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Abstract—Agents in networks often encounter circumstances
requiring them to make decisions. Nevertheless, the effectiveness
of the decisions may be uncertain due to the unknown system
state and the uncontrollable externality. The uncertainty can
be eliminated through learning from information sources, such
as user-generated contents or revealed actions. Nevertheless,
the user-generated contents could be untrustworthy since other
agents may maliciously create misleading contents for their
selfish interests. The passively-revealed actions are potentially
more trustworthy and also easier to be gathered through simple
observations. In this paper, we propose a new stochastic game-
theoretic framework, Hidden Chinese Restaurant Game (H-
CRG), to utilize the passively-revealed actions in stochastic social
learning process. We propose Grand Information Extraction, a
novel Bayesian belief extraction process, to extract the belief
on the hidden information directly from the observed actions.
We utilize the coupling relation between belief and policy to
transform the original continuous belief state Markov Decision
Process (MDP) into a discrete-state MDP. The optimal policy is
then analyzed in both centralized and game-theoretic approaches.
We demonstrate how the proposed H-CRG can be applied to
the channel access problem in cognitive radio networks. We
then conduct data-driven simulations using the CRAWDAD
Dartmouth campus WLAN trace. The simulation results show
that the equilibrium strategy derived in H-CRG provides higher
expected utilities for new users and maintains a reasonable high
social welfare comparing with other candidate strategies.

I. INTRODUCTION

Agents in networks often encounter circumstances requiring
them to make decisions. For examples, they decide which
smartphone to buy when the last one is broken, the restaurant
to have a meal when feeling hungry, or the music to listen
when feeling lonely. Their choices affect their utility, or their
measurement of their enjoyments on the outcome. A rational
agent should seek the best decisions in order to maximize their
utility given the potential influences of certain choices. Never-
theless, sometimes the influence of the choices is uncertain due
to 1) unknown parameters such as the quality of a meal, and
2) the external factors such as the unfamiliar crowd within the
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same restaurant. A learning process is necessary for rational
agents to acquire the knowledge of those uncertain parameters
and external factors in order to make the right decisions.

Social learning is a learning technique which utilizes the
information revealed or shared in a network to acquire certain
knowledge. A typical example is choosing the smartphone on
the market from dozens of choices. Customers usually do not
have enough knowledge, such as the quality and usability of
the smartphones, to make the right choice. One may construct
the knowledge by learning from advertisements, her own expe-
rience from previous purchases, reviews or discussions shared
in social networks, or some statistics on the sold quantity of
each smartphone to date. All the gathered information helps
the agent to construct the necessary knowledge, due to which
the accuracy of the agent’s decision can be enhanced. The
information generated or revealed by other agents is shared
through the links constructed by the social relation. Since each
agent may have different social relations with others and make
decisions at different time, the information one agent received
may be different from others.

Chinese Restaurant Game [1], [2] is a game-theoretic frame-
work for modeling social learning process in a system with
network externality, i.e., the decisions of users affect each
other. Let us consider a Chinese restaurant with multiple
tables in different sizes, where customers arrive and request
seats from these tables. Customers may prefer bigger space
for a comfortable dining experience, or more companies for
chatting. In either case, a customer’s dining experience is
influenced by other customers who share the same table with
him, which is a kind of network externality. The goal of
Chinese Restaurant Game is to understand how rational agents
choose the tables wisely to enhance the dining experience, i.e.
to maximize their utilities. The social learning process is in-
troduced in sequential Chinese restaurant game [2], where the
table sizes are unknown to the customers. The customers may
learn the sizes with signals, either received by oneself, revealed
by others, or both. In such a setting, rational customers learn
the table sizes from the signals through social learning.

Dynamic Chinese Restaurant Game (D-CRG) is proposed to
study how a user in a dynamic scenario acquires the knowledge
to make the optimal decision through social learning [3]. In a
dynamic system, a rational agent should not only consider the
utility she received at a moment but also the probabilistic tran-
sitions of the system state and the influence of other agents. A
Multi-dimensional Markov Decision Process (M-MDP) model
[4] is proposed to integrate the social learning process into the
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optimal decision process from a game-theoretic perspective.
The network externality may bring performance degradation
when the competition between agents is fierce, but the system
still can reach social welfare optimal if the optimal pricing
strategy is imposed [5].

The information revealed by agents and utilized by so-
cial learning could be user-generated contents or passively-
revealed information. User-generated contents, such as public
reviews, comments and ratings on certain restaurants, could
be easily identified and analyzed to understand the knowledge
behind the information. The knowledge behind the generated
content is implicit since such information can be treated as
signals generated by the system and reported by the agent,
conditioning on some parameters known or unknown to the
agents. A simple approach is to assume that these signals are
described by some probabilistic distributions conditioning on
the values of some unknown parameters [2]. Agents can then
construct their belief on the unknown parameters based on
their prior knowledge on the characteristics of the signals. The
signaling approach is useful for simple systematic parameters
and has been utilized by Chinese Restaurant Game, including
the review rating on Yelp to the quality of services [6] and
the sensing results to the primary user activities in cognitive
radio networks [2], [3].

Nevertheless, the user-generated contents could be untrust-
worthy when agents have selfish interests. Agents who act
rationally may choose to generate forged contents for their
own benefits. Such contents can mislead other agents to have
false beliefs on unknown parameters and therefore they make
improper decisions. For instance, a local customer may know
the best restaurants in town, but he/she may never reveal the
list to others in fear that the restaurants may become too
popular and she need to wait for weeks to have seats reserved.
Moreover, she may choose to promote other restaurants with
lower quality to lower the risk. In addition, even the providers,
such as restaurant owners or movie makers, have the incentive
to generate forged contents to manipulate the decisions of
customers when they are in competitions with others. For
instance, some restaurants will invite popular bloggers or
critics to provide positive reviews or rating on the website with
some discounts as rewards. This biased contents will mislead
customers and therefore are not trustworthy. In cognitive radio
networks, for another instance, cooperative sensing utilizes
the sensing results gathered from multiple secondary users to
increase the accuracy of the primary user activity detection.
Nevertheless, a rational secondary user may choose to share a
forged sensing results to mislead other users so she can access
the unoccupied channels solely. In both cases, agents who
hold the knowledge can decide to release contents that contain
misleading information to confuse other agents. Additionally,
the cost of forging contents is very low, since such behaviors
require little effort and do not make damages to the agent’s
own utility. It requires a significant amount of costs and efforts,
such as additional punishment or reputation system, to guaran-
tee the trustworthiness of the contents. Given that agents may
generate forged contents, agents cannot collaboratively gather
the true knowledge and more likely make wrong decisions.
In sum, social learning will be ineffective if we rely on user-

generated contents as the sole information source.
The passively-revealed actions, such as the number of

customers in certain restaurants or number of secondary users
accessing certain channels, also reveal useful information but
require more efforts to mine the knowledge behind. The
knowledge behind such information is more explicit since they
are related to not only the systematic parameters, but also the
actions of some or all agents in the system. For instance, a high
number of visits to a certain restaurant may suggest a high-
quality service, a bad service with a short-term promotion,
or the shutdown of all other restaurants. One must not only
observe the explicit information but also consider the reasons
behind the collaborative actions.

Nevertheless, it is easier for an agent to gather passively-
revealed actions compared to the user-generated contents. For
instance, one can easily observe the number of customers
staying in the restaurant, but may not collect their opinions on
the restaurant. For a cognitive radio network, one can detect
whether a channel is accessed by another agent passively, but
not the sensing result another agent holds unless an informa-
tion exchange protocol and a control channel are established.
Due to the ease to collect the passively-revealed actions, this
type of information is commonly gathered in the real word,
such as Check-ins and Likes in Facebook, Daily Visit Numbers
of theme parks, Page Views of websites, Number of Access
to base stations/networks, etc.

Although both user-generated contents and passively-
revealed actions potentially could be altered by selfish agents
according to their own benefits and interests, the passively-
revealed actions are more reliable and trustworthy if we can
correctly understand the logic behind their actions. In addition,
it usually costs more to cheat in the revealed actions since
an agent must select a sub-optimal action to reveal a forged
information which adversely damages her own utility. For
instance, one can only mislead other agents to choose different
restaurant by actually choosing another restaurant she doesn’t
prefer to. Such a decision incurs a loss to her own utility, and
therefore reduces her incentive for such a cheating behavior.

