System

We consider a subscription-based payment system as the
revenue source of the service provider. We assume that the
video service is private and all transmissions are encrypted.
Therefore, users who enter the system should subscribe to one
of the videos in order to correctly decrypt the corresponding
data streams. A subscription contains two terms: the subscribed
video j and the desired maximum layer k. When a subscription
is accepted by the video server, the decryption keys of video
j’s layer 1 ∼ k streams are delivered to the user. However,
the reception of these streams is not guaranteed due to the
randomness of the channel quality gi, which is characterized
by f (gi). We assume the channel qualities of all users are
independent from each other and among time slots.

The price for a subscription, which is determined by the ser-
vice provider, should be properly chosen in order to maximize
its expected revenue. We model it as a function of the state
s = (ns

1,1,n
s
1,2, . . . ,n

s
J,K). In this paper, two pricing schemes are

considered.

1) One-time charge: when a user arrives the system in state
s, a payment Pe

j,k(s) is charged as soon as the user’s
subscription ( j,k) is accepted, and no further payments
are required. In this pricing scheme, the s denotes the
system state when the user arrives at the system.

2) Per-slot charge: At each time slot, as long as the user
stays in the system with a valid subscription, she is
continuously charged with an payment of Pj,k(s), where
state s is the system state at that time slot. Notice that the
price depends on the current state s, which may change
over time.

Additionally, the subscription is canceled immediately when
the user leaves the system, which is described by the departure
process we mentioned in previous section.

III. GAME THEORETIC FORMULATION

In our model, we assume that users are rational and thus
naturally selfish. Therefore, we need to consider users’ selfish
behaviors when evaluating and designing the pricing strategies,
and game theory is powerful tool that analyzes the strategic
interactions among selfish decision makers [20].

We consider a subscription game where the players are the
subscribers and the service provider. The service provider deter-
mines the service price, {Pe

j,k(s)} for one-time charge scheme
or {Pj,k(s)} for per-slot charge scheme, at the beginning of the
game. Subscribers then submit their requests according to the
prices when they arrive the system. Notice that each subscriber
may arrive at different time given that this is a stochastic
system.

The objective of the service provider is to maximize the
expected revenue in the system. Notice that users are rational
and desire to maximize their own utility given the prices
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determined by the service provider. As a result, the service
provider needs to carefully determine the pricing strategy by
taking into account the response of selfish users.

A user’s objective is to maximize her own utility by choosing
the best subscription. As described in Section II, users arrive
stochastically. When a type t user arrives, she determines
whether to subscribe to a specific video at certain layers. To
subscribe, the user sends a subscription request to the server.
She will receive the corresponding data streams if the server
accepts the request. Note that since the system state and the
channel quality are changing over time, the service quality is
dynamic.

Although users only make decisions (choose the video/
layers) at the time they arrive. The key point for them to choose
proper subscriptions is to calculate the expected utility given
their initial states and choices on the video/layers. Neverthe-
less, the system we consider involves multiple subscribers,
who may arrive and depart at different time. The choices of
later subscribers on the video/layers will influence the system
loading, change the resource allocation, and therefore affect
the video reception quality experienced by early subscribers.
Additionally, their decisions not only change the server loading
at that moment they arrive but also the transition of the system
state. It becomes necessary for a rational subscriber to predict
how other subscribers in the future will choose the video/layers
in order to make correct estimations on the expected utility.

The expected utility of the user with subscription ( j,k) is
conditioned on the system state s when she arrives. Let the
system state at time slot l be sl , and let the realized channel
quality be gl

i . A type t user with a valid subscription ( j,k) has an

immediate valuation on the service, vt( j,k
l
), where k

l
(gl

i)≤ k is
the maximum successfully decoded layer at current time slot l.
Notice that the reception of layer k′ depends on the realized
channel quality gl

i and the MCS gl
j,k′ applied on the stream at

that slot. Additionally, SVC can only be incrementally decoded.
Therefore, we have

k
l
(

gl
i

)
= arg max

k′≤k,∀k′′<k′,gl
j,k′′≤gl

i

k′ (3)

In addition, there is a cost of using the service, which is
the charged payment determined by the pricing scheme. Given
the state and costs, the expected utility of a type t user under
subscription ( j,k) is

E
[
ut( j,k)|s

]
=−c(s, j,k,0)

+ E

⎡
⎣ ld

∑
l=la

⎛
⎝ ∑

gl
i∈G

vt
(

j,k
l
(

gl
i

)
f
(

gl
i

)
− c(sl , j,k,1)

)∣∣∣∣∣sla = s

⎤
⎦ ,

(4)

where k
l

is given by (3), c(s, j,k,e) is a common pricing func-
tion depending on the pricing scheme, s is the state when the
user arrives the system, and la and ld are the user’s arrival and
departure time indices, respectively. Specifically, c(s, j,k,0) is
the entrance fee to request a subscription ( j,k) before using the
service, which will be zero under the per-slot charge scheme.
The c(s, j,k,1) is the per-slot charge when the user is in the

system, which will be zero under the one-time charge scheme.
A rational user will choose the subscription that maximizes (4)
when arriving at the system.

