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Abstract—Agents in networks often encounter circumstances
requiring them to make decisions. Nevertheless, the effectiveness of
the decisions may be uncertain due to the unknown system state and
the uncontrollable externality. The uncertainty can be eliminated
through learning from information sources, such as user-generated
contents or revealed actions. Nevertheless, the user-generated con-
tents could be untrustworthy since other agents may maliciously
create misleading contents for their selfish interests. The passively
revealed actions are potentially more trustworthy and also easier
to be gathered through simple observations. In this paper, we pro-
pose a new stochastic game-theoretic framework, Hidden Chinese
Restaurant Game (H-CRG), to utilize the passively revealed actions
in stochastic social learning process. We propose grand information
extraction, a novel Bayesian belief extraction process, to extract
the belief on the hidden information directly from the observed
actions. We utilize the coupling relation between belief and policy
to transform the original continuous belief-state Markov decision
process (MDP) into a discrete-state MDP. The optimal policy is
then analyzed in both centralized and game-theoretic approaches.
We demonstrate how the proposed H-CRG can be applied to the
channel access problem in cognitive radio networks. We then con-
duct data-driven simulations using the CRAWDAD Dartmouth
campus wireless local area network (WLAN) trace. The simula-
tion results show that the equilibrium strategy derived in H-CRG
provides higher expected utilities for new users and maintains a
reasonable high social welfare comparing with other candidate
strategies.

Index Terms—Stochastic process, Markov process, social
learning, Bayes methods, game theory, cognitive radio.

I. INTRODUCTION

AGENTS in networks often encounter circumstances
requiring them to make decisions. For examples, they

decide which smartphone to buy when the last one is broken,
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the restaurant to have a meal when feeling hungry, or the music
to listen when feeling lonely. Their choices affect their utility,
or their measurement of their enjoyments on the outcome. A ra-
tional agent should seek the best decisions in order to maximize
their utility given the potential influences of certain choices.
Nevertheless, sometimes the influence of the choices is uncer-
tain due to 1) unknown parameters such as the quality of a meal,
and 2) the external factors such as the unfamiliar crowd within
the same restaurant. A learning process is necessary for rational
agents to acquire the knowledge of those uncertain parameters
and external factors in order to make the right decisions.

Social learning is a learning technique which utilizes the in-
formation revealed or shared in a network to acquire certain
knowledge. A typical example is choosing the smartphone on
the market from dozens of choices. Customers usually do not
have enough knowledge, such as the quality and usability of
the smartphones, to make the right choice. One may construct
the knowledge by learning from advertisements, her own expe-
rience from previous purchases, reviews or discussions shared
in social networks, or some statistics on the sold quantity of
each smartphone to date. All the gathered information helps the
agent to construct the necessary knowledge, due to which the
accuracy of the agent’s decision can be enhanced. The informa-
tion generated or revealed by other agents is shared through the
links constructed by the social relation. Since each agent may
have different social relations with others and make decisions
at different time, the information one agent received may be
different from others.

Chinese Restaurant Game [1], [2] is a game-theoretic frame-
work for modeling social learning process in a system with
network externality, i.e., the decisions of users affect each other.
Let us consider a Chinese restaurant with multiple tables in
different sizes, where customers arrive and request seats from
these tables. Customers may prefer bigger space for a comfort-
able dining experience, or more companies for chatting. In either
case, a customer’s dining experience is influenced by other cus-
tomers who share the same table with him, which is a kind of
network externality. The goal of Chinese Restaurant Game is
to understand how rational agents choose the tables wisely to
enhance the dining experience, i.e. to maximize their utilities.
The social learning process is introduced in sequential Chinese
restaurant game [2], where the table sizes are unknown to the
customers. The customers may learn the sizes with signals, ei-
ther received by oneself, revealed by others, or both. In such a
setting, rational customers learn the table sizes from the signals
through social learning.
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Dynamic Chinese Restaurant Game (D-CRG) is proposed to
study how a user in a dynamic scenario acquires the knowledge
to make the optimal decision through social learning [3]. In a
dynamic system, a rational agent should not only consider the
utility she received at a moment but also the probabilistic tran-
sitions of the system state and the influence of other agents. A
Multi-dimensional Markov Decision Process (M-MDP) model
[4] is proposed to integrate the social learning process into the
optimal decision process from a game-theoretic perspective. The
network externality may bring performance degradation when
the competition between agents is fierce, but the system still can
reach social welfare optimal if the optimal pricing strategy is
imposed [5].

The information revealed by agents and utilized by social
learning could be user-generated contents or passively-revealed
information. User-generated contents, such as public reviews,
comments and ratings on certain restaurants, could be easily
identified and analyzed to understand the knowledge behind the
information. The knowledge behind the generated content is
implicit since such information can be treated as signals gener-
ated by the system and reported by the agent, conditioning on
some parameters known or unknown to the agents. A simple
approach is to assume that these signals are described by some
probabilistic distributions conditioning on the values of some
unknown parameters [2]. Agents can then construct their be-
lief on the unknown parameters based on their prior knowledge
on the characteristics of the signals. The signaling approach is
useful for simple systematic parameters and has been utilized
by Chinese Restaurant Game, including the review rating on
Yelp to the quality of services [6] and the sensing results to the
primary user activities in cognitive radio networks [2], [3].

Nevertheless, the user-generated contents could be untrust-
worthy when agents have selfish interests. Agents who act
rationally may choose to generate forged contents for their
own benefits. Such contents can mislead other agents to have
false beliefs on unknown parameters and therefore they make
improper decisions. For instance, a local customer may know
the best restaurants in town, but he/she may never reveal the list
to others in fear that the restaurants may become too popular and
she need to wait for weeks to have seats reserved. Moreover, she
may choose to promote other restaurants with lower quality to
lower the risk. In addition, even the providers, such as restaurant
owners or movie makers, have the incentive to generate forged
contents to manipulate the decisions of customers when they are
in competitions with others. For instance, some restaurants will
invite popular bloggers or critics to provide positive reviews
or rating on the website with some discounts as rewards. This
biased contents will mislead customers and therefore are not
trustworthy. In cognitive radio networks, for another instance,
cooperative sensing utilizes the sensing results gathered from
multiple secondary users to increase the accuracy of the primary
user activity detection. Nevertheless, a rational secondary user
may choose to share a forged sensing results to mislead other
users so she can access the unoccupied channels solely. In both
cases, agents who hold the knowledge can decide to release
contents that contain misleading information to confuse other
agents. Additionally, the cost of forging contents is very low,

since such behaviors require little effort and do not make dam-
ages to the agent’s own utility. It requires a significant amount
of costs and efforts, such as additional punishment or reputation
system, to guarantee the trustworthiness of the contents.
Given that agents may generate forged contents, agents cannot
collaboratively gather the true knowledge and more likely make
wrong decisions. In sum, social learning will be ineffective
if we rely on user-generated contents as the sole information
source.