In light of these advantages, we propose a new stochastic
game-theoretic framework to utilize the passively-revealed
actions instead of user-generated contents as the main informa-
tion source in social learning process. The proposed Hidden
Chinese Restaurant Game (H-CRG) allows customers to
observe the actions of other customers within a limited ob-
servation space to determine their action and belief on hidden
information in a stochastic system. Two types of information
may be observable: history information, which is a series of
actions applied by previous customers within a limited time;
and grouping information, which is the number of customers
at each table. The observable information can be either one or
both, depending on the network we are modeling.

Based on the stochastic state transition structure and in-
spired by the Bayesian learning in Chinese Restaurant Game,
we propose Grand Information Extraction, a novel Bayesian
belief extraction process to directly extract the belief on the
hidden information from the observed actions. The proposed
process is universal for any Markovian system with hidden
information (state). The extracted belief is conditioned on
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the policy applied by customers and may also influence
their actions. The coupling relation is utilized to transform
the original continuous-state formulation found in traditional
Partial-Observed MDP (POMDP) into a discrete-state pseudo
MDP, which greatly reduces the complexity of the problem.

The optimal policy is then analyzed in both the centralized
approach and the game-theoretic approach. We propose a
value-iteration solution to find the centralized policy in the
centralized approach. Inspired by the centralized approach and
D-CRG [3], we then propose a value-iteration solution to
derive the Nash equilibrium in the H-CRG. We notice that the
pure-strategy Nash equilibrium may not exist in the H-CRG.
Specifically, the Information Damping phenomenon may rise
in a certain H-CRG in which customers synchronously switch
from one policy to another due to the information loss in the
observed action. The phenomenon is similar to Information
Cascade [7], which is commonly discussed in traditional
social learning literature. Fortunately, the existence of naive
customers, such as legacy network devices in communication
networks or myopic agents in social networks, can help ensure
the existence of pure-strategy Nash equilibrium.

We demonstrate how the proposed H-CRG can be applied to
the channel access problem in cognitive radio networks. We
then conduct data-driven simulations using the CRAWDAD
Dartmouth campus WLAN trace [8], [9]. The simulation
results show that the equilibrium strategy derived in H-CRG
provides higher expected utilities for new customers and
maintains a reasonable high social welfare compared with
other candidate strategies.

The main contributions of this paper are as follows:
1) Customers are not required to reveal their signals to

other customers after their decisions. Only their actions
are passively observed. The overhead in signaling ex-
changes therefore can be greatly reduced. In addition,
the potential threat of untruthful signal reports in previ-
ous works is eliminated entirely.

2) The belief is directly extracted from the observed ac-
tions using the proposed Grand Information Extraction
process instead of storing in a separate belief state.
Specifically, we observe that the exact belief on the
action and the action applied by rational agents in fact
form a coupling relation. This motivates us to propose
Grand Information Extraction to utilize the stationary
probability distribution of states to calculate the proba-
bility that certain state is reached. Combining the Grand
Information Extraction with the action-based M-MDP,
we perform the belief update based on the policy applied
by other agents and no longer need to record the belief
state in the system state. The continuous belief space
issue in either D-CRG and POMDP can thus be avoided.
To the best of our knowledge, we are the first group to
point out this relation and utilize this to design the new
M-MDP model to inherently capture the belief update
process without the need of separate belief state or a
fixed belief update equation.

3) We provide both centralized solution and game-theoretic
solutions. We analyze the H-CRG from two perspec-
tives: centralized approach which maximizes the social

welfare, and game-theoretic approach which maximizes
each individual’s utility. We illustrate the relation of
both approaches under this framework and propose
corresponding algorithms to derive the solutions.

II. RELATED WORKS

Social learning is one of the main research focuses in both
economy and network science. Users in a social network
may not have clear understanding on the current state of
the network. They therefore may actively share their private
information or passively observe the actions applied by others
to improve their knowledge on the state. Most existing liter-
atures studied how agents reach a correct consensus through
social learning [7], [10]–[12]. Their studies limit to the sce-
nario that no network externality exists, i.e., the choice of
one agent will not influence the payoff received by other
agents. This assumption helps them to focus on the belief
formation but limits the applications. Several attempts have
been made to extend the traditional social learning framework
to include network externality [13], [14]. The applications of
these models are still limited due to the assumptions they rely
on, such as binary state space, no decision order information,
and positive network externality only. Some studies on social
learning in stochastic system can be found in [15], [16].
They focus on the equilibrium learning strategy concerning
the stochastic characteristic of hidden state. Nevertheless, none
of these consider the network externality and dynamic in
agent population. To the best of our knowledge, no analysis
on action-based social learning in stochastic networks with
network externality has been conducted.

The proposed framework is similar with the Partially Ob-
servable Markov Decision Process (POMDP) model, which
is a generalization of Markov Decision Process with hidden
states. In POMDP model, a centralized user who decides the
action cannot directly observe the true state of the system.
Some observations, which is related to the true state, can be
derived by the agent as a hint of the true underlying state. The
uncertainty and the knowledge of the true state are captured
by the belief, the probability distribution of the true state. The
goal of the agent is to find the optimal policy to control the
system in order to maximize the long-term reward. It has been
shown that POMDP can be formulated as a belief MDP in
which the belief is captured by additional continuous belief
states. The optimal policy then can be derived using point-
based methods [17], [18]. The point-based methods are based
on the observations that the optimal expected value function
can be formulated as a combination of the value function on
a proper set of belief vectors in which the optimal action
in each segment can be derived. The optimal policy can be
derived then. It is non-trivial to find the feasible belief vectors
for exact optimal policy. Approximated algorithms to find
suboptimal but tractable belief vectors are therefore proposed
[18]. Another approach is to control the POMDP system
through finite-state controllers [19]. A feasible control policy
can be formulated as a policy graph to describe the action to
apply when certain observations is received, without the need
of additional belief state [20]. The solution space can then be
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reduced to the policy space described by the graph. However,
the size of policy graph may be intractable if we would like
to guarantee the optimality of the solution. Nevertheless, the
POMDP model is different from the proposed H-CRG in two
aspects: the number of objective functions, and the complexity
of belief update process. In traditional MDP or POMDP
problems, we only have one expected value function to serve
as the only objective function to maximize. In the proposed
H-CRG framework, on the other hand, we are dealing with
multiple objective functions, or the utilities of agents entering
the system at different states and choosing different tables.
As we have illustrated in previous works [4], [5], this major
difference imposes a serious challenge to solve the Nash equi-
librium in the proposed game since these objective functions
will affect each other in a non-linear fashion. In addition, the
belief update process, as we will illustrated in Section IV-B,
is no longer Markovian since the updated belief depends on
not only the current state, prior belief, current action, but
also the action of other agents in previous and future time
slots. Therefore, all existing algorithms, including point-based
method and policy graph, cannot be directly applied to derive
the Nash equilibrium. This motivates us to seek an alternative
approach to handle this problem.

This work is different from our previous Chinese Restaurant
game [1]–[3] in the following two aspects. First, customers
are not required to reveal their signals to other customers
after their decisions. Only their actions are passively observed.
The overhead in signaling exchanges therefore can be greatly
reduced. In addition, the potential threat of untruthful signal
reports in previous works is eliminated entirely. Notice that
this is not a trivial extension since the information contained
in the action is more difficult to be extracted. We need to know
the subjective intention of the agents who perform the actions,
which may be influenced by the actions of other agents due
to the externality in the network.