IV. EQUILIBRIUM CONDITIONS

Nash equilibrium is a solution concept for predicting the
outcomes of a game with the assumption that all players are
fully-rational. Nash equilibrium describes an action profile,
where each player’s action is the best response to other play-
ers’ actions in the profile. Since all players apply their best
responses, none of them has the incentive to deviate from their
actions described in the profile.

The Nash equilibrium of the proposed video subscription
game can be analyzed through the following procedures.
We first model the selfish users’ behaviors through a multi-
dimensional Markov decision process by fixing the pricing
function c(·). The steady state and the expected utilities can
then be calculated, and therefore the users’ equilibrium con-
ditions can be derived. With the equilibrium conditions of
users, we then derive the equilibrium conditions for the service
provider to maximize the revenue.

A. Users’ Behavior Modeling Using Multi-Dimensional
Markov Decision Process

The video subscription game, when the pricing function c(·)
is given, can be formulated as a multi-dimensional Markov
decision process (M-MDP) [26]. A Markov decision process
describes a stochastic system where the transition between
states is partially or fully determined by a decision maker
[30]. The objective of the decision maker, the subscriber in
our model, is to maximize her expected reward. In a traditional
MDP, there is only one decision maker and the optimal solution
that maximizes the unique expected reward can be found using
dynamic programming [30]. However, since there are multiple
decision makers with their own utility functions in our game,
the traditional MDP cannot be directly applied here. On the
contrary, in M-MDP we have multiple decision makers, each
with different sets of actions to choose from. The actions ap-
plied by one decision maker may influence the expected utility
of other decision makers, and therefore alter their willingness
to choose certain actions.

In the proposed M-MDP framework, we consider a discrete-
time Markov system where each time slot has a duration of
Ts. The arrival and departure probability of each type t of
subscribers can be approximate to λt = λ̄tTs and µ = µ̄Ts,
respectively, when Ts is sufficient small and therefore it is
very unlikely to have more than two subscribers arrive at the
same time slot. The system state is s = (ns

j,k| j ∈ {1 . . .J},k ∈
{1 . . .K})∈ S , where ns

j,k denotes the number of users subscrib-
ing video j with maximum subscribed layer k. The server can
serve up to N users, therefore we have the boundary constraints
∑ j,k ns

j,k ≤ N on the states.
The action of a user is the subscription request a = ( j,k).

Different types of users may have different action space due to
the limitation in computation capability and their preferences.
The action space of a type t user is A t = J t ×K t ⋃{(0,0)},
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where (0,0) represents that she does not subscribe to any video
and leaves the system immediately. Note that users will not
subscribe the unpreferred videos since their valuations on those
videos are zero. We denote V ( j,k) ≡ v j(k) to describe any
subscriber’s valuation on the video if she indeed submits a
request ( j,k) and receive the video at this slot. Therefore, after
taking the action a = ( j,k), the user can obtain an immediate
reward as follows:

R(s, j,k) = E [U( j,k)|s] =Vj,k(s)− c(s, j,k,1), (5)

where U( j,k) is the common utility function of any subscriber
in the system if she indeed requests for ( j,k). In general, the
immediate reward is the expected valuation of the successfully
decoded video Vj,k(s) minus the subscription payment, which
happens to be the expected utility of a type t user with sub-
scription ( j ∈ J t ,k) in state s. For the case that ( j,k) = (0,0),
we let R(s,0,0) = 0, ∀s.

Policy is an important concept in Markov decision process.
A policy is an action profile which describes a decision of the
decision maker at a certain state in the stochastic system. In our
model, a policy is denoted as a function π(s, t) : S ×T 	→ A t ,
which describes the subscription decision of type t user when
she arrives in state s.

In M-MDP, multi-dimensional Bellman equations are neces-
sary to understand the expected utilities of all possible decision
makers, given their types and states. That is, the Bellman
equations help a decision maker to know what the expected
utility is when certain actions (by herself and other decision
makers) described in a given policy apply to the stochastic
system. In addition, each rational decision maker will choose
the action that maximizes her expected utility given her type
and state, which is described by the optimal policy equations.
It should be noted that although it may be intuitive for a
decision maker to choose the optimal action given the currently
predicted policy, other decision maker’s choices on the action
might change accordingly, alter the policy, and therefore change
the expected utility given by the multi-dimensional Bellman
equations. Therefore, both bellman equations and policy should
be balanced in order to reach the equilibrium state.