The passively-revealed actions, such as the number of cus-
tomers in certain restaurants or number of secondary users
accessing certain channels, also reveal useful information but
require more efforts to mine the knowledge behind. The knowl-
edge behind such information is more explicit since they are
related to not only the systematic parameters, but also the ac-
tions of some or all agents in the system. For instance, a high
number of visits to a certain restaurant may suggest a high-
quality service, a bad service with a short-term promotion, or
the shutdown of all other restaurants. One must not only observe
the explicit information but also consider the reasons behind the
collaborative actions.

Nevertheless, it is easier for an agent to gather passively-
revealed actions compared to the user-generated contents. For
instance, one can easily observe the number of customers
staying in the restaurant, but may not collect their opinions on
the restaurant. For a cognitive radio network, one can detect
whether a channel is accessed by another agent passively, but
not the sensing result another agent holds unless an information
exchange protocol and a control channel are established. Due
to the ease to collect the passively-revealed actions, this type
of information is commonly gathered in the real word, such
as Check-ins and Likes in Facebook, Daily Visit Numbers of
theme parks, Page Views of websites, Number of Access to
base stations/networks, etc.

Although both user-generated contents and passively-
revealed actions potentially could be altered by selfish agents
according to their own benefits and interests, the passively-
revealed actions are more reliable and trustworthy if we can
correctly understand the logic behind their actions. In addition,
it usually costs more to cheat in the revealed actions since an
agent must select a sub-optimal action to reveal a forged infor-
mation which adversely damages her own utility. For instance,
one can only mislead other agents to choose different restaurant
by actually choosing another restaurant she doesn’t prefer to.
Such a decision incurs a loss to her own utility, and therefore
reduces her incentive for such a cheating behavior.

In light of these advantages, we propose a new stochastic
game-theoretic framework to utilize the passively-revealed ac-
tions instead of user-generated contents as the main informa-
tion source in social learning process. The proposed Hidden
Chinese Restaurant Game (H-CRG) allows customers to ob-
serve the actions of other customers within a limited observation
space to determine their action and belief on hidden informa-
tion in a stochastic system. Two types of information may be
observable: history information, which is a series of actions ap-
plied by previous customers within a limited time; and group-
ing information, which is the number of customers at each table.
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The observable information can be either one or both, depending
on the network we are modeling.

Based on the stochastic state transition structure and inspired
by the Bayesian learning in Chinese Restaurant Game, we pro-
pose Grand Information Extraction, a novel Bayesian belief
extraction process to directly extract the belief on the hidden
information from the observed actions. The proposed process
is universal for any Markovian system with hidden information
(state). The extracted belief is conditioned on the policy applied
by customers and may also influence their actions. The coupling
relation is utilized to transform the original continuous-state for-
mulation found in traditional Partial-Observed MDP (POMDP)
into a discrete-state pseudo MDP, which greatly reduces the
complexity of the problem.

The optimal policy is then analyzed in both the centralized
approach and the game-theoretic approach. We propose a value-
iteration solution to find the centralized policy in the centralized
approach. Inspired by the centralized approach and D-CRG [3],
we then propose a value-iteration solution to derive the Nash
equilibrium in the H-CRG. We notice that the pure-strategy
Nash equilibrium may not exist in the H-CRG. Specifically,
the Information Damping phenomenon may rise in a certain H-
CRG in which customers synchronously switch from one policy
to another due to the information loss in the observed action.
The phenomenon is similar to Information Cascade [7], which
is commonly discussed in traditional social learning literature.
Fortunately, the existence of naive customers, such as legacy
network devices in communication networks or myopic agents
in social networks, can help ensure the existence of pure-strategy
Nash equilibrium.

We demonstrate how the proposed H-CRG can be applied to
the channel access problem in cognitive radio networks. We then
conduct data-driven simulations using the CRAWDAD Dart-
mouth campus WLAN trace [8], [9]. The simulation results
show that the equilibrium strategy derived in H-CRG provides
higher expected utilities for new customers and maintains a
reasonable high social welfare compared with other candidate
strategies.

The main contributions of this paper are as follows:
1) Customers are not required to reveal their signals to other

customers after their decisions. Only their actions are
passively observed. The overhead in signaling exchanges
therefore can be greatly reduced. In addition, the poten-
tial threat of untruthful signal reports in previous works is
eliminated entirely.

2) The belief is directly extracted from the observed actions
using the proposed Grand Information Extraction process
instead of storing in a separate belief state. Specifically,
we observe that the exact belief on the action and the
action applied by rational agents in fact form a coupling
relation. This motivates us to propose Grand Information
Extraction to utilize the stationary probability distribu-
tion of states to calculate the probability that certain state
is reached. Combining the Grand Information Extraction
with the action-based M-MDP, we perform the belief up-
date based on the policy applied by other agents and no
longer need to record the belief state in the system state.

The continuous belief space issue in either D-CRG and
POMDP can thus be avoided. To the best of our knowl-
edge, we are the first group to point out this relation and
utilize this to design the new M-MDP model to inher-
ently capture the belief update process without the need
of separate belief state or a fixed belief update equation.

3) We provide both centralized solution and game-theoretic
solutions. We analyze the H-CRG from two perspectives:
centralized approach which maximizes the social wel-
fare, and game-theoretic approach which maximizes each
individual’s utility. We illustrate the relation of both ap-
proaches under this framework and propose correspond-
ing algorithms to derive the solutions.

II. RELATED WORKS

Social learning is one of the main research focuses in both
economy and network science. Users in a social network may
not have clear understanding on the current state of the network.
They therefore may actively share their private information or
passively observe the actions applied by others to improve their
knowledge on the state. Most existing literatures studied how
agents reach a correct consensus through social learning [7],
[10]–[12]. Their studies limit to the scenario that no network
externality exists, i.e., the choice of one agent will not influence
the payoff received by other agents. This assumption helps them
to focus on the belief formation but limits the applications. Sev-
eral attempts have been made to extend the traditional social
learning framework to include network externality [13], [14].
The applications of these models are still limited due to the as-
sumptions they rely on, such as binary state space, no decision
order information, and positive network externality only. Some
studies on social learning in stochastic system can be found
in [15], [16]. They focus on the equilibrium learning strategy
concerning the stochastic characteristic of hidden state. Nev-
ertheless, none of these consider the network externality and
dynamic in agent population. To the best of our knowledge, no
analysis on action-based social learning in stochastic networks
with network externality has been conducted.