Second, the belief is directly extracted from the observed
actions using the proposed Grand Information Extraction pro-
cess instead of storing in a separate belief state. This belief
extraction process is universal for any Markovian system with
hidden information. Specifically, we observe that the exact
belief on the action and the action applied by rational agents
in fact form a coupling relation. This relation motivates us to
propose Grand Information Extraction to utilize the stationary
probability distribution of states when the policy is given to
calculate the probability that certain state is reached. Then, the
conditional probability of the hidden state given certain state
is observed can be derived through Bayesian equations. This
extraction process helps link the belief directly to the policy.
Combining the Grand Information Extraction with the action-
based M-MDP, we perform the Bayesian belief update based
on the policy applied by other agents and no longer need to
record the belief state in the system state. We then can find
the Nash equilibrium in pure policy space. The continuous
belief space issue in both D-CRG and POMDP can thus be
avoided. To the best of our knowledge, we are the first group
to point out this relation, connect all the parts in the process,
and utilize this to design the new M-MDP model to inherently
capture the belief update process without the need of separate

belief state or a fixed belief update equation.
Finally, cooperative sensing in cognitive radio networks is

an important applications of proposed framework. In cognitive
radio network, secondary users are required to access the
channels only if they are not accessed by primary users.
Nevertheless, there is no direct communication between pri-
mary and secondary users. Secondary users should detect
the activities of primary users through channel sensing in
order to avoid interference. Cooperative sensing is proposed
to improve the sensing accuracy by allowing secondary users
share their sensing results to make decisions collaboratively
[21]. Various signaling exchange schemes have been proposed
including centralized or distributed mode and soft or hard
collaborative decision [22]. In general, higher accuracy, such
as soft decision mode in centralized sharing scheme, comes
with longer latency and larger overheads due to more signal
exchanges. The cheating behavior in cooperative sensing, or
Byzantine attacks, gains more attentions in recent years [23].
Secondary users may intentionally report false sensing results
to others in order to gain advantages in channel access.
Various defense mechanisms have been proposed based on
the statistic difference in false reports from other normal
reports. Some additional penalties may be applied in utility-
based approach to persuade rational users from launching
attacks. Most proposed designs introduce further overheads in
the cooperative sensing system either in implementation cost
or accuracy loss. The key overheads in cooperative sensing
comes from the cost of sharing sensing results among members
through signal exchanges. In this paper, we propose to use
H-CRG to completely eliminate the need of signal exchange
process while maintaining the sensing accuracy. To best of our
knowledge, we are the first one to propose an exchange-free
protocol for cooperative sensing.

In the rest part of the paper, we first introduce the system
model in Section III and the game structure of H-CRG in IV.
Then we introduce the novel Bayesian belief extraction process
called Grand Information Extraction to extract the knowledge
from the observed information in Section IV-B. Based on
the belief, we explain how rational agents can make use of
the knowledge to make decisions and how the equilibrium is
defined in Section IV-C. Two solutions based on centralized
and game-theoretic approaches are provided in Section V. We
then demonstrate how the proposed H-CRG can be applied
to real world problems through applying H-CRG in channel
access in cognitive radio networks in Section VI. Finally, we
draw the conclusions in Section VII.

III. SYSTEM MODELS

Let us consider a Chinese restaurant with M tables. We
assume that the restaurant allows at most N customers to enter,
where N serves as the capacity constraint of the restaurant. We
consider a time-slotted system where customers may arrive at
and leave the system following a Bernoulli process. That is,
customers arrive at the restaurant with probability λ and leave
the restaurant with probability µ. We assume that the time slot
is very short so there is at most one customer arrives or departs
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within a slot 1. At each arrival, the customer requests for a seat
in the restaurant by choosing one table. She may or may not
know the number of customers at each table. As long as she
chooses a table, she will stay seated at the chosen table until
departure. A customer may not choose to enter the restaurant
when 1) the restaurant is full and therefore the door is closed2,
or 2) the maximum expected utility if she enters the restaurant
is negative. The latter case means that a customer may find that
leaving the process without entering the restaurant could be a
more valuable choice. For instance, the restaurant may offer
poor-quality meals that the customer decides not to give it a
try even if there are seats available. Let x[t] ∈ {0, 1, ...,M} be
the decision of the customer arrives at time t, where x[t] = 0
means that the customer chooses not to enter the restaurant
or there is no customer arrives at time t. Notice that this also
reflects the fact that these two events make no differences to
agents who can only observe the revealed actions.

The size of a table has a positive influence on the dining
experience of the customers, where we assume that a larger
table is welcomed by any customer as long as the number of
customers choosing the table remains the same. Some tables
could be smaller or even unavailable when reserved by high-
priority customers. The exact sizes of the tables are controlled
by the restaurant state θ ∈ Θ = {1, 2, 3, ...}, where the size
of each table x is given by Rx(θ). Nevertheless, the sizes of
the tables are unknown to the customers before she actually
enters the restaurant. That is, the restaurant state θ is given
at the beginning of the game in advance, following a prior
distribution Pr(θ = k), but unknown to the customers. Given
that θ has a definite influence on the dining experience of
customers, it represents the critical knowledge the customers
need to acquire in the game.

A. Customers: Naive and Rational

We consider two kind of customers: naive customers and ra-
tional customers. Naive customers represent the legacy agents
or devices whose the actions are predetermined and fixed
without the strategic decision making capability. In cognitive
radio networks, for instance, there may exist some legacy
secondary devices who only have limited sensing capability
without collaboration with other devices. Their channel access
actions are more predictable. These naive customers may have
either positive or negative impacts on the overall system per-
formance and service quality experienced by other customers.

Rational customers, on the other hand, select the tables
strategically. Their sole purpose is to maximize their expected
utility. The utility of the customers is determined by two
factors: the number of customers seated in the same table

1Notice that this assumption can be easily relaxed in our model by
expanding the state transition probability matrix to include multiple arrival
and departure cases. We believe all methods and conclusions we made in this
paper still hold with this assumption relaxed.

2It is also possible to offer an option for the customers to wait at outside
of the restaurant until it opens again. Specifically, we may let P be the
maximum number of customers waiting outside of the restaurant when the
restaurant is full, and each customer enters the restaurant sequentially when
some customers leave. This can be modeled as a FIFO queue and can be
integrated into the framework easily by properly adjusting the state transition
probabilities.

and the size of the table. Specifically, let nx[t] be the num-
ber of customers choosing table x at time t. The n[t] =
(n1[t], n2[t], ..., nM [t]) denotes the grouping of customers at
time t, i.e., the number of customers choosing each table at
time t. Then, the immediate utility of a customer choosing
table x at time t is u(Rx(θ), nx[t]), where Rx(θ) is the size
of table x. The influence of the number of customers, that
is, network externality, could be arbitrary and is captured by
∂u(r,n)
∂n . The externality is positive when ∂u(r,n)

∂n > 0, negative
when ∂u(r,n)

∂n < 0, and is zero when ∂u(r,n)
∂n = 0 for all n.

Finally, we assume that a larger table is welcomed by any
customer, that is, ∂u(r,n)

∂r ≤ 0.

B. Observable Information

The knowledge of the unknown restaurant state can be
extracted from the information collected by the customer.
The basic information each customer acquires is a private
signal she receives at the time of arrival. We assume that
the signal s ∈ S is generated following a probability density
function f(s|θ). The signal is informative, that is, there exists
a non-zero correlation between restaurant state θ and signal s.
Also, the signal is private, which means that other customers
will not know the signal one received unless she explicitly
reveals. Finally, the generated signals are independent when
conditioning on the true restaurant state θ.

Despite the private signal, the information one customer
may collect from others are the observed passively-revealed
actions. Such information comes in two different types, group-
ing information and history information, as follows:

Grouping Information: The current grouping n[t] of cus-
tomers at time t. It represents the number of customers
choosing each table at the current time. This observation
roughly captures the consensus among all customers in the
system. Nevertheless, the decision orders of these customers
are not captured in grouping information. In addition, this kind
of observation could be very handy in some systems but too
costly to maintain or derive. For instance, one customer may
easily see the number of customers waiting to be served at
each restaurant by simple counting, but she will not know
the number of customers subscribing to each cellular service
unless the providers explicitly announce.

History Information: The history of actions revealed by
customers selecting tables at time t − H ,t − H + 1,...,t − 1.
Here we assume that a customer may observe and record the
action revealed by the previous customers up to H slots before
she makes decisions. The history information emphasizes the
decision orders of customers and potential influences of the
former actions to the later customers. History information
is easier to be accessed in some networks and therefore
commonly seen in the literature. Notice that when H goes
to infinity, history information will become grouping informa-
tion plus the decision order information. Nevertheless, H is
usually assumed to be finite to reflect the limited observation
capability one customer may have.

We assume that the only information revealed by one
customer is the table she selected. That is, customers will
not contribute user-generated contents such as signals, but
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Fig. 1. Hidden Chinese Restaurant Game Framework

only reveal their actions passively. This design eliminates the
scenario that a customer can untruthfully report the private
signals. Formally speaking, the potential information space for
a customer choosing a table at time t is as follows:

(n[t], x[t−H], x[t−H+1], ..., x[t−1], s[t]) = (n[t],h[t], s[t]),
(1)

where h[t] denotes the history of information (actions) re-
vealed by customers from time t−H to t− 1.

The rational customers, who are of our main interests, aim to
maximize their long-term expected utility in the system, that
is, to choose the table that maximizes their expected utility
considering the unknown restaurant state and the potential
network externality. The main challenges faced by the rational
customers are two folds: 1) how to extract the information
from the observed actions in order to estimate the unknown
information such as restaurant state? 2) how to predict the
influence of network externality in the stochastic system given
there exist some naive customers?