B. Expected Reward Under Transition Probability

A rational user will make the decision to maximize the
expected reward defined as follows:

W (s, j,k) = E

[
∞

∑
l=le

(1−µ)l−le
R(sl , j,k)|s

]
, (6)

where µ is the departure rate, and thus 1− µ is the probability
that the user will stay at next time slot. Therefore, a user who
enters the system at slot le will receive the reward at slot l if and
only if he stays in the system for subsequent l − le slots, which
happens with the probability (1−µ)(l− le). Note that 1−µ can
also be considered as the discount factor of the future utility. In

the steady state, the Bellman equation of the expected reward
can be written as follows:

W (s, j,k)=R(s, j,k)+(1−µ)∑Pr(s′|s,π, j,k)W (s′, j,k), (7)

where Pr(s′|s,π, j,k) denotes the transition probability from s
to s′ when the user takes the action ( j,k) under the policy π.
Notice that this transition probability is conditioned on the fact
that she is not leaving the system at next time slot. Otherwise
she will not receive the rewards from next time slot. Let e j,k be
a standard basis vector. Then, the transition probability of a user
with a subscription ( j,k) is as follows:

Pr(s′|s,π, j,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑t∈T,s′=s+eπ(s,t)
λt , ∃t ∈ T,s′ = s+ eπ(s,t)

and π(s, t) �= (0,0);(
ns

j′,k′

)
µ, s′ = s− e j′,k′ ;(

ns
j,k −1

)
µ, s′ = s− e j,k,ns′

j,k �= 0;

1−µ(N(s)−1)−λ(s,π), s = s′,ns′
j,k �= 0;

1−µN(s)−λ(s,π), s = s′,ns′
j,k = 0

0, else.
(8)

where N(s) = ∑ j,k ns
j,k and λ(s,π) = ∑t∈T 1(π(s, t) �= (0,0))λt .

Since users are assumed to be rational, a type t user should
choose the subscription that maximizes her expected utility
when she arrives at the system. Recalling that c(s, j,k,0) is the
initial subscription fee for ( j,k), which will be zero under the
per-slot charge scheme and non-negative under the one-time
charge scheme, the optimal policy under the expected reward
W (s, j,k) is given by

π(s, t) ∈ arg max
( j,k)∈At

W (s+ e j,k, j,k)− c(s, j,k,0), (9)

Notice that when the server is full, new users cannot enter, i.e.,
∀N(s) = N, π(s, t) = (0,0), ∀ t ∈ T .

The Nash equilibrium is achieved when (7) and (9) are satis-
fied, which are denoted as the equilibrium conditions. When the
equilibrium conditions are met, each type of users has chosen
the subscription that maximizes the expected utility. Therefore,
they have no incentive to deviate.

C. Average Revenue Maximization for Service Provider

The objective of the service provider is to maximize her rev-
enue in the system under the rational response of subscribers.
Let π and W be the policy and expected rewards derived in (7)
and (9) under the pricing function c(·). Then, let Q(s) be the
expected revenue in state s. The best response of the service
provider is the solution to the following optimization problem:

max
c(·)

lim
L→∞

1
L
E

[
L

∑
l=1

Q(sl)

]
, (10)

under the constraints

W ∗ (s+ eπ∗(s,t),π∗(s, t)
)
− c(s, j,k,0)≥ 0, ∀s, t (11)

where π∗ and W ∗ satisfy (7) and (9).
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Fig. 2. An illustration of state transition in the proposed M-MDP system.

Note that the state transition probability in this problem is
different from the one observed by users in (8). It should be:

Pr(s′|s,π) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑t∈T,s′=s+eπ(s,t)
λt , ∃t ∈ T,s′ = s+ eπ(s,t)

and π(s, t) �= (0,0);(
ns

j,k

)
µ, s′ = s− e j,k;

1−N(s)µ−λ(s,π), s = s′;
0, else.

(12)

An illustration of the state transition is shown in Fig. 2.
With primal-dual transformation [30], the expected average

revenue can be given as ∑s∈S Pr(s|π)Q(s), where Pr(s|π) is the
stationary distribution of the states under policy π.

V. OPTIMAL PRICING STRATEGIES

In this section, we would like to discuss the optimal pricing
strategy that maximizes the expected revenue under a given
policy while satisfying the user equilibrium conditions in (7)
and (9). Since the policy is given and fixed, the optimization
problem is simplified. This helps us to have an initial under-
standing on how the service provider should determine the
price in order to maximize its expected revenue given a known
pattern of the requests from users and constraints from the
corresponding equilibrium conditions.

A. Optimal Pricing in One-Time Charge Scheme

In one-time charge scheme, a user is charged with a state-
dependent subscription fee Pe

j,k(s) when her subscription ( j,k)
is accepted, and no further payments are required. Therefore,
we have c(s, j,k,1) = 0 and c(s, j,k,0) = Pe

j,k(s) ≥ 0 for all s,
j, k. Let W (s, j,k) be the expected reward derived by solving (7)
through dynamic programming or matrix operations. Since the
policy π is fixed, the transition probability is fixed. Therefore,
the original revenue optimization problem can be solved in a
state-wise way.