The proposed framework is similar with the Partially Ob-
servable Markov Decision Process (POMDP) model, which is a
generalization of Markov Decision Process with hidden states.
In POMDP model, a centralized user who decides the action
cannot directly observe the true state of the system. Some ob-
servations, which is related to the true state, can be derived by
the agent as a hint of the true underlying state. The uncertainty
and the knowledge of the true state are captured by the belief, the
probability distribution of the true state. The goal of the agent is
to find the optimal policy to control the system in order to maxi-
mize the long-term reward. It has been shown that POMDP can
be formulated as a belief MDP in which the belief is captured
by additional continuous belief states. The optimal policy then
can be derived using point-based methods [17], [18]. The point-
based methods are based on the observations that the optimal
expected value function can be formulated as a combination of
the value function on a proper set of belief vectors in which
the optimal action in each segment can be derived. The optimal
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policy can be derived then. It is non-trivial to find the feasible be-
lief vectors for exact optimal policy. Approximated algorithms
to find suboptimal but tractable belief vectors are therefore pro-
posed [18]. Another approach is to control the POMDP system
through finite-state controllers [19]. A feasible control policy
can be formulated as a policy graph to describe the action to
apply when certain observations is received, without the need
of additional belief state [20]. The solution space can then be re-
duced to the policy space described by the graph. However, the
size of policy graph may be intractable if we would like to guar-
antee the optimality of the solution. Nevertheless, the POMDP
model is different from the proposed H-CRG in two aspects: the
number of objective functions, and the complexity of belief up-
date process. In traditional MDP or POMDP problems, we only
have one expected value function to serve as the only objective
function to maximize. In the proposed H-CRG framework, on
the other hand, we are dealing with multiple objective functions,
or the utilities of agents entering the system at different states
and choosing different tables. As we have illustrated in previous
works [4], [5], this major difference imposes a serious challenge
to solve the Nash equilibrium in the proposed game since these
objective functions will affect each other in a non-linear fashion.
In addition, the belief update process, as we will illustrated in
Section IV-B, is no longer Markovian since the updated belief
depends on not only the current state, prior belief, current action,
but also the action of other agents in previous and future time
slots. Therefore, all existing algorithms, including point-based
method and policy graph, cannot be directly applied to derive
the Nash equilibrium. This motivates us to seek an alternative
approach to handle this problem.

This work is different from our previous Chinese Restaurant
game [1]–[3] in the following two aspects. First, customers are
not required to reveal their signals to other customers after their
decisions. Only their actions are passively observed. The over-
head in signaling exchanges therefore can be greatly reduced.
In addition, the potential threat of untruthful signal reports in
previous works is eliminated entirely. Notice that this is not a
trivial extension since the information contained in the action is
more difficult to be extracted. We need to know the subjective
intention of the agents who perform the actions, which may be
influenced by the actions of other agents due to the externality
in the network.

Second, the belief is directly extracted from the observed ac-
tions using the proposed Grand Information Extraction process
instead of storing in a separate belief state. This belief extrac-
tion process is universal for any Markovian system with hidden
information. Specifically, we observe that the exact belief on the
action and the action applied by rational agents in fact form a
coupling relation. This relation motivates us to propose Grand
Information Extraction to utilize the stationary probability dis-
tribution of states when the policy is given to calculate the
probability that certain state is reached. Then, the conditional
probability of the hidden state given certain state is observed can
be derived through Bayesian equations. This extraction process
helps link the belief directly to the policy. Combining the Grand
Information Extraction with the action-based M-MDP, we per-
form the Bayesian belief update based on the policy applied by

other agents and no longer need to record the belief state in the
system state. We then can find the Nash equilibrium in pure pol-
icy space. The continuous belief space issue in both D-CRG and
POMDP can thus be avoided. To the best of our knowledge, we
are the first group to point out this relation, connect all the parts
in the process, and utilize this to design the new M-MDP model
to inherently capture the belief update process without the need
of separate belief state or a fixed belief update equation.

Finally, cooperative sensing in cognitive radio networks is
an important applications of proposed framework. In cogni-
tive radio network, secondary users are required to access the
channels only if they are not accessed by primary users. Never-
theless, there is no direct communication between primary and
secondary users. Secondary users should detect the activities of
primary users through channel sensing in order to avoid interfer-
ence. Cooperative sensing is proposed to improve the sensing
accuracy by allowing secondary users share their sensing re-
sults to make decisions collaboratively [21]. Various signaling
exchange schemes have been proposed including centralized or
distributed mode and soft or hard collaborative decision [22].
In general, higher accuracy, such as soft decision mode in cen-
tralized sharing scheme, comes with longer latency and larger
overheads due to more signal exchanges. The cheating behavior
in cooperative sensing, or Byzantine attacks, gains more atten-
tions in recent years [23]. Secondary users may intentionally
report false sensing results to others in order to gain advantages
in channel access. Various defense mechanisms have been pro-
posed based on the statistic difference in false reports from other
normal reports. Some additional penalties may be applied in
utility-based approach to persuade rational users from launching
attacks. Most proposed designs introduce further overheads in
the cooperative sensing system either in implementation cost or
accuracy loss. The key overheads in cooperative sensing comes
from the cost of sharing sensing results among members through
signal exchanges. In this paper, we propose to use H-CRG to
completely eliminate the need of signal exchange process while
maintaining the sensing accuracy. To best of our knowledge,
we are the first one to propose an exchange-free protocol for
cooperative sensing.

In the rest part of the paper, we first introduce the system
model in Section III and the game structure of H-CRG in IV.
Then we introduce the novel Bayesian belief extraction process
called Grand Information Extraction to extract the knowledge
from the observed information in Section IV-B. Based on the
belief, we explain how rational agents can make use of the
knowledge to make decisions and how the equilibrium is de-
fined in Section IV-C. Two solutions based on centralized and
game-theoretic approaches are provided in Section V. We then
demonstrate how the proposed H-CRG can be applied to real
world problems through applying H-CRG in channel access in
cognitive radio networks in Section VI. Finally, we draw the
conclusions in Section VII.

III. SYSTEM MODELS

Let us consider a Chinese restaurant with M tables. We
assume that the restaurant allows at most N customers to en-
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ter, where N serves as the capacity constraint of the restaurant.
We consider a time-slotted system where customers may arrive
at and leave the system following a Bernoulli process. That is,
customers arrive at the restaurant with probability λ and leave
the restaurant with probability μ. We assume that the time slot
is very short so there is at most one customer arrives or departs
within a slot.1 At each arrival, the customer requests for a seat
in the restaurant by choosing one table. She may or may not
know the number of customers at each table. As long as she
chooses a table, she will stay seated at the chosen table until
departure. A customer may not choose to enter the restaurant
when 1) the restaurant is full and therefore the door is closed,2

or 2) the maximum expected utility if she enters the restaurant
is negative. The latter case means that a customer may find that
leaving the process without entering the restaurant could be a
more valuable choice. For instance, the restaurant may offer
poor-quality meals that the customer decides not to give it a try
even if there are seats available. Let x[t] ∈ {0, 1, . . . ,M} be the
decision of the customer arrives at time t, where x[t] = 0 means
that the customer chooses not to enter the restaurant or there is
no customer arrives at time t. Notice that this also reflects the
fact that these two events make no differences to agents who
can only observe the revealed actions.