IV. HIDDEN CHINESE RESTAURANT GAME

We formulate the table selection problem as a hidden Chi-
nese Restaurant Game (H-CRG). The H-CRG is a stochastic
game with an indeterministic number of players. The arrival
and departure of the players (customers) are assumed to satisfy
the Bernoulli distributions. A customer can choose the table
to be seated or leave immediately, but she cannot change her
table afterward. Her utility depends on the table she selected
and the states of the system in the duration of her stay.

An illustration of H-CRG framework is shown in Fig. 1.
Briefly speaking, we propose Grand Information Extraction
process in the H-CRG to extract the belief on the hidden
state from the observed information. The process requires
inputs from the policy applied by rational customers and
corresponding state transition probability. Rational customers
then estimate the expected utilities with the belief extracted by
the process. The updated estimation on the expected utilities
will help them to make better decisions and update the rational
policy accordingly. The key in H-CRG is to find the policy
which maximizes the expected utility for each customer.

The system state describes the current situation of the
system, including the restaurant state, grouping information,
history of actions, and the generated signal. Given the current
state, one may determine the current utility of a customer
completely. Nevertheless, the state will transit stochastically
following a state transition probability function, which we will
describe later. Formally speaking, the system state of H-CRG
at time t is denoted as follows:

I[t] = {n[t],h[t], s[t], θ}. (2)

The information in the state I is differentiated into two
types: observed state Io and hidden state Ih. The observed
state is the information that can be readily observed by
the customers when they arrive. The hidden state represents
the information which can only be derived through belief
estimations using observed states as inputs. Notice that both
observed state and hidden state may have influences on the
utility of each customer.

Whether the information is observable or hidden depends
on the system we are formulating with. We assume that the
restaurant state θ is always hidden, since we assume that the
value is given in prior but unknown to the customers. On
the other hand, the signal s[t] is always observable since we
assume that each customer receives at least a private signal.

For the other two pieces of information, grouping infor-
mation and history information, if observable or not depends
on the system settings. For instance, if we are modeling
a restaurant selection problem in a food court, it is safe
to assume that each customer can observe both grouping
information and history information since one can easily see
the number of customers waiting in lines and how these lines
are formed. In this case, both grouping and history pieces
of information are observable and therefore belong to the
observed state. On the other hand, if we are modeling a
channel selection game in a cognitive radio network, it may
be impractical to assume that each secondary user can observe
the grouping information since it requires a third-party base
station to record and broadcast such information. Nevertheless,
it could be safe to assume that each secondary user can observe
the choices of other users in channel access when they arrive
since it can be done by channel monitoring. In such a case,
the grouping information should belong to the hidden state,
while the history information belongs to the observed state.

A policy describes the table selection strategy a customer
applies in H-CRG given the information she observed as
inputs. As we mentioned, a customer can only observe the
information in the observed state. Therefore, a policy can be
defined as follows:

π(Io) ∈ A = {0, 1, ...,M},∀Io. (3)

Notice that π(Io) = 0 means that the customer chooses not to
select any of the tables and leaves the restaurant immediately
when she observes Io.

Recall that we have two kinds of customers, naive and
rational customers. We assume that a ratio ρ of customers are
rational, while others are naive customers. Naive customers
follow a naive policy to determine their actions. The naive
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TABLE I
NOTATIONS

Notation Explanation
N ,M the total customer capacity and number of tables of the restaurant

s ∈ S, θ ∈ Θ, f(s|θ) the signal, restaurant state, and p.d.f. of the signal
Rx(θ), n[t] = {n1[t], n2[t], ..., nM [t]} the table size function and the grouping information at slot t

h[t] = {h1[t], h2[t], ..., hH [t]}, H the history information and the length of history
u(R,n) the immediate utility of a customer
λ, µ the arrival and departure probability of a customer
ρ the ratio of naive customers

I[t] = {Io[t], Ih[t]} system state, observed state, and hidden state
πn(Io), πr(Io) policy followed by naive and rational customers

IoIo,πn,πr the set of system states sharing the same observed state Io

W I(I), W (Io) the expected reward conditioning on the system state and observed state
gI|Io,πn,πr the belief of state I conditioning on observed state Io

policy is fixed across the whole game. We denote the naive
policy as πn(Io).

On the other hand, the goal of a rational customer is to
maximize her long-term expected utility. When a customer
arrives at the system, she observes the system and receives the
observed state. Then, she chooses the table providing largest
long-term expected utility by considering both the network
externality n and unknown restaurant state θ. Notice that the
influence of network externality could change over time due to
departure and arrival of other customers. A rational customer
should not only consider the currently observed state but also
predict the decisions of other customers (both rational and
naive ones) in the future.

Recalling that the immediate utility of a customer choosing
table x in a given time slot t is u(Rx(θ), nx[t]). The long-term
expected utility of a customer arriving at time ta is given by

E[U(x)|Io[ta]] = (4)
∞∑
t=ta

(1− µ)(t−ta)
∑
θ∈Θ

Pr(θ|Io[ta])E[u(Rx(θ), nx[t])|Io[ta], θ].

Notice that here a customer observes Io without the knowledge
of the actual state I. It requires further efforts to estimate the
corresponding hidden state, which we will introduce later.

A rational customer should maximize her expected utility,
that is, choose the table as follows:

πr(Io) = arg max
x∈{0,1,...,M}

E[U(x)|Io],∀Io. (5)

The keys to estimate the expected utility are 1) extracting
the hidden state from the observed state, and 2) predicting the
future states conditioning on the currently observed state.

A. System State Transition

The system state transits with time. At each time slot, a new
signal will be generated conditioning on the restaurant state
θ. In addition, the observed actions in the history information
h[t] will be shifted with the action observed at time t − H
forgotten and new action observed at time t added.

The grouping information n[t], which is the key to estimate
the influences of network externality, changes when any of the
following events occurs:

1) New Customer Arrival: When a new customer arrives,
she will select the table according to either naive policy πn(Io)
or rational policy πr(Io), depending on her type. It is also
possible that the customer chooses not to enter the restaurant,
that is, πr(Io) = 0 or πn(Io), when a certain observed state
Io occurs. Additionally, the customer may be rejected by the
restaurant when the loading reaches the maximum capacity N
regardless of the table she selects. We denotes Ie,n and Ie,r
as the set of system states where naive and rational customers
will not enter the restaurant, respectively. Formally speaking,

I = {Io, Ih} ∈ Ie,{n,r} if π{n,r}(Io) = 0 or
M∑
j=1

nj = N.

(6)
For any state I 6∈ Ie,{n,r}, there exists a set of state Ia

I,π{n,r}

where every state I′ = {n′,h′, s′, θ} in the set satisfies

n′π{n,r}(Io) = nπ{n,r}(Io) + 1, n′j = nj∀j 6= π(Io),

h′ = {h2, ..., hH−1, π
{n,r}(Io)}. (7)

In other words, when a new customer arrives and chooses
a table according to the policy, the number of customers in
the corresponding table plus one, and the history information
h records this choice. Notice that there may be more than
one possible transition state in the set. For any other state
I ∈ Ie,{n,r} , the corresponding state set Ia

I,π{n,r} is empty.
2) Existing Customer Departure: When an existing cus-

tomer in the restaurant leaves, the number of customers at
the table decreases by one. Since no new customer enters the
restaurant at this moment, the history information records zero
(no observed action) at this moment. Let IdI be the set of
transition states from state I that one customer departs from
the restaurant. For every state I′ ∈ IdI , we have

∃d, n′d = nd−1, n′j = nj∀j 6= d,h′ = {h2, ..., hH−1, 0}. (8)

3) No Change: When both previous events are not oc-
curred, the grouping information remains unaltered. In such
a case, only history information and signal changes at next
time slot. We have IuI be the set of transition states from state
I that no customer arrives at or departs from the restaurant.
For every state I′ ∈ IuI , we have

n′ = n,h′ = {h2, ..., hH−1, 0}. (9)
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Given all the probability distributions we defined in Section
III and the discussions above, we can derive the state transition
probability in (10).