Since the server can serve at most N users, we have N(s) ≤
N for all s. When N(s) = N, all requests will be rejected,
which leads to zero revenue. When N(s) < N, the revenue
maximization problem can be written as follows:

max{
Pe

j,k(s)
}Pr(s|π) ∑

t∈T ,π(s,t) �=(0,0)

λtPe
π(s,t)(s), (13)

under the constraint in (7) and (9). We first relax the constraint
set by letting all subscribers derive non-negative expected re-
wards if they follow the policy π(s, t) and ignore (9). We then
have the following relaxed constraint set

W
(
s+ eπ(s,t),π∗(s, t)

)
−Pe

π(s,t)(s)≥ 0, ∀s, t. (14)

Clearly, the solution to the relaxed optimization problem
is ∀t ∈ T ,Pe

π(s,t)(s) = W (s + eπ(s,t),π∗(s, t)). By applying the
solution to all s ∈ S , we have the optimal pricing strategy for
the relaxed problem:

∀s, t,N(s)< N,Pe
π(s,t)(s) =W

(
s+ eπ(s,t),π∗(s, t)

)
. (15)

Then, we derive the following theorem.
Theorem 1: A policy π(s, j) with the pricing strategy

Pe
j,k(s) = W (s+ e j,k, j,k) ∀s,N(s) < N, j ∈ J ,k ∈ K satisfies

(9) for all s ∈ S .
Proof: Notice that the expected utility from a subscription

( j,k), which is W (s+ e j,k, j,k)−Pe
j,k(s), becomes zero under

every state, every type, and every subscription when Pe
j,k(s) =

W (s+ e j,k, j,k) ∀s,N(s) < N, j ∈ J ,k ∈ K . Therefore, the (9)
is always satisfied. �

From Theorem 1, we can see that there is always a solution
to the optimization problem in (13) and the solution can be
described as

Pe
j,k(s) =W (s+ e j,k, j,k), ∀s ∈ S ,N(s)< N. (16)

B. Optimal Pricing in Per-Slot Charge Scheme

In per-slot charge scheme, a user is charged with a state-
dependent Pj,k(s) at each slot she stays, and no entrance fee
is required. Therefore, we have c(s, j,k,1) = Pj,k(s) ≥ 0 and
c(s, j,k,0)= 0 for all s, j, k. We would like to derive the optimal
pricing strategy under the constraints in (9).

Let Pr(s|π) be the stationary probability that the system is
in state s under policy π. Since the policy π is fixed, the tran-
sition probability is fixed. The revenue maximization problem
becomes

max
{Pj,k(s)}

∑
s∈S

Pr(s|π) ∑
j∈J ,k∈K

ns
j,kPj,k(s) (17)

under the constraints in (9).
Let R j,k, W j,k, V j,k, and P j,k be the 1−by−|S | matrix rep-

resentation of R(s, j,k), W (s, j,k) Vj,k(s), and Pj,k(s) over S .
Then, let L(π) be the state transition probability matrix under
policy π, which is a |S |−by−|S | matrix with terms Pr(s′|s,π)
over S . From (5) and (7), we have

(I − (1−µ)L(π))W j,k = R j,k = V j,k −P j,k, ∀ j,k
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Therefore, the constraints in (9) can be re-written as

(I − (1−µ)L(π))−1 (V j,k −P j,k) = W j,k, ∀ j,k (18)

W
(
s+ eπ(s,t),π(s, t)

)
≥ 0, ∀π(s, t) �= (0,0) (19)

W
(
s+ eπ(s,t)),π(s, t)

)
−W (s+ e j,k, j,k)≥ 0,

∀π(s, t) �= (0,0),( j,k) ∈ A t (20)

W
(
s+ eπ(s,t),π(s, t)

)
≤ 0,

∀π(s, t) = (0,0),( j,k) ∈ A t (21)

which is a set of linear constraints over P = {Pj,k(s)|s ∈ S , j ∈
J ,k ∈ K }. Therefore, the original maximization problem is
equivalent to the following linear programming problem:

max
P

∑
s∈S

Pr(s|π) ∑
j∈J ,k∈K

ns
j,kPj,k(s) (22)

with the constraints in (18)–(21), which can be solved by
standard linear programming methods.

VI. REVENUE-MAXIMIZED POLICY

Finding revenue-maximized policy is challenging since the
policy, revenue function and the pricing strategy couple to-
gether as discussed in previous sections. In such a case, the
traditional MDP solvers cannot be directly applied for the
revenue-maximization MDP problem. Therefore, there is a
need for a more efficient approach. In this section, we will first
prove that the maximum revenue under both pricing schemes is
equal for any given policy. Then, we will show that there exists
an optimal pricing strategy in per-slot charge scheme which
always satisfies the equilibrium conditions while maximizing
the expected revenue. Moreover, such an optimal pricing strat-
egy makes the per-state revenue independent from the policy.
In such a case, we can reduce the original complex revenue
maximization problem to a traditional average-reward MDP
problem that can be solved efficiently.

A. Revenue-Maximization Problem

In this subsection, we discuss how to formulate the revenue-
maximization problem. We will use the one-time charge
scheme for illustration. The per-slot charge scheme can be
formulated in a similar way. From (16), we can see that the
optimal price is equal to users’ expected reward, which means
that the revenue is maximized when the expected rewards are
maximized. Let L(π) be the state transition matrix and Q∗(s,π)
be the revenue over states, which is

Q∗(s,π) = ∑
t∈T ,π(s,t) �=(0,0)

λtW (s+ eπ(s,t),π(s, t)), (23)

where W (s, j,k) satisfies (7). Then, the revenue optimization
problem becomes

max
π

lim
L→∞

1
L

L

∑
l=1

L(π)l−1Q∗(s0,π), (24)

which is a Markov decision process concerning the average
expected reward. Unfortunately, the immediate reward V ∗ de-
pends on the policy π, due to which, the linear programming
or the traditional iteration-based algorithms cannot be directly
applied here. A dynamic approach may be applied by iteratively
updating the V ∗ and π. However, the convergence cannot be
guaranteed.