The size of a table has a positive influence on the dining
experience of the customers, where we assume that a larger
table is welcomed by any customer as long as the number of
customers choosing the table remains the same. Some tables
could be smaller or even unavailable when reserved by high-
priority customers. The exact sizes of the tables are controlled
by the restaurant state θ ∈ Θ = {1, 2, 3, . . .}, where the size of
each table x is given by Rx(θ). Nevertheless, the sizes of the
tables are unknown to the customers before she actually enters
the restaurant. That is, the restaurant state θ is given at the
beginning of the game in advance, following a prior distribution
Pr(θ = k), but unknown to the customers. Given that θ has
a definite influence on the dining experience of customers, it
represents the critical knowledge the customers need to acquire
in the game.

A. Customers: Naive and Rational

We consider two kind of customers: naive customers and ra-
tional customers. Naive customers represent the legacy agents
or devices whose the actions are predetermined and fixed with-
out the strategic decision making capability. In cognitive radio
networks, for instance, there may exist some legacy secondary
devices who only have limited sensing capability without col-
laboration with other devices. Their channel access actions are

1Notice that this assumption can be easily relaxed in our model by expanding
the state transition probability matrix to include multiple arrival and departure
cases. We believe all methods and conclusions we made in this paper still hold
with this assumption relaxed.

2It is also possible to offer an option for the customers to wait at outside of
the restaurant until it opens again. Specifically, we may let P be the maximum
number of customers waiting outside of the restaurant when the restaurant is
full, and each customer enters the restaurant sequentially when some customers
leave. This can be modeled as a FIFO queue and can be integrated into the
framework easily by properly adjusting the state transition probabilities.

more predictable. These naive customers may have either posi-
tive or negative impacts on the overall system performance and
service quality experienced by other customers.

Rational customers, on the other hand, select the tables strate-
gically. Their sole purpose is to maximize their expected utility.
The utility of the customers is determined by two factors: the
number of customers seated in the same table and the size of the
table. Specifically, let nx [t] be the number of customers choos-
ing table x at time t. The n[t] = (n1 [t], n2 [t], ..., nM [t]) denotes
the grouping of customers at time t, i.e., the number of customers
choosing each table at time t. Then, the immediate utility of a
customer choosing table x at time t is u(Rx(θ), nx [t]), where
Rx(θ) is the size of table x. The influence of the number of cus-
tomers, that is, network externality, could be arbitrary and is cap-
tured by ∂u(r,n)

∂n . The externality is positive when ∂u(r,n)
∂n > 0,

negative when ∂u(r,n)
∂n < 0, and is zero when ∂u(r,n)

∂n = 0 for
all n. Finally, we assume that a larger table is welcomed by any
customer, that is, ∂u(r,n)

∂r ≤ 0.

B. Observable Information

The knowledge of the unknown restaurant state can be
extracted from the information collected by the customer. The
basic information each customer acquires is a private signal she
receives at the time of arrival. We assume that the signal s ∈ S is
generated following a probability density function f(s|θ). The
signal is informative, that is, there exists a non-zero correlation
between restaurant state θ and signal s. Also, the signal is pri-
vate, which means that other customers will not know the signal
one received unless she explicitly reveals. Finally, the generated
signals are independent when conditioning on the true restaurant
state θ.

Despite the private signal, the information one customer may
collect from others are the observed passively-revealed actions.
Such information comes in two different types, grouping infor-
mation and history information, as follows:

Grouping Information: The current grouping n[t] of cus-
tomers at time t. It represents the number of customers choosing
each table at the current time. This observation roughly captures
the consensus among all customers in the system. Nevertheless,
the decision orders of these customers are not captured in group-
ing information. In addition, this kind of observation could be
very handy in some systems but too costly to maintain or de-
rive. For instance, one customer may easily see the number of
customers waiting to be served at each restaurant by simple
counting, but she will not know the number of customers sub-
scribing to each cellular service unless the providers explicitly
announce.

History Information: The history of actions revealed by cus-
tomers selecting tables at time t−H, t−H + 1, ..., t− 1. Here
we assume that a customer may observe and record the action
revealed by the previous customers up to H slots before she
makes decisions. The history information emphasizes the deci-
sion orders of customers and potential influences of the former
actions to the later customers. History information is easier to
be accessed in some networks and therefore commonly seen
in the literature. Notice that when H goes to infinity, history
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TABLE I
NOTATIONS

Notation Explanation

N, M the total customer capacity and number of tables of
the restaurant

s ∈ S , θ ∈ Θ , f (s|θ) the signal, restaurant state, and p.d.f. of the signal
Rx (θ),
n[t] = {n1 [t], n2 [t], ..., nM [t]}

the table size function and the grouping
information at slot t

h[t] =
{h1 [t], h2 [t], ..., hH [t]}, H

the history information and the length of history

u(R, n) the immediate utility of a customer
λ, μ the arrival and departure probability of a customer
ρ the ratio of naive customers
I[t] = {Io [t], Ih [t]} system state, observed state, and hidden state
πn (Io ), π r (Io ) policy followed by naive and rational customers
Io
Io , π n , π r the set of system states sharing the same observed

state Io

W I (I), W (Io ) the expected reward conditioning on the system
state and observed state

gI |Io , π n , π r the belief of state I conditioning on observed state
Io

information will become grouping information plus the deci-
sion order information. Nevertheless, H is usually assumed to
be finite to reflect the limited observation capability one cus-
tomer may have.

We assume that the only information revealed by one cus-
tomer is the table she selected. That is, customers will not con-
tribute user-generated contents such as signals, but only reveal
their actions passively. This design eliminates the scenario that
a customer can untruthfully report the private signals. Formally
speaking, the potential information space for a customer choos-
ing a table at time t is as follows:

(n[t], x[t−H], x[t−H + 1], . . . , x[t− 1], s[t])

= (n[t],h[t], s[t]), (1)

where h[t] denotes the history of information (actions) revealed
by customers from time t−H to t− 1.

The rational customers, who are of our main interests, aim to
maximize their long-term expected utility in the system, that is,
to choose the table that maximizes their expected utility con-
sidering the unknown restaurant state and the potential network
externality. The main challenges faced by the rational customers
are two folds: 1) how to extract the information from the ob-
served actions in order to estimate the unknown information
such as restaurant state? 2) how to predict the influence of net-
work externality in the stochastic system given there exist some
naive customers?

All notations of this paper are listed in Table I for reference.

IV. HIDDEN CHINESE RESTAURANT GAME

We formulate the table selection problem as a hidden
Chinese Restaurant Game (H-CRG). The H-CRG is a stochas-
tic game with an indeterministic number of players. The arrival
and departure of the players (customers) are assumed to satisfy
the Bernoulli distributions. A customer can choose the table to
be seated or leave immediately, but she cannot change her table

Fig. 1. Hidden Chinese restaurant game framework.

afterward. Her utility depends on the table she selected and the
states of the system in the duration of her stay.