B. Grand Information Extraction

In order to estimate the expected utility provided by certain
tables, it is necessary to estimate the hidden state, which is
unobservable by the customer, conditioning on the observed
state. Specifically, the belief on the hidden state, i.e, the
probability distribution of the hidden state, should be derived.
This problem is similar to the belief update in Partial Observed
Markov Decision Process (POMDP) except that the belief in
POMDP is usually assumed to be an input of the policy while
the belief update process is known and given. Traditionally, the
optimal policy is derived through transforming the POMDP
into a belief MDP with a continuous state space in belief
state. The optimal policy then can be derived using value-
iteration or policy-iteration algorithms on a finite set of value
function where the expected value are formulated as a linear
combination of the value function of a proper set of belief
vectors. Nevertheless, the main disadvantage is that the expo-
nential increase in the size of belief vector set makes this ap-
proach computational intractability. Approximated algorithms
are more preferred for practicability.

We proposed a novel belief estimation method, Grand
Information Extraction, to extract the distribution of hidden
state directly from the observed state without the needs of
belief update process. The basic idea is extending the Bayesian
belief method in CRG from the signal domain to system state
domain. We utilize the stationary probability distribution of the
system states, which can be derived from the state transition
probability, to directly derive the belief on the restaurant state
θ. Conditioning on θ, we then can estimate the belief on the
hidden state accordingly. The main advantage of this process
is the possibility to formulate the system purely with discrete
state spaces without the needs of belief update process and
belief vector set. The problem can then be reduced to discrete-
space pseudo MDP problem.

We first formally defined the belief in H-CRG as follows:

gI|Io = Pr(I|Io). (11)

When the restaurant state θ = k and policy applied by
the customers are given, the state transition probability can
be derived directly through (10). Then, the stationary state
distribution of H-CRG

[
Pr(I|θ = k, πn, πr)

]
is given by:[

Pr(I|θ = k, πn, πr)
]

(12)
=
[
Pr(I′|I, θ = k, πn, πr)

] [
Pr(I|θ = k, πn, πr)

]
.

The stationary state distribution of system states I can be
derived through finding the normalized eigenvector of the
transition matrix with eigenvalue as 1.

Lemma 1. The stationary state distribution[
Pr(I|θ = k, πn, πr)

]
is unique.

Proof. It has been known that the sufficient condition to have
a unique stationary state distribution in a Markov system is
to have exactly one closed communication class in the state

transition. It can be easily seen from (10) that all states have
the positive probability to transit to the zero states with no
customer in the restaurants, no actions observed in the history,
and arbitrary signals when all customers depart from the
restaurant. This means all states will be linked to the zero
state and it is impossible to have two closed communication
class in H-CRG. Therefore, the stationary state distribution,
conditioning on the restaurant state θ = k, is unique.

The uniqueness of the stationary state distribution guar-
antees that all rational customers will reach a consensus on
the belief as long as they have the same observations and
knowledge on the state transition.

The stationary state probability Pr(I|θ = k, πn, πr) repre-
sents the probability that a customer will encounter a certain
state I when he arrives the system at any time, if the restaurant
state θ is actually k. The Bayesian belief rule then can be
applied to derive the probability of the restaurant θ as fol-
lows. Specifically, when the stationary probability distribution
Pr(I|θ, πn, πr) is derived for all θ ∈ Θ, we then can derive
the probability of the restaurant state θ as follows:

Pr(θ = k|I, πn, πr) =
Pr(I|θ = k, πn, πr)∑
k′∈Θ Pr(I|k′, πn, πr)

. (13)

Nevertheless, the above probability is conditioning on the
system state I, while the customer in fact can only observe the
observed state Io. It requires further efforts to derive the actual
belief of the customer on the hidden state. Let IoIo be the set
containing all the states sharing the same observed state Io.
The probability that one may observe certain observed state
Io conditioning on θ = k is the sum of the stationary state
probability of all states in IoIo , which is as follows:

Pr(Io|θ = k, πn, πr) =
∑
I∈Io

Io

Pr(I|θ = k, πn, πr). (14)

Then again, we can estimate the probability of the restaurant
state θ conditioning on the observed state Io following the
Bayesian rule:

Pr(θ = k|Io, πn, πr) = (15)
Pr(Io|θ = k, πn, πr)Pr(θ = k)∑

k′∈Θ Pr(I
o|θ = k′, πn, πr)Pr(θ = k′)

.

The above belief is sufficient for the case that only the
restaurant state θ is unobservable. Nevertheless, it is also
possible that the grouping information or history information
is not observable as we discussed in Section III. In such
a case, we still need to estimate the hidden information
in the hidden state. Recall the stationary state distribution[
Pr(I|θ = k, πn, πr)

]
we already derived. Conditioning on a

given θ = k, we can derive the probability of the actual system
state I conditioning on the observed state Io as follows:

Pr(I|Io, θ = k, πn, πr) =
Pr(I|θ = k, πn, πr)∑

I′∈Io
Io
Pr(I′|θ = k, πn, πr)

.

(16)
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Pr(I[t+ 1]|I[t], πn, πr) = (10)

ρλf(s[t+ 1]|θ), I[t+ 1] ∈ IaI[t],πr ;
(1− ρ)λf(s[t+ 1]|θ), I[t+ 1] ∈ IaI[t],πn ;
(nj [t])µf(s[t+ 1]|θ), I[t+ 1] ∈ IdI[t], nj [t+ 1] = nj [t]− 1;
(1− µ

∑M
j=1 nj − λ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr 6= ∅, IaI[t],πn 6= ∅;

(1− µ
∑M
j=1 nj − ρλ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr 6= ∅, IaI[t],πn = ∅;

| − |(1− µ
∑M
j=1 nj − (1− ρ)λ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr = ∅, IaI[t],πn 6= ∅;

(1− µ
∑M
j=1 nj)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr = IaI[t],πn = ∅;

0, else.

Combining (15) with (16), we can derive the belief on the
system state I conditioning on the observed state Io:

gI|Io,πn,πr = Pr(I|Io) (17)

=
∑
k∈Θ

Pr(I|Io, θ = k, πn, πr)Pr(θ = k|Io, πn, πr).

It should be noted that the belief from the proposed Grand
Information Extraction process on the state I is conditioned on
not only the observed state Io but also the policies applied by
rational and naive customers. The accuracy of the estimated
belief depends on how informative the observed actions are,
which is determined by the policies.

C. Equilibrium Conditions

In H-CRG, rational customers will seek to maximize their
long-term expected utility. Nevertheless, the expected utility
is determined by not only the current state of the system but
also the transition of the state in the future.

The state transition is determined by the choice of customers
at different states. The grouping n, for instance, is determined
by the policy applied by not only the naive customers but also
other rational customers in the future. Additionally, the belief
of a customer on the hidden state relies on the observed state,
which contains the actions of other previous customers. As
long as the actions applied by other customers change, the state
transition changes, and so is the expected utility experienced
by the customer. In sum, the belief on the hidden state and
the state transition depends on the choices of all customers,
while each customer’s choice depends on their belief on
the states. The complex interactions between customers is
therefore captured by the proposed H-CRG.

We now analyze the pure-strategy Nash equilibrium of H-
CRG. Nash equilibrium is a popular solution concept in game
theory which is used to predict the outcome of a game.
Let E[U(xIo ,x−Io)] be the expected utility of a customer
observing Io, where xIo is her choice and x−Io are the choices
of other customers at other states. The pure-strategy Nash
equilibrium of H-CRG is defined as follows:

Definition 1 (Nash Equilibrium). The Nash equilibrium, or
pure-strategy Nash equilibrium, in the proposed H-CRG is a
policy π∗ where for all Io,

E[U(x∗Io ,x
∗
−Io)] ≥ E[U(x,x∗−Io)],∀x ∈ {0, 1, 2, ...,M},

(18)

where x∗Io = π∗(Io), x∗−Io = {π∗(I′o)|I′o 6= Io}.

The expected utility in (18) can be analyzed by modeling
H-CRG as a Multi-Dimensional Markov Decision Process (M-
MDP) [4]. Let the system state I be the state and the πr(Io)
be the policy in M-MDP, we define the immediate reward as

R(I, x) = R(n,h, s, θ, x) = u(Rx(θ), nx). (19)

The expected reward of a customer choosing table x at
state I in the system can be denoted as W I(I, x) and derived
through Bellman equation. When the game reaches stationary
states, the expected reward for a customer to stay at a table
x is equal to the immediate reward she receive at the current
state plus the expected reward she will receive in the future if
she keeps staying in the restaurant. Therefore we have:

W I(I, x, πr) = R(I, x) (20)

+(1− µ)
∑
I′

Pr(I′|I, πn, πr, x)W I(I′, x, πr),∀I, x.