B. Equality in Optimal Revenue and Policy

Here we state one of our main results in the revenue opti-
mization problem.

Theorem 2: Let Revone,∗ and Revper,∗ be the optimal revenue
of the proposed system under one-time charge and per-slot
charge schemes. Then, Revone,∗ = Revper,∗.

Proof: The proof contains two parts. In the first part, we
prove that given any pricing strategy under the one-time charge
scheme with a given policy π, we can always find a feasible
solution under the per-slot charge scheme reaching the same
revenue. In the second part, we prove vice versa. When these
two directions hold for any policy, we can conclude that the
optimal revenue under per-slot charge scheme is never larger
or lower than under the one-time charge scheme and therefore
Revone,∗ = Revper,∗.

Part I: Let {Pe
j,k(s)} be the optimal solution to the one-time

charge price optimization problem in (13), with the expected
revenue as Revone,∗. From (16), we have

Pe
π(s,t)(s) =W one (s+ eπ(s,t),π(s, t)

)
, ∀π(s, t) �= (0,0).

Then we construct the per-slot charge prices that reaches the
same revenue. Let P′

j,k(s) = Vj,k(s), ∀s, j,k be the constructed
per-slot charge price, where P ′ is its matrix form. With such
a price, we have the immediate reward Rper(s, j,k) = Vj,k(s)−
P′

j,k(s) = 0 and therefore the expected reward of per-slot charge
scheme W per(s, j,k) = 0, which satisfies (7) and (9) under
any given policy. Moreover, as W per is a linear transform of
Rper(s, j,k) = Vj,k(s)− P′

j,k(s), there exists a transform ma-
trix A(π) with the expected reward matrix of per-slot charge
scheme W per = A(π)R per = A(π)V −A(π)P ′ = 0. Notice that
since the expected reward matrix of one-time charge scheme
W one is also a linear transform of V with the same trans-
form matrix A(π), we have W one = A(π)V , which leads to
W one = A(π)P ′.

The expected total payment by a user with subscription ( j,k)
under the per-slot charge scheme can be written using Bellman
equation as follows:

Revper
j,k (s) = P′

j,k(s)+(1−µ) ∑
s′∈S

Pr(s′|s,π)Revper
j,k (s

′) (25)

Let E per be the matrix form of Ptotal,per
j,k (s). The solution E per

to the above Bellman equation function is E per = A(π)P ′ =
W one. Finally, a type t user that arrives in state s submits the
subscription π(s, t) to the system. The per-slot charge payment
starts as soon as she enters the system, where the state becomes
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s+ eπ(s,t). Therefore, the expected revenue generated from the
type t user with P′

j,k(s) is

Revper,t
π(s,t)=Revper

π(s,t)
(
s+eπ(s,t)

)
=W one(s+eπ(s,t),π(s, t)

)
, (26)

which is exactly the same as the optimal one-time charge price
Pe

j,k(s). Therefore, the expected revenue Revper under the per-
slot charge scheme with price {P′

j,k(s) = Vj,k(s)} should be
equal to the one under the one-time charge scheme with price
{Pe

j,k(s)}. As a result, Revper,∗ ≥ Revper = Revone,∗.
Part II: Let {Pj,k(s)} be a feasible solution to the per-slot

charge pricing optimization problem in (22) and P is its matrix
form. Since it is a feasible solution, it should satisfy (18)–(21).
Recalling the Bellman equation in (25) and let E per,t be the
matrix form of the expected revenue generated by a type t user
under the per-slot charge price {Pj,k(s)} and P be {Pj,k(s)}’s
matrix form, we have E per = A(π)P . In addition, the expected
reward W per

j,k (s) in matrix form is

W per = A(π)R per = A(π)V −A(π)P =W one −E per. (27)

Recalling Revper,t
π(s,t) be the expected revenue generated from

the type t user under π and state s. According to the above
discussion and (19), we have Revper,t

π(s,t) = Revper
π(s,t) ≤ W one(s+

eπ(s,t),π(s, t)), ∀π(s, t) �= (0,0), which means that the expected
revenue from user t is bounded by W one(s + eπ(s,t),π(s, t)).
Therefore, the expected overall revenue is

Revper =Pr(s|π) ∑
t∈T

λtRevper,t
π(s,t)

≤Pr(s|π) ∑
t∈T

λtW one (s+ eπ(s,t),π(s, t)
)

≤Revone,∗. (28)

The last inequality comes from the fact that Revone,∗ is the
optimal revenue under one-time charge scheme. Therefore, we
have Revone,∗ ≥ Revper for all feasible {Pj,k(s)}, which means
Revone,∗ ≥ Revper,∗. Combining the results in Part I and II, we
conclude that Revone,∗ = Revper,∗. �

From Theorem 2, we can see that both pricing schemes have
the same maximum expected revenue when the optimal pricing
strategies are applied. In other words, these two schemes are
equivalent in terms of revenue optimization. Moreover, in the
Part I of the proof, we observe that a simple pricing strategy
under the per-slot charge scheme leads to optimal under the
one-time charge scheme, which is

P∗
j,k(s) =Vj,k(s), ∀s ∈ S , j ∈ J ,k ∈ K . (29)

Since the revenue under such a pricing strategy reaches the
same optimal value of the one-time charge scheme, it is also the
optimal solution to the per-slot charge scheme. Such a pricing
strategy is very useful since the price and per-state revenue is
now independent from the policy. The optimal policy can then
be derived by formulating the problem as a traditional average-
reward MDP with V (s) = ∑ j,k ns

j,kP∗
j,k(s) as its immediate

reward.

C. Algorithm for Finding Revenue-Maximized Policy

In Algorithm 1, we propose a value iteration method to find
the ε-optimal solution. Since both pricing schemes share the
same optimal revenue under the same policy, the policy found
through Algorithm 1 is optimal under both pricing schemes.

Algorithm 1 Value Iteration for Revenue-Maximization
Solution

1: Initialize πo, W v,o

2: while 1 do
3: for all s ∈ S do
4: πn ← argmaxπ(s){V (s) +

∑s′∈S Pr(s′|s,π(s))W v,o(s′)}}
5: W v,n(s)←V (s)+∑s′∈S Pr(s′|s,πn)W v,o(s′)
6: end for
7: W v,d ←W v,n −W v,o

8: if maxW v,d −minW v,d < ε then
9: Break
10: else
11: W v,o ←W v,n

12: end if
13: end while
14: Output πn and W v,n

The convergence and optimality of such an pseudo-
polynomial algorithm is guaranteed as shown in [30].

Social welfare, which is a common measurement of the
system efficiency in game theory [20], is the sum of all utilities
of the players. Given that the utility of the service provider is
exactly the payment from the users, the social welfare of the
proposed framework is equal to the total valuation of users
to the service. Notice that under the optimal pricing strategy
P∗

j,k(s), the per-state revenue is

V (s) = ∑
j∈J ,k∈K

ns
j,kP∗

j,k(s) = ∑
j∈J ,k∈K

Vj,k(s), (30)

which is the overall user’s valuation on the system, i.e., social
welfare, in state s. Therefore, the solution to the revenue-
maximization problem also maximizes the social welfare of the
system. As a result, we have the following corollary.

Corollary 1: When ε → 0, the revenue-maximized policy
derived in Algorithm 1 is equivalent to a socially-optimal
policy.

Nevertheless, the value-iteration algorithm 1 converges
slowly as ε → 0 since the revenue-optimization problem is
an average-reward MDP system. Next, we will propose an
approximate algorithm based on a discounted MDP model.

D. Policy Iteration γ-Optimal Algorithm

Here we propose a discounted MDP model as an approxi-
mation to the average-reward MDP. By modeling the revenue-
optimization problem as a discounted MDP system, we propose
an approximate algorithm which converge to the optimal policy
in significantly less rounds.
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We first model the revenue-optimization problem as a
γ-discounted Markov decision process. We introduce γ as a
discounted factor for the service provider on the future revenue,
where 1 > γ > 0. Then, let W γ(s) be the expected total revenue
if the current state is s, then we have

W γ(s) =
∞

∑
l=0

E

[
(1− γ)lV (sl)|s0 = s

]
, (31)

Notice that when γ is close to 0, the expected reward is arbi-
trarily close to the average expected reward. Given the γ, we
can derive the γ-optimal policy through the following process.
According to the Bellman equation, the expected total revenue
can be written as follows:

W γ(s) =V (s)+(1− γ) ∑
s′∈S

Pr(s′|s,π)W (s′), (32)

where transition probability Pr(s′|s,π) is given in (12).
For the optimal policy, the service provider should choose the

action that maximizes its expected total revenue at every state,
which is as follows:

πγ(s) = argmax
π ∑

t∈T
λtW γ (s+ eπ(s,t)

)
. (33)

Notice that both (32) and (33) are coupling together. These
two equations describes the optimality conditions of the pro-
posed γ-discounted MDP. As shown in literature [30], the
γ-discounted MDP can be solved by policy iteration algorithm.
We provide such an algorithm in Algorithm 2.

Algorithm 2 Policy Iteration for γ-Optimal Solution

1: Initialize πo

2: while 1 do
3: Solve W n using (32) with π = πo

4: Solve πn using (33) with W =W n

5: if πn = πo then
6: Break
7: else
8: πo ← πn

9: end if
10: end while
11: Output πn and W n

Notice that the convergence of Algorithm 2 is guaranteed
as this is a traditional discounted MDP problem with a fixed
discounted factor [30]. In addition, the algorithm terminates in
polynomial time, which is much faster than Algorithm 1. In all
of our simulations, the approximated algorithm converges in
less than ten rounds with the resulting revenue loss less than
1% when the discounted factor γ is 0.01. We provide further
discussions on this through simulations in Section VII.