An illustration of H-CRG framework is shown in Fig. 1.
Briefly speaking, we propose Grand Information Extraction
process in the H-CRG to extract the belief on the hidden
state from the observed information. The process requires
inputs from the policy applied by rational customers and
corresponding state transition probability. Rational customers
then estimate the expected utilities with the belief extracted by
the process. The updated estimation on the expected utilities
will help them to make better decisions and update the rational
policy accordingly. The key in H-CRG is to find the policy
which maximizes the expected utility for each customer.

The system state describes the current situation of the system,
including the restaurant state, grouping information, history of
actions, and the generated signal. Given the current state, one
may determine the current utility of a customer completely.
Nevertheless, the state will transit stochastically following a
state transition probability function, which we will describe
later. Formally speaking, the system state of H-CRG at time t is
denoted as follows:

I[t] = {n[t],h[t], s[t], θ}. (2)

The information in the state I is differentiated into two types:
observed state Io and hidden state Ih . The observed state is the
information that can be readily observed by the customers when
they arrive. The hidden state represents the information which
can only be derived through belief estimations using observed
states as inputs. Notice that both observed state and hidden state
may have influences on the utility of each customer.

Whether the information is observable or hidden depends
on the system we are formulating with. We assume that the
restaurant state θ is always hidden, since we assume that the
value is given in prior but unknown to the customers. On
the other hand, the signal s[t] is always observable since we
assume that each customer receives at least a private signal.

For the other two pieces of information, grouping informa-
tion and history information, if observable or not depends on the
system settings. For instance, if we are modeling a restaurant
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selection problem in a food court, it is safe to assume that each
customer can observe both grouping information and history
information since one can easily see the number of customers
waiting in lines and how these lines are formed. In this case,
both grouping and history pieces of information are observ-
able and therefore belong to the observed state. On the other
hand, if we are modeling a channel selection game in a cogni-
tive radio network, it may be impractical to assume that each
secondary user can observe the grouping information since it
requires a third-party base station to record and broadcast such
information. Nevertheless, it could be safe to assume that each
secondary user can observe the choices of other users in channel
access when they arrive since it can be done by channel moni-
toring. In such a case, the grouping information should belong
to the hidden state, while the history information belongs to the
observed state.

A policy describes the table selection strategy a customer
applies in H-CRG given the information she observed as inputs.
As we mentioned, a customer can only observe the information
in the observed state. Therefore, a policy can be defined as
follows:

π(Io) ∈ A = {0, 1, . . . ,M},∀Io . (3)

Notice that π(Io) = 0 means that the customer chooses not to
select any of the tables and leaves the restaurant immediately
when she observes Io .

Recall that we have two kinds of customers, naive and ra-
tional customers. We assume that a ratio ρ of customers are
rational, while others are naive customers. Naive customers fol-
low a naive policy to determine their actions. The naive policy
is fixed across the whole game. We denote the naive policy
as πn (Io).

On the other hand, the goal of a rational customer is to maxi-
mize her long-term expected utility. When a customer arrives at
the system, she observes the system and receives the observed
state. Then, she chooses the table providing largest long-term
expected utility by considering both the network externality n
and unknown restaurant state θ. Notice that the influence of
network externality could change over time due to departure
and arrival of other customers. A rational customer should not
only consider the currently observed state but also predict the
decisions of other customers (both rational and naive ones) in
the future.

Recalling that the immediate utility of a customer choosing
table x in a given time slot t is u(Rx(θ), nx [t]). The long-term
expected utility of a customer arriving at time ta is given by

E[U(x)|Io [ta ]] =
∞∑

t=ta

(1− μ)(t−ta )
∑

θ∈Θ

Pr(θ|Io [ta ])E[u(Rx(θ), nx [t])|Io [ta ],θ].

(4)

Notice that here a customer observes Io without the knowledge
of the actual state I. It requires further efforts to estimate the
corresponding hidden state, which we will introduce later.

A rational customer should maximize her expected utility,
that is, choose the table as follows:

πr (Io) = arg max
x∈{0,1,...,M }

E[U(x)|Io ],∀Io . (5)

The keys to estimate the expected utility are 1) extracting the
hidden state from the observed state, and 2) predicting the future
states conditioning on the currently observed state.

A. System State Transition

The system state transits with time. At each time slot, a new
signal will be generated conditioning on the restaurant state θ.
In addition, the observed actions in the history information h[t]
will be shifted with the action observed at time t−H forgotten
and new action observed at time t added.

The grouping information n[t], which is the key to estimate
the influences of network externality, changes when any of the
following events occurs:

1) New Customer Arrival: When a new customer arrives,
she will select the table according to either naive policy πn (Io)
or rational policy πr (Io), depending on her type. It is also possi-
ble that the customer chooses not to enter the restaurant, that is,
πr (Io) = 0 or πn (Io), when a certain observed state Io occurs.
Additionally, the customer may be rejected by the restaurant
when the loading reaches the maximum capacity N regardless
of the table she selects. We denotes Ie,n and Ie,r as the set of
system states where naive and rational customers will not enter
the restaurant, respectively. Formally speaking,

I = {Io , Ih} ∈ Ie,{n,r} if π{n,r}(Io) = 0 or
M∑

j=1

nj = N.

(6)
For any state I �∈ Ie,{n,r}, there exists a set of state Ia

I,π {n , r }

where every state I′ = {n′,h′, s′, θ} in the set satisfies

n′π {n , r }(Io ) = nπ {n , r }(Io ) + 1, n′j = nj∀j �= π(Io),

h′ = {h2 , . . . , hH−1 , π
{n,r}(Io)}. (7)

In other words, when a new customer arrives and chooses a table
according to the policy, the number of customers in the corre-
sponding table plus one, and the history information h records
this choice. Notice that there may be more than one possible
transition state in the set. For any other state I ∈ Ie,{n,r} , the
corresponding state set Ia

I,π {n , r } is empty.
2) Existing Customer Departure: When an existing cus-

tomer in the restaurant leaves, the number of customers at the
table decreases by one. Since no new customer enters the restau-
rant at this moment, the history information records zero (no
observed action) at this moment. Let Id

I be the set of transition
states from state I that one customer departs from the restaurant.
For every state I′ ∈ Id

I , we have

∃d, n′d = nd − 1, n′j = nj∀j �= d,h′ = {h2 , ..., hH−1 , 0}.
(8)

3) No Change: When both previous events are not occurred,
the grouping information remains unaltered. In such a case, only
history information and signal changes at next time slot. We have
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Iu
I be the set of transition states from state I that no customer

arrives at or departs from the restaurant. For every state I′ ∈ Iu
I ,

we have

n′ = n,h′ = {h2 , . . . , hH−1 , 0}. (9)

Given all the probability distributions we defined in
Section III and the discussions above, we can derive the state
transition probability in (10) is shown at the bottom of this page.