Nevertheless, the state transition probability
Pr(I′|I, πn, πr, x) we denoted here is different from
(10) since it is conditioned on the fact that this customer does
not depart at next time slot. Specifically, when x > 0, the
number of customers who may depart from table x will be
nx[t]− 1 instead of nx[t]. The transition probability therefore
is given by (21).

The Bellman equations in (20) describe the inherent ex-
pected rewards if one has the full knowledge of the system
state. Nevertheless, the inherent expected reward is unknown
to the customers since they only have the knowledge of
observed state Io. It requires further efforts to estimate the
expected utility conditioning on the observed state Io. The idea
is to utilize the belief we extracted through Grand Information
Extraction to estimate the expected immediate reward and
corresponding state transition probability. Let W (Io, x) be the
expected utility of a customer at table x if she observes Io.
Recalling that IoIo is the set of states sharing the same observed
state Io and gI|Io is the distribution of the states in the set
conditioning on the observed state Io, we have

W (Io, x) =
∑
I∈Io

Io

gI|Io,πn,πrW I(I, x),∀Io, x ∈ {1, 2, ...,M}.

(23)
Additionally, let W (Io, 0) be the utility if the customer
chooses to leave the system immediately. This represents the
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Pr(I[t+ 1]|I[t], πn, πr, x) = (21)

ρλf(s[t+ 1]|θ), I[t+ 1] ∈ IaI[t],πr ;
(1− ρ)λf(s[t+ 1]|θ), I[t+ 1] ∈ IaI[t],πn ;
(nj [t])µf(s[t+ 1]|θ), I[t+ 1] ∈ IdI[t], nj [t+ 1] = nj [t]− 1, j 6= x;
(nx[t]− 1)µf(s[t+ 1]|θ), I[t+ 1] ∈ IdI[t], nx[t+ 1] = nx[t]− 1;
(1− µ(

∑M
j=1 nj − 1)− λ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr 6= ∅, IaI[t],πn 6= ∅;

(1− µ(
∑M
j=1 nj − 1)− ρλ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr 6= ∅, IaI[t],πn = ∅;

(1− µ(
∑M
j=1 nj − 1)− (1− ρ)λ)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr = ∅, IaI[t],πn 6= ∅;

(1− µ(
∑M
j=1 nj − 1)f(s[t+ 1]|θ), I[t+ 1] ∈ IuI[t], I

a
I[t],πr = IaI[t],πn = ∅;

0, else.

Pr(I
′o|Io, πr, x) = (22)
∑
θ∈Θ Pr(θ = k|Io, πn, πr)f(s′|θ), h′ = {h2, h3, ..., x}, n′x = nx + 1, n′j = nj ,∀j, x > 0,;∑
θ∈Θ Pr(θ = k|Io, πn, πr)f(s′|θ), h′ = {h2, h3, ..., 0}, n′ = n, x = 0 or

∑M
j=1 nj = N ;

0, else.

lower bound of the expected utility a customer will enter the
restaurant. In this paper, we letW (Io, 0) = 0,∀Io without
losing generality.

Rational customers seek to maximize their long-term ex-
pected utility given the action they applied by other customers
in previous and future states. The actions applied by other
customers are captured by the rational policy πr. Nevertheless,
its own action will also influence the system state transition.
Let Pr(I

′o|Io, πr, x) be the probability that the observed state
transits from Io to I

′o if she selects table x. The optimal action
for the customer is to choose the table that maximizes the
expected utility. We thus have

πr(Io) = arg max
x∈{0,1,2,...,M}

∑
I′o

Pr(I
′o|Io, πr, x)W (I

′o, x).

(24)
The exact transition probability from Io to I

′o depends on
the form of the observed state. The transition in grouping
information and history information is unique since it only
involves exactly one customer joining a table. Clearly, when
x > 0, we have n′x = nx + 1 and h′ = {h2, h3, ..., x} in the
transition state I and the corresponding Io. On the other hand,
when the customer chooses not to enter the restaurant, there
is no change in the grouping. Therefore, we have n′x = nx
and h′ = {h2, h3, ..., 0} when x = 0.

Nevertheless, the newly generated signal s′ conditions on
the restaurant state θ, which is in the hidden state Ih. We
therefore need to estimate the new signal s′ based on the
belief on the restaurant state. Concluding from above, we have
the transition probability of observed states in (22) based on
the observed state Io and the belief from Grand Information
Extraction gI|Io,πn,π .

The coupling relation between the long-term expected utility
W (Io) and the rational policy πr(Io) captures the influences of
any customer’s action on the expected utility. Then, according
to the Nash equilibrium of H-CRG we defined in Definition
1, we have the equilibrium conditions of H-CRG as follows:

Theorem 1. The Nash equilibrium of H-CRG is π∗(Io) if

W I∗(I, x, π∗) = R(I, x) (25)

+(1− µ)
∑
I′

Pr(I′|I, πn, π∗, x)W I∗(I′, x, π∗),

W ∗(Io, x) =
∑
I∈Io

Io

gI|Io,πn,π∗W
I(I, x), (26)

π∗(Io) = arg max
x

∑
I′o

Pr(I
′o|Io, π∗, x)W ∗(I

′o, x),(27)

for all I, Io, x ∈ {1, 2, ...,M}.

Proof. Given a policy π∗, the expected utility of any rational
customer applying action x at state Io is given by (26). In
addition, given (27), we have

E[U(π∗(Io), π∗−Io(Io))] = W ∗(Io, π∗(Io)

≥W ∗(Io, x) = E[U(x, π∗−Io(Io))]

Therefore, the policy π∗ is a Nash equilibrium according to
Definition 1.

V. SOLUTIONS

A. Centralized Policy

We first analyze the socially-optimal policy for the pro-
posed H-CRG. The socially-optimal policy is the solution that
maximizes the expected social-welfare of the whole system.
This solution serves as the performance bound provided by
centralized-control solutions. We define the social welfare as
the average total utility of all customers in the restaurant,

SW = lim
T→∞

T∑
t=0

∑M
j=1 njU(Rj(θ), nj)|I[t]

T
. (28)
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The expected total utility given the observed state Io, which
we defined as W s(Io), can be given by the Bellman equation

W s(Io) = µ′
∑
I′o

Pr(I
′o|Io, πr)W s(I

′o) (29)

+
∑
I∈Io

Io

gI|Io,πn,πr

M∑
j=1

njU(Rj(θ), nj)|I.

Notice that Pr(I
′o|Io, πr) can be derived by reducing (10) to

the observed state domain.
This form resembles a Markov Decision Process (MDP)

except that the immediate reward is not only related to the
current action but also the actions in other states due to
the Grand Information Extraction. In such a case, it is very
challenging to find the socially-optimal solution. Instead, we
seek to find the centralized policy which maximizes the current
expected social-welfare at each instance, or the expected
social-welfare given the currently applied policy. Notice that
this is also a common objective in traditional MDP problems.

The centralized policy is given by

πs(Io) = arg max
x∈{0,1,2,...,M}

∑
I′o

Pr(I
′o|Io, x)W s(I

′o).(30)

We then propose to use value-iteration algorithm to find
the centralized policy. The proposed algorithm is different
from the traditional value-iteration algorithm in MDP. When
a policy is updated, not only the expected social welfare but
also the immediate social welfare is updated. The immediate
reward social welfare is updated by the Grand Information
Extraction in order to derive the correct belief on the hidden
states under the new policy. The algorithm is shown in
Algorithm 1.

Algorithm 1 Value Iteration for centralized Solution
1: Initialize πs,0,W s,0, l = 0
2: while 1 do
3: l← l + 1
4: Pr(I

′o|Io, πn, πr)← (22)
5: for all Io do
6: πs,l ← (30)
7: W s,l ← (29)
8: end for
9: W s,d ←W s,l+1 −W s,l

10: if maxW s,d −minW s,d < ε then
11: Break
12: end if
13: end while
14: Output πr,l and W s,l

The centralized policy may provides superior performance
from the service operator (i.e. restaurant owner)’s perspective.
Nevertheless, it doesn’t consider the rationality of rational
customers. In some cases, the centralized policy requires some
rational customers choose the tables which are beneficial to the
system but sub-optimal for their own utility. In such a case,
These customers may refuse to follow the centralized policy
if no extra incentive mechanism is introduced [5].