VII. SIMULATION RESULTS

We evaluate the efficiency of the proposed approach through
simulations. We consider a SVC multicasting service over a
WiMAX network. The wireless system parameters follow the

TABLE I
TRANSMISSION THROUGHPUT

TABLE II
USER SPECIFICATIONS

WiMAX standard, in which 7 level of MCSs are chosen and
given in Table I [2]. Then, let each MCS’s lowest required
signal to noise and interference ratio (SINR) be quantized to
seven levels G = {1,2,3,4,5,6,7}. A user with the channel
quality g ∈ G can receive data streams transmitted by up to g-th
MCS. In all simulations, we assume g is equally, independently,
and randomly chosen from these seven levels in every time slot.
Then, the transmission time of a specific data stream will be the
function of the channel quality. The reason that we model the
transmission time as a function of the channel quality is due to
the fact that when the channel quality decreases, the supported
MCS and the corresponding data rate decreases, which suggests
a longer transmission time for the same data stream. Let the data
rates offered by the MCSs be b1 ∼ b7, where the exact values
are given in Table I. A data stream with a bit-rate of B requires
B/bm time to transmit at each slot if MCS m is chosen.

We simulate a SVC multicasting server which provides
two videos, MOBCAL and STOCKHOLM, recorded by SVT
Sveriges Television AB [31]. We use JSVM reference software
[32] to encode each video into a three-layer spatial-scaled
H.264 SVC video stream. The cumulative bit-rates (CBR),
resolutions, quantization parameters (QP), and peak-signal-to-
noise-ratio (PSNR) of each encoded video with different layers
can be found in Table III.

The server can serve up to N users, while the total available
service time per second is a ratio between 0% and 100%. There
are four types of users with difference preferences on videos
and different computation capabilities, which are specified in
Table II. The user’s valuations on layers and videos are shown
in Table III. Finally, the user arrival and departure parameters
are set to be 0.04 and 0.01.

The resource allocation rule D , which determines the ap-
plied MCS {g j,k} in each state, is maximizing the expected
overall valuation given the current demands of videos and
corresponding layers from the users. The optimal solution is
derived through exhaustive search in the simulations. Notice
that most approach to the snapshot-based optimization problem
in the literature is applicable to our system.

We evaluate the system efficiency through two performance
metrics: average social welfare, which is the total users’ val-
uations on the service, and average revenue of the proposed
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TABLE III
VIDEO SPECIFICATIONS

SVC multicasting system. For the social welfare performance,
we compare two policies: revenue-maximized policy and free
subscription policy. The revenue-maximized policy is given by
Algorithm 1 with ε = 0.0001. The free subscription policy is
the solution to (7) and (9) without payment, i.e., Pe

j,k = Pj,k =
0, ∀ j,k. Free subscription represents the case that all users are
free to subscribe any video without any payment. By comparing
these two policies, we can evaluate the efficiency loss when no
pricing scheme is applied.

For the performance of the average revenue, we compare
four pricing schemes: optimal one-time charge pricing, opti-
mal per-slot charge pricing, maximum fixed entrance fee, and
differentiate price. The first two schemes are the proposed
pricing schemes as discussed in Section VI, while the third
one is the pricing scheme with a fixed entrance fee, which
is widely adopted in current video subscription services. In
the simulation, the entrance fee for the maximum fixed en-
trance fee scheme is chosen as Pe = mins,t,π(s,t) �=(0,0)W

indv(s+
eπ(s,t),π(s, t)), where W indv is the expected reward under the
free subscription policy. In the differentiate price scheme, we
provide differentiated price of each layer and each video in the
system. The exact price of a video j up to layer k is determined
by the minimum expected utility a subscriber may receive from
subscribing such a video in free subscription scheme. This
promises that the users still have a non-negative incentive to
subscribe the video under this scheme.

We first study how the server capacity influences the social
welfare and the revenue by adjusting the server capacity N from
4 to 14 while keeping other settings unchanged. The results are
shown in Fig. 3.

From Fig. 3(a), we can see that the proposed revenue-
maximized policy achieves higher average social welfare than
the free subscription policy under all server capacities. This
result verifies that there will be an efficiency loss if no pricing
scheme is applied. Notice that under both policies the social
welfare per capacity decreases with the expansion of the server
capacity. This is due to the negative network externality effect
in this system. When the server capacity increases, there will
be more users with different demands simultaneously, which
means more multicasting groups simultaneously. Given the
fixed amount of service time ratio, each multicasting group
receives less service time. This generally impairs all users’
utilities in this system and therefore reduces the social welfare
per user.