B. Grand Information Extraction

In order to estimate the expected utility provided by certain
tables, it is necessary to estimate the hidden state, which is un-
observable by the customer, conditioning on the observed state.
Specifically, the belief on the hidden state, i.e, the probability
distribution of the hidden state, should be derived. This problem
is similar to the belief update in Partial Observed Markov Deci-
sion Process (POMDP) except that the belief in POMDP is usu-
ally assumed to be an input of the policy while the belief update
process is known and given. Traditionally, the optimal policy
is derived through transforming the POMDP into a belief MDP
with a continuous state space in belief state. The optimal pol-
icy then can be derived using value-iteration or policy-iteration
algorithms on a finite set of value function where the expected
value are formulated as a linear combination of the value func-
tion of a proper set of belief vectors. Nevertheless, the main
disadvantage is that the exponential increase in the size of be-
lief vector set makes this approach computational intractability.
Approximated algorithms are more preferred for practicability.

We proposed a novel belief estimation method, Grand In-
formation Extraction, to extract the distribution of hidden state
directly from the observed state without the needs of belief up-
date process. The basic idea is extending the Bayesian belief
method in CRG from the signal domain to system state domain.
We utilize the stationary probability distribution of the system
states, which can be derived from the state transition probability,
to directly derive the belief on the restaurant state θ. Condition-
ing on θ, we then can estimate the belief on the hidden state
accordingly. The main advantage of this process is the possi-
bility to formulate the system purely with discrete state spaces
without the needs of belief update process and belief vector set.

The problem can then be reduced to discrete-space pseudo MDP
problem.

We first formally defined the belief in H-CRG as follows:

gI|Io = Pr(I|Io). (11)

When the restaurant state θ = k and policy applied by the cus-
tomers are given, the state transition probability can be derived
directly through (10). Then, the stationary state distribution of
H-CRG

[
Pr(I|θ = k, πn , πr )

]
is given by:

[
Pr(I|θ = k, πn , πr )

]
(12)

=
[
Pr(I′|I, θ = k, πn , πr )

] [
Pr(I|θ = k, πn , πr )

]
.

The stationary state distribution of system states I can be derived
through finding the normalized eigenvector of the transition
matrix with eigenvalue as 1.

Lemma 1: The stationary state distribution [Pr(I|θ = k,
πn , πr )] is unique.

Proof: It has been known that the sufficient condition to have
a unique stationary state distribution in a Markov system is to
have exactly one closed communication class in the state tran-
sition. It can be easily seen from (10) that all states have the
positive probability to transit to the zero states with no customer
in the restaurants, no actions observed in the history, and ar-
bitrary signals when all customers depart from the restaurant.
This means all states will be linked to the zero state and it is
impossible to have two closed communication class in H-CRG.
Therefore, the stationary state distribution, conditioning on the
restaurant state θ = k, is unique. �

The uniqueness of the stationary state distribution guarantees
that all rational customers will reach a consensus on the belief
as long as they have the same observations and knowledge on
the state transition.

The stationary state probability Pr(I|θ = k, πn , πr ) repre-
sents the probability that a customer will encounter a certain
state I when he arrives the system at any time, if the restau-
rant state θ is actually k. The Bayesian belief rule then can
be applied to derive the probability of the restaurant θ as fol-
lows. Specifically, when the stationary probability distribution
Pr(I|θ, πn , πr ) is derived for all θ ∈ Θ, we then can derive the

Pr(I[t + 1]|I[t], πn , πr ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρλf(s[t + 1]|θ), I[t + 1] ∈ Ia
I[t],π r ;

(1− ρ)λf(s[t + 1]|θ), I[t + 1] ∈ Ia
I[t],π n ;

(nj [t])μf(s[t + 1]|θ), I[t + 1] ∈ Id
I[t], nj [t + 1] = nj [t]− 1;

(
1− μ

∑M
j=1 nj − λ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r �= ∅, Ia

I[t],π n �= ∅;
(
1− μ

∑M
j=1 nj − ρλ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r �= ∅, Ia

I[t],π n = ∅;
| − |

(
1− μ

∑M
j=1 nj − (1− ρ)λ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r = ∅, Ia

I[t],π n �= ∅;
(
1− μ

∑M
j=1 nj

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r = Ia

I[t],π n = ∅;
0, else.

(10)
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probability of the restaurant state θ as follows:

Pr(θ = k|I, πn , πr ) =
Pr(I|θ = k, πn , πr )∑
k ′∈Θ Pr(I|k′, πn , πr )

. (13)

Nevertheless, the above probability is conditioning on the
system state I, while the customer in fact can only observe the
observed state Io . It requires further efforts to derive the actual
belief of the customer on the hidden state. Let Io

Io be the set
containing all the states sharing the same observed state Io .
The probability that one may observe certain observed state
Io conditioning on θ = k is the sum of the stationary state
probability of all states in Io

Io , which is as follows:

Pr(Io |θ = k, πn , πr ) =
∑

I∈Io
Io

P r(I|θ = k, πn , πr ). (14)

Then again, we can estimate the probability of the restau-
rant state θ conditioning on the observed state Io following the
Bayesian rule:

Pr(θ = k|Io , πn , πr )

=
Pr(Io |θ = k, πn , πr )Pr(θ = k)∑

k ′∈Θ Pr(Io |θ = k′, πn , πr )Pr(θ = k′)
. (15)

The above belief is sufficient for the case that only the restau-
rant state θ is unobservable. Nevertheless, it is also possible that
the grouping information or history information is not observ-
able as we discussed in Section III. In such a case, we still need
to estimate the hidden information in the hidden state. Recall
the stationary state distribution

[
Pr(I|θ = k, πn , πr )

]
we al-

ready derived. Conditioning on a given θ = k, we can derive
the probability of the actual system state I conditioning on the
observed state Io as follows:

Pr(I|Io , θ = k, πn , πr ) =
Pr(I|θ = k, πn , πr )∑

I′∈Io
Io

P r(I′|θ = k, πn , πr )
.

(16)
Combining (15) with (16), we can derive the belief on the

system state I conditioning on the observed state Io :

gI|Io ,π n ,π r = Pr(I|Io)

=
∑

k∈Θ

Pr(I|Io , θ = k, πn , πr )Pr(θ = k|Io , πn , πr ). (17)

It should be noted that the belief from the proposed Grand
Information Extraction process on the state I is conditioned on
not only the observed state Io but also the policies applied by
rational and naive customers. The accuracy of the estimated
belief depends on how informative the observed actions are,
which is determined by the policies.

C. Equilibrium Conditions

In H-CRG, rational customers will seek to maximize their
long-term expected utility. Nevertheless, the expected utility is
determined by not only the current state of the system but also
the transition of the state in the future.