B. Nash Equilibrium

When it turns to the original H-CRG setup where rational
customers choose to maximize their own long-term expected
utilities, it is more challenging to derive the final outcome,
that is, the Nash equilibrium, due to the competitions among
customers. Inspired by the value-iteration algorithm for cen-
tralized solution, we propose a value-iteration algorithm to
finding the Nash equilibrium in the proposed H-CRG. The
algorithm is shown in Algorithm 2.

Algorithm 2 Value-Iteration Algorithm for Nash Equilibrium
1: Initialize πr,W,W I ;
2: while 1 do
3: gI|Io,πn,πr ← (17)
4: for all Io do
5: πr

′ ← (27);
6: W I′ ← (25);
7: W ′ ← (26);
8: end for
9: W d ←W ′ −W

10: if maxW d −minW d < ε then
11: Break
12: else
13: W ←W ′, W I ←W I′ , πr ← πr

′

14: end if
15: end while
16: Output πr, W , and W I

Lemma 2. The output of Algorithm 2, if converged, is the
Nash equilibrium of the H-CRG when epsilon→ 0.

Proof. It can be easily seem that when Algorithm 2 converges
with ε = 0, all conditions in Theorem 1, that is, (25), (26),
and (27) are satisfied. Therefore, the output policy πr is the
Nash equilibrium of the proposed H-CRG.

Unfortunately, we find that the pure-strategy Nash equilib-
rium may not exist when the belief on the hidden state is
highly influenced by the choices applied by other customers
observed in the history information. In some cases, the rational
policy applied by rational customers will be damping from
one to another in the stochastic system, which we called
Information Damping. Specifically, the optimal choice of
a rational customer depends on her belief on the restaurant
state. The belief is conditioned on both her received signal
and observed actions, while the information contained in
the later term depends on whether other customers make
decisions following their signals or not. When all rational
customers follow their own signal, the information contained
in previous actions could be stronger than her own signal
when the length of observed history is long enough. When
the information is strong enough to overcome the signal, the
customers may choose to follow the actions while ignoring
their own signals. This decision, on the other hand, reduces
the information contained in the observed actions. In some
cases, the information in the action is reduced to a degree
that the received signal becomes more informative than the
observed actions. Then, customers switch back to follow the
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observed signals instead of the observed actions. We called this
Information Damping as customers may alternatively choose
to follow the signals or the action of others. This phenomenon
is similar to Information Cascade in traditional social learning
problems, where the information contained in the observed
action will be constrained due to the information diffusion
structure [24], [25]. Nevertheless, the Information Damping
we discussed here further points out that the information
contained in the actions could be reduced in a stochastic
system. Information damping is one of the key factor that
leads to the nonexistence of pure-strategy Nash equilibrium,
which may influence the stability of the system.

The root cause of information damping is the loss of
information in the observed action due to rational choices
of customers. Nevertheless, it turns out that a way to avoid
this is to consider not only the rational customers but also
naive customers in the system. The naive customers, who
follow a predetermined policy to select the table given the
observed state, is commonly seen in most systems. In wireless
networks, for instance, the naive customers could be the legacy
devices which follow the existing protocols without strategic
thinking. In social networks, on the other hand, the naive
customers could be the agents who are naive with short-term
memory, which is commonly observed in the literature [26],
[27]. The naive policy πn followed by the naive customers
are predictable, not influenced by the rational customers, and
potentially can be informative if the received signal influences
the output of the policy πn.

The action of these naive customers will be treated as an
external information source to reveal the hidden state in the
proposed Grand Information Extraction process. Nevertheless,
it can be difficult to distinguish the action of naive customers
from rational ones. In the proposed H-CRG, as we illustrated
in Section III, we assume that these actions are indistinguish-
able. The naive policy πn applied by these naive customers,
on the other hand, is known by the rational customers. When
the ratio of naive customers increases, the observed action
potentially will be more informative and predictable. The pro-
posed Grand Information Extraction process will automatically
extract the information conditioning on the naive policy and
the customer type ratio. Due to the complexity of the process,
it is still an open problem to derive the lower bound of
customer type ratio to guarantee the existence of pure-strategy
Nash equilibrium.

VI. APPLICATION: CHANNEL ACCESS IN COGNITIVE
RADIO NETWORKS

In this section we introduce an important application of H-
CRG: channel access in cognitive radio networks. We describe
the problem first and then illustrate the corresponding H-CRG
model. We then evaluate the performance of H-CRG through
data-driven simulations [8].

We consider a cognitive radio network with some primary
users and secondary users who share the channels. The pri-
mary users have the higher priority to access the channels.
That is, secondary users are not allowed to access the channel
as long as the primary users already occupied it. In some

cases, the secondary users may need to pay a penalty if
they accidentally interfere the primary user transmissions.
Secondary users therefore are required to detect the activity
of primary users through channel sensing before the actual
transmission. Nevertheless, the channel sensing is imperfect,
especially when the protocol of primary users is unknown.
Either miss detection or false alarm may damage the service
quality experienced by both primary and secondary users.
Cooperative sensing is a popular approach to enhance the
detection accuracy through aggregating the sensing results
from all nodes. The aggregated results could lead to a better
consensus on the channel states and therefore better decisions
on channel access.

Here we propose a new approach for cooperative sensing
inspired by the stochastic social learning techniques in H-
CRG. The secondary users now detect not only the activity of
primary users but also the access attempts of other secondary
users. Specifically, a secondary user will first wait for few
slots and detect the access attempts of other secondary users
in the channels. Then, it will detect the activity of primary
user through traditional channel sensing. The secondary user
may learn the sensing results of other secondary customers
from the collected channel access pattern. The advantage
of this approach is that no control channel or signaling
exchanges between secondary users are required, which makes
it more practical for networks with limited channel resources.
Nevertheless, such an advantage comes with a cost: each
secondary user must wait for a period of time before access the
channel. This introduces an extra delay and therefore reduces
the average throughput. When the accuracy of sensing result
is high, the cost in extra delay may cancel out the benefit
retrieved in the proposed learning process.

We now formulate the system model. Let us consider M
channels, while one of them is currently occupied by the
primary users. The secondary users sense the channels and
determine the channel occupied by the primary user. We
assume that the sensing is imperfect, that is, with a probability
of p < 1 that the occupied channel will be detected correctly.
The access probability of the secondary users per slot is
given by pa < 1. Notice that when multiple users access the
channel at the same time, the transmissions will collide with
each others and failed. Therefore, given that the channel is
unoccupied by the primary users and k secondary users select
the same channel, the expected access opportunity a secondary
user may get is

E[u(1, k)] = pa(1− pa)k−1. (31)

On the other hand, when the channel is occupied by the
primary user, the secondary user who attempts to access the
same channel will need to pay a penalty:

E[u(0, k)] = C < 0. (32)

When a secondary user arrives, she selects a channel for
accessing. We assume that she will wait for H slots and detect
the access pattern of other customers. At the final slot, she
will also sense the activity of primary users in each channel.
We called these slots as sensing slots. Then, she will choose
the channel to access with until her departure. We call these
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following slots are accessing slots. We assume that there are
two kinds of secondary users: legacy and strategic users. The
legacy secondary users will access the channel following her
own sensing results. This represents the legacy devices without
cooperative sensing capability. Strategic secondary users, on
the other hand, will utilize all the observed information to
select the channel giving him the largest expected utility.

The long-term expected utility of a secondary user is the
average expected successful access attempt before he leaves
the system, including both sensing slots and accessing slots.
Notice that all secondary users will wait in the sensing slots
before access the channel, which means that each secondary
users have zero access opportunities for the first H slots. The
larger the H , the smaller portion of accessing slots in the
duration of a secondary user’s stay.

We can formulate the channel access problem as a H-CRG if
we treat M channels as tables, the sensing results as the signal
s, and the utility as the access opportunity minus the penalty.
In addition, the restaurant state θ = {1, 2, ...,M} denotes the
channel occupied by primary users. We may derive both the
centralized policy and Nash equilibrium policy for the strategic
secondary users. Notice that in this system a secondary user
may observe the action applied by previous users but not the
current grouping. That is, the observed state Io = {h, s}.
Therefore, the rational customers not only need to derive the
belief on the primary user occupation but also estimate the
number of secondary users choosing the same channel.