From Fig. 3(b), we can see that both optimal per-slot charge
pricing and one-time charge pricing result in the same revenue

Fig. 3. System performance under different server capacity. (a) Social welfare
per user. (b) Revenue per user.

under all scenarios, which verifies our conclusion in Theorem 2.
Moreover, the revenue under both optimal pricing schemes is
significantly higher than the ones under fixed entranced fee and
differentiate price schemes. The later ones lose a large amount
of revenue from users with higher valuations on the service. We
also observe that differentiate price scheme provides a higher
revenue than the fixed-entrance fee scheme since it utilizes the
differentiated interests of subscribers on the videos. A more
popular, high-quality, and high-value video or layer will be
priced with a higher price in the differentiate price scheme.
Still, the achieved revenue is still lower than the ones under
optimal per-slot charge pricing and optimal one-time charge
pricing schemes. Nevertheless, both optimal pricing schemes
have lower revenue per capacity when the server capacity
expands. The negative network externality in this system also
has a negative effect on the revenue.

Then, we investigate how the amount of service time affects
the efficiency of the SVC multicasting system under different
policies. We control the service time ratio in the system from
0% to 100% with other settings unchanged. The simulations
results are shown in Fig. 4.
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Fig. 4. System performance under different available service time ratio.
(a) Total social welfare. (b) Total revenue.

From Fig. 4(a), we observe that the revenue-maximized
policy always achieves better performance than the free sub-
scription policy. For the performance of the average revenue
shown in Fig. 4(b), we again observe that both optimal pricing
schemes have higher revenue than other two schemes. Notice
that the revenues under fixed entrance fee and differentiate
price schemes do not always increase when the service time
ratio increases. This phenomenon comes from the fact that the
optimal resource allocation problem in (1) is nonlinear. When
the service time increases, it is possible that some streams
eventually get less resource in order to improve the transmission
quality of other streams along with the increased resource under
the optimal allocation. In such a case, the fixed entrance fee
scheme has a lower revenue since the price under this scheme
is constrained by the video stream with lowest expected reward,
which is also the case of differentiate price scheme. Neverthe-
less, the proposed pricing schemes are resistant to this effect
since the corresponding expected revenues are equal to the
overall social welfare, which is maximized and nondecreasing

with increased service time when the optimal solution in (1) is
applied.

Finally, we evaluate the convergence speed and solution
quality of the proposed γ-optimal approximate algorithm. We
set the maximum number of users as 8 and the service time
ratio as 10% with other settings unchanged. Then, we control
the discounted factor γ in Algorithm 2 from 0.1 to 0.001, and
compare it with the ε-optimal solution derived in Algorithm 1
with ε = 0.00001. The results are in Table IV.

We observe that when the discounted factor γ decreases, the
resulting expected revenue with Algorithm 2 is closer to the op-
timal one from Algorithm 1. When γ is 0.01, there is only 0.01%
revenue loss from Algorithm 2. When γ decreases to 0.001, the
derived policy is the same as the one from Algorithm 1, and the
expected revenue is equal under both algorithms. In addition,
the convergence round never exceeds 5 under any simulated
γ. In contrasts, Algorithm 1 requires 1080 rounds to converge.
We conclude that the proposed γ-optimal algorithm provides
efficient approximate solutions to the revenue-maximization
problem with much less computational complexity.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a novel framework to study a
general stochastic SVC multicasting system. This framework
supports stochastic user arrival and heterogeneous user pref-
erences. It is compatible to existing resource allocation algo-
rithms in the literature. A subscription-based payment system
was studied in this framework for exploring the economic value
of the system with rational users. The responses of selfish users
under two pricing schemes, one-time charge scheme and per-
slot charge scheme, were discussed. The equilibrium conditions
were derived as the constraints of the corresponding revenue
optimization problem for the service provider. We theoretically
proved that both pricing schemes reach the same optimal rev-
enue under all policies, and the optimal pricing strategies and
policies which maximize the expected revenue of the system
can be efficiently derived by reducing the M-MDP problem
to a traditional average-reward MDP problem. Moreover, we
showed that the revenue-maximized policy is a socially-optimal
policy, which means that the proposed optimal policy also
maximizes the social welfare.

The resource allocation rule we proposed in (1) is considered
as the expectation on the applied MCS in each data stream
when a state s is given and the channel distribution f (g) is
expected, while the real channel quality is unknown. In the
operating stage, the applied MCSs on each stream should
depend on the real channel quality each subscriber experienced
according to the instantaneous feedback. The original resource
allocation rule in (1) is considered as an approximate rule to the
one applied in the operating stage. A more accurate resource
allocation rule with instantaneous channel quality as input is
also possible by including the lowest channel quality experi-
enced by subscribers in each data stream in the state s. The
corresponding state transition probability should also be refined
according to the channel quality distribution f (g). Neverthe-
less, such a model will significantly increase the complexity
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TABLE IV
EXPECTED REVENUE UNDER DIFFERENT DISCOUNTED FACTOR γ

of the proposed framework and will be difficult to address all
the concerns within the page limitation.

Readers may also notice that the number of states |S| grows
exponentially when the server capacity N grows. This may
bring some concerns on the computation complexity when the
server expands. Nevertheless, there are several approximate
methods we may apply in the proposed model to reduce the
complexity. One method is considering the server loading in
blocks instead of in exact numbers when defining the states.
That is, the server loading range 1 N is segmented into K blocks.
Through this approximation, we reduce the complexity to the
desired degree.
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