The state transition is determined by the choice of customers
at different states. The grouping n, for instance, is determined
by the policy applied by not only the naive customers but also
other rational customers in the future. Additionally, the belief

of a customer on the hidden state relies on the observed state,
which contains the actions of other previous customers. As long
as the actions applied by other customers change, the state tran-
sition changes, and so is the expected utility experienced by the
customer. In sum, the belief on the hidden state and the state
transition depends on the choices of all customers, while each
customer’s choice depends on their belief on the states. The
complex interactions between customers is therefore captured
by the proposed H-CRG.

We now analyze the pure-strategy Nash equilibrium of H-
CRG. Nash equilibrium is a popular solution concept in game
theory which is used to predict the outcome of a game. Let
E[U(xIo ,x−Io )] be the expected utility of a customer observing
Io , where xIo is her choice and x−Io are the choices of other
customers at other states. The pure-strategy Nash equilibrium
of H-CRG is defined as follows:

Definition 1 (Nash Equilibrium): The Nash equilibrium, or
pure-strategy Nash equilibrium, in the proposed H-CRG is a
policy π∗ where for all Io ,

E[U(x∗Io ,x∗−Io )] ≥ E[U(x,x∗−Io )],∀x ∈ {0, 1, 2, ...,M},
(18)

where x∗Io = π∗(Io), x∗−Io = {π∗(I′o)|I′o �= Io}.
The expected utility in (18) can be analyzed by modeling

H-CRG as a Multi-Dimensional Markov Decision Process (M-
MDP) [4]. Let the system state I be the state and the πr (Io) be
the policy in M-MDP, we define the immediate reward as

R(I, x) = R(n,h, s, θ, x) = u(Rx(θ), nx). (19)

The expected reward of a customer choosing table x at state
I in the system can be denoted as WI (I, x) and derived through
Bellman equation. When the game reaches stationary states, the
expected reward for a customer to stay at a table x is equal
to the immediate reward she receive at the current state plus
the expected reward she will receive in the future if she keeps
staying in the restaurant. Therefore we have:

WI (I, x, πr ) = R(I, x)

+ (1− μ)
∑

I′
Pr(I′|I, πn , πr , x)WI (I′, x, πr ),∀I, x. (20)

Nevertheless, the state transition probability
Pr(I′|I, πn , πr , x) we denoted here is different from (10)
since it is conditioned on the fact that this customer does not
depart at next time slot. Specifically, when x > 0, the number
of customers who may depart from table x will be nx [t]− 1
instead of nx [t]. The transition probability therefore is given by
(21) is shown at the bottom of next the page.

The Bellman equations in (20) describe the inherent expected
rewards if one has the full knowledge of the system state. Nev-
ertheless, the inherent expected reward is unknown to the cus-
tomers since they only have the knowledge of observed state
Io . It requires further efforts to estimate the expected utility
conditioning on the observed state Io . The idea is to utilize the
belief we extracted through Grand Information Extraction to es-
timate the expected immediate reward and corresponding state
transition probability. Let W (Io , x) be the expected utility of a
customer at table x if she observes Io . Recalling that Io

Io is the
set of states sharing the same observed state Io and gI|Io is the
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distribution of the states in the set conditioning on the observed
state Io , we have

W (Io , x) =
∑

I∈Io
Io

gI|Io ,π n ,π r W I (I, x),∀Io , x ∈ {1, 2, . . . ,M}.

(23)
Additionally, let W (Io , 0) be the utility if the customer chooses
to leave the system immediately. This represents the lower bound
of the expected utility a customer will enter the restaurant. In
this paper, we letW (Io , 0) = 0,∀Io without losing generality.

Rational customers seek to maximize their long-term ex-
pected utility given the action they applied by other customers
in previous and future states. The actions applied by other cus-
tomers are captured by the rational policy πr . Nevertheless, its
own action will also influence the system state transition. Let
Pr(I

′o |Io , πr , x) be the probability that the observed state tran-
sits from Io to I

′o if she selects table x. The optimal action for
the customer is to choose the table that maximizes the expected
utility. We thus have

πr (Io) = arg max
x∈{0,1,2,...,M }

∑

I′o

P r(I
′o |Io , πr , x)W (I

′o , x).

(24)
The exact transition probability from Io to I

′o depends on the
form of the observed state. The transition in grouping informa-
tion and history information is unique since it only involves ex-
actly one customer joining a table. Clearly, when x > 0, we have
n′x = nx + 1 and h′ = {h2 , h3 , . . . , x} in the transition state I
and the corresponding Io . On the other hand, when the customer
chooses not to enter the restaurant, there is no change in the
grouping. Therefore, we have n′x = nx and h′ = {h2 , h3 , ..., 0}
when x = 0.

Nevertheless, the newly generated signal s′ conditions on the
restaurant state θ, which is in the hidden state Ih . We therefore
need to estimate the new signal s′ based on the belief on the
restaurant state. Concluding from above, we have the transition

probability of observed states in (22) is shown at the bottom of
this page, based on the observed state Io and the belief from
Grand Information Extraction gI|Io ,π n ,π .

The coupling relation between the long-term expected utility
W (Io) and the rational policy πr (Io) captures the influences of
any customer’s action on the expected utility. Then, according
to the Nash equilibrium of H-CRG we defined in Definition 1,
we have the equilibrium conditions of H-CRG as follows:

Theorem 1: The Nash equilibrium of H-CRG is π∗(Io) if

WI∗(I, x, π∗) = R(I, x)

+ (1− μ)
∑

I′
Pr(I′|I, πn , π∗, x)WI∗(I′, x, π∗), (25)

W ∗(Io , x) =
∑

I∈Io
Io

gI|Io ,π n ,π ∗W
I (I, x), (26)

π∗(Io) = arg max
x

∑

I′o

P r(I
′o |Io , π∗, x)W ∗(I

′o , x), (27)

for all I, Io , x ∈ {1, 2, . . . ,M}.
Proof: Given a policy π∗, the expected utility of any ratio-

nal customer applying action x at state Io is given by (26). In
addition, given (27), we have

E[U(π∗(Io), π∗−Io (Io))] = W ∗(Io , π∗(Io)

≥W ∗(Io , x) = E[U(x, π∗−Io (Io))]

Therefore, the policy π∗ is a Nash equilibrium according to
Definition 1. �

V. SOLUTIONS

A. Centralized Policy

We first analyze the socially-optimal policy for the pro-
posed H-CRG. The socially-optimal policy is the solution that
maximizes the expected social-welfare of the whole system.