A. Simulation Results

We evaluate the performance of proposed policies through
data-driven simulations with user process and network models
using time-invariant parameters extracted from the real dataset.
Specifically, the proposed H-CRG framework requires several
components, such as the user arrival process, departure pro-
cess, and utility functions. We extract the required parame-
ters for each component from the dataset and determine the
appropriate settings for the problem. In the simulation, the
parameters of user process and network models are extracted
from the CRAWDAD Dartmouth campus WLAN trace [8],
[9]. The arrival and departure of secondary users follow
the distribution extracted from the trace in the dataset. For
the utility function, we consider the slotted ALOHA access
mechanism and assume that secondary users focus on the
successful access attempts, with a penalty imposed by the
primary user if an interference occurred. The sensing accuracy,
on the other hand, depends on the sensing techniques the
system applied and here we left it as an adjustable parameter
in the simulations. It can be replaced with the corresponding
accuracy when certain sensing technique is chosen.

We simulate a cognitive radio network with 2 channels and
maximum 8 secondary users. The length of a slot is 5 minutes.
The primary users may choose either channel to occupy with
equal probability. The arrival and departure of secondary users
follow the distribution extracted from [8], that is, the arrival
rate of naive and strategic secondary users are 0.2106 and
0.1479 per slot, respectively. The departure rate per secondary
user is 0.0715 per slot [9]. For each secondary user in the
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network, the access probability per slot is 0.7. The penalty for
interfering primary user is −0.7 per slot.

We compare the performance of the derived policy from
H-CRG with four other policies: signal, belief, myopic, and
centralized. The signal policy is the same as the policy applied
by legacy devices, where the users always access the channel
following their own signal. This demonstrates the performance
bound if the secondary users do not cooperate at all. The
belief policy represents the strategy to follow the belief on the
primary user occupation extracted by the Grand Information
Extraction by (15), but to ignore the estimation on the number
of users. This shows the performance upper bound if secondary
users cooperate with each other in the sensing but ignore the
effect of network externality. The myopic policy represents
the strategy that both the primary user occupation and num-
ber of secondary users are estimated by Grand Information
Extraction, but the payoff in the future slots is ignored. This
shows the performance bound if secondary users consider both
the sensing results and network externality, but ignore the
influences of other secondary users in the future. Finally, the
centralized policy is the policy we derived from Algorithm 1.
This represents the policy that there exists a centralized-control
node to determine the channel access policy for secondary
users. It serves as the performance upper bound of social
welfare if a centralized control mechanism is applied.

We evaluate the performance of different policies with
two metrics: expected long-term individual utilities for new
strategic users and average social welfare per slot.

We first evaluate the influence of history length to the
performance of all policies. We let the signal quality p = 0.85
and then simulate with different history length from 1 to 5.
This simulation helps us understand whether the increased
history information helps improve the accuracy of the belief
on the hidden state and the utilities of the secondary users.
The simulation results are shown in Fig. 2. A clear trend
shows that the increase in history length benefits the expected
individual utility of the user. This is due to the increase in the
observed state space, which contains more information to be
extracted by Grand Information Extraction. We observe that
the proposed equilibrium policy from H-CRG provides highest
individual expected utility among all the policies. In addition,
H-CRG is the only policy which guarantees positive expected
utilities for new users. Interestingly, the increases in H also
brings a positive effect on the expected utility of signal policy.
This is due to the fact that the signal policy receives a negative
expected utility and the accuracy is not affected by the history
length. Given that the expected utility is negative in accessing
slots, a reduction in the portion of accessing slots will bring a
positive impact on the expected utility under the signal policy.

For the social welfare, on the other hand, we observe that
the trend is inverse for the equilibrium policy for H-CRG. This
is due to the fact that the increase in the history length suggests
better understanding on the hidden state, which also leads to
a fiercer competitions among the secondary users. This may
have a negative impact on the social welfare. Nevertheless, the
proposed equilibrium policy is still closest to the centralized
policy. We also observe that H-CRG outperforms centralized
policy in expected utility of new secondary users but not in

social welfare. The reason is that some users may be sacrificed
in order to achieve better social welfare in centralized policy.
For instance, some secondary users may be forbidden to enter
the system in centralized policy in order to protect other
existing users from higher collision rates in channel access,
even if these new users may receive positive utilities if they
enter. Such protections lead to a higher social welfare but
may impale the utility of new customers. For H-CRG, on the
other hand, new secondary users will access the channel which
maximize their own utilities, regardless whether this attempt
will damage the social welfare. Therefore, the expected utility
of new customer should be higher with this policy, in exchange
of a lower social welfare.

Next, we discuss the impact of sensing slots on the average
utility. We first illustrate the average utility of secondary users
in the whole duration and access slots in Fig. 2(c). The
differences between these two lines are the overhead due to
the extra delay in sensing slots. We observe that the overhead
introduced by the sensing slots grows significantly with the
increase of history length. On the other hand, the increase
of average utility in access slots diminishes with the increase
of history length. This suggests that a proper history length
exists in order to balance the accuracy and the extra overhead
brought by the sensing slots. The results also suggest that the
resulting performance is concave in history length, therefore
the optimal history length can be easily found. We also
illustrate the average utility of secondary users under different
signal quality in Fig. 2(d). We observe that the increase of
utility brought by larger history lengths are more significant
when the signal quality is low. This is due to the fact that
when the signal quality is low, the increase of accuracy due to
the extended history is beneficial enough to compensate the
overhead introduced by the extra delay. The results suggest
that the sensing slots should be expanded when the signal
quality is low, and vice versa.

We then evaluate the influence of signal quality (channel
sensing accuracy) to the performance of all policies. We let the
history length H = 4 and then simulate with different signal
quality from 0.9 to 0.45. The results are shown in Fig. 3. We
observe that the increase in signal quality benefits the expected
individual utility of the user. This is due to the increased
signal quality and therefore the information contained within.
Nevertheless, we observe that the proposed equilibrium policy
from H-CRG still provides highest individual expected utility
among all the policies except when the signal quality is high.
For the case that the signal quality is high, the centralized
policy provides a higher expected utility. Nevertheless, the
centralized policy is sub-optimal for some users at certain
states, therefore is unstable and cannot be implemented with-
out additional incentive mechanisms.

For the social welfare, on the other hand, we observe
that equilibrium, myopic, and centralized policies provide
same social welfare when the signal quality is low, but the
social welfare degrades for both equilibrium and myopic ones
when the signal quality is high. This is still the influence of
fiercer competition when the system state is more accurately
identified by better signal. This may have a negative impact
on the social welfare. Nevertheless, the performance of the
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Fig. 3. Influence of Signal Quality

proposed equilibrium policy still is closest to the centralized
policy in most cases.

Finally, we compare the performance of the proposed
framework with different information sources. Specifically, we
replace the actions revealed in the observed state in H-CRG
with signals each user receives when she arrives the system.
In other words, users reveal their signals to other users when
they access the channel in the revised model. We define the
original H-CRG as action-based model while the revised one
as signal-based model. The revised model represents the social
learning system using user-generated signals as information
source. Notice that all proposed algorithms still apply to the
revised model. The expected utility of new customers and
social welfare under both models are shown in Fig. 4. We
observe that the performance loss from signal-based to action-
based model, if any, is negligible. The result showed that
the revealed actions already contain enough information for
rational customers to learn the hidden information and make
proper decisions.

VII. CONCLUSIONS

We propose a new stochastic game-theoretic framework,
Hidden Chinese Restaurant Game, to utilize the passively-
revealed actions instead of user-generated contents as the
main information source in social learning process. Based
on the stochastic state transition structure and inspired by
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Fig. 4. Action vs. Signal-based Model

the Bayesian learning in Chinese Restaurant Game, the pro-
pose Grand Information Extraction can extract the belief on
the hidden information directly from the observed actions.
The proposed belief extraction process is universal for any
Markovian system. The coupling relation between the belief
and the policy is further utilized to transform the original
continuous-state formulation in traditional Partial-Observed
MDP (POMDP) into a discrete-state MDP. The optimal policy
is then analyzed in both the centralized approach and the
game-theoretic approach. We notice that the pure-strategy
Nash equilibrium may not exist in the H-CRG. Specifically,
the Information Damping phenomenon may rise in a certain
H-CRG in which customers synchronously switch from one
policy to another due to the information loss in the observed
action. Fortunately, the existence of naive customers can help
ensure the existence of pure-strategy Nash equilibrium. Their
actions can be treated as signals to stabilize the belief of agents
on the observed actions. We evaluate the performance of H-
CRG through simulations by applying the framework to the
channel access problem in cognitive radio networks. We con-
duct data-driven simulations using the CRAWDAD Dartmouth
campus WLAN trace. The simulation results showed that
the equilibrium strategy derived in H-CRG provides higher
expected utilities for new users and maintains a reasonable
high social welfare comparing with other candidate strategies.
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