Pr (I[t + 1]|I[t], πn , πr , x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρλf(s[t + 1]|θ), I[t + 1] ∈ Ia
I[t],π r ;

(1− ρ)λf(s[t + 1]|θ), I[t + 1] ∈ Ia
I[t],π n ;

(nj [t])μf(s[t + 1]|θ), I[t + 1] ∈ Id
I[t], nj [t + 1] = nj [t]− 1, j �= x;

(nx [t]− 1)μf(s[t + 1]|θ), I[t + 1] ∈ Id
I[t], nx [t + 1] = nx [t]− 1;

(
1− μ(

∑M
j=1 nj − 1)− λ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r �= ∅, Ia

I[t],π n �= ∅;
(
1− μ(

∑M
j=1 nj − 1)− ρλ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r �= ∅, Ia

I[t],π n = ∅;
(
1− μ(

∑M
j=1 nj − 1)− (1− ρ)λ

)
f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r = ∅, Ia

I[t],π n �= ∅;
(1− μ(

∑M
j=1 nj − 1)f(s[t + 1]|θ), I[t + 1] ∈ Iu

I[t], Ia
I[t],π r = Ia

I[t],π n = ∅;
0, else.

(21)

Pr(I
′o |Io , πr , x)

⎧
⎪⎪⎨

⎪⎪⎩

∑
θ∈Θ Pr(θ = k|Io , πn , πr )f(s′|θ), h′ = {h2 , h3 , ..., x}, n′x = nx + 1, n′j = nj ,∀j, x > 0,;

∑
θ∈Θ Pr(θ = k|Io , πn , πr )f(s′|θ), h′ = {h2 , h3 , ..., 0}, n′ = n, x = 0 or

∑M
j=1 nj = N ;

0, else.

(22)
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Algorithm 1: Value Iteration for Centralized Solution.

1: Initialize πs,0 ,Ws,0 , l = 0
2: while 1 do
3: l← l + 1
4: Pr(I

′o |Io , πn , πr )← (22)
5: for all Io do
6: πs,l ← (30)
7: Ws,l ← (29)
8: end for
9: Ws,d ←Ws,l+1 −Ws,l

10: if max Ws,d −min Ws,d < ε then
11: Break
12: end if
13: end while
14: Output πr,l and Ws,l

This solution serves as the performance bound provided by
centralized-control solutions. We define the social welfare as
the average total utility of all customers in the restaurant,

SW = lim
T→∞

T∑

t=0

∑M
j=1 njU(Rj (θ), nj )|I[t]

T
. (28)

The expected total utility given the observed state Io , which
we defined as Ws(Io), can be given by the Bellman equation

Ws(Io) = μ′
∑

I′o

P r(I
′o |Io , πr )Ws(I

′o)

+
∑

I∈Io
Io

gI|Io ,π n ,π r

M∑

j=1

njU(Rj (θ), nj )|I. (29)

Notice that Pr(I
′o |Io , πr ) can be derived by reducing (10) to

the observed state domain.
This form resembles a Markov Decision Process (MDP) ex-

cept that the immediate reward is not only related to the current
action but also the actions in other states due to the Grand In-
formation Extraction. In such a case, it is very challenging to
find the socially-optimal solution. Instead, we seek to find the
centralized policy which maximizes the current expected social-
welfare at each instance, or the expected social-welfare given
the currently applied policy. Notice that this is also a common
objective in traditional MDP problems.

The centralized policy is given by

πs(Io) = arg max
x∈{0,1,2,...,M }

∑

I′o

P r(I
′o |Io , x)Ws(I

′o). (30)

We then propose to use value-iteration algorithm to find the
centralized policy. The proposed algorithm is different from the
traditional value-iteration algorithm in MDP. When a policy
is updated, not only the expected social welfare but also the
immediate social welfare is updated. The immediate reward
social welfare is updated by the Grand Information Extraction
in order to derive the correct belief on the hidden states under
the new policy. The algorithm is shown in Algorithm 1.

Algorithm 2: Value-Iteration Algorithm for Nash
Equilibrium.

1: Initialize πr ,W,WI ;
2: while 1 do
3: gI|Io ,π n ,π r ← (17)
4: for all Io do
5: πr ′ ← (27);
6: WI ′ ← (25);
7: W ′ ← (26);
8: end for
9: Wd ←W ′ −W

10: if max Wd −min Wd < ε then
11: Break
12: else
13: W ←W ′, WI ←WI ′ , πr ← πr ′

14: end if
15: end while
16: Output πr , W , and WI

The centralized policy may provides superior performance
from the service operator (i.e. restaurant owner)’s perspective.
Nevertheless, it doesn’t consider the rationality of rational cus-
tomers. In some cases, the centralized policy requires some
rational customers choose the tables which are beneficial to the
system but sub-optimal for their own utility. In such a case,
These customers may refuse to follow the centralized policy if
no extra incentive mechanism is introduced [5].

B. Nash Equilibrium

When it turns to the original H-CRG setup where rational
customers choose to maximize their own long-term expected
utilities, it is more challenging to derive the final outcome, that
is, the Nash equilibrium, due to the competitions among cus-
tomers. Inspired by the value-iteration algorithm for centralized
solution, we propose a value-iteration algorithm to finding the
Nash equilibrium in the proposed H-CRG. The algorithm is
shown in Algorithm 2.

Lemma 2: The output of Algorithm 2, if converged, is the
Nash equilibrium of the H-CRG when epsilon→ 0.

Proof: It can be easily seem that when Algorithm 2 con-
verges with ε = 0, all conditions in Theorem 1, that is, (25),
(26), and (27) are satisfied. Therefore, the output policy πr is
the Nash equilibrium of the proposed H-CRG. �

Unfortunately, we find that the pure-strategy Nash equilib-
rium may not exist when the belief on the hidden state is highly
influenced by the choices applied by other customers observed
in the history information. In some cases, the rational policy
applied by rational customers will be damping from one to
another in the stochastic system, which we called Information
Damping. Specifically, the optimal choice of a rational cus-
tomer depends on her belief on the restaurant state. The belief
is conditioned on both her received signal and observed actions,
while the information contained in the later term depends on
whether other customers make decisions following their signals
or not. When all rational customers follow their own signal, the
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information contained in previous actions could be stronger
than her own signal when the length of observed history
is long enough. When the information is strong enough to
overcome the signal, the customers may choose to follow
the actions while ignoring their own signals. This decision,
on the other hand, reduces the information contained in the
observed actions. In some cases, the information in the action
is reduced to a degree that the received signal becomes more
informative than the observed actions. Then, customers switch
back to follow the observed signals instead of the observed
actions. We called this Information Damping as customers
may alternatively choose to follow the signals or the action
of others. This phenomenon is similar to Information Cascade
in traditional social learning problems, where the information
contained in the observed action will be constrained due to
the information diffusion structure [24], [25]. Nevertheless,
the Information Damping we discussed here further points out
that the information contained in the actions could be reduced
in a stochastic system. Information damping is one of the key
factor that leads to the nonexistence of pure-strategy Nash
equilibrium, which may influence the stability of the system.

The root cause of information damping is the loss of informa-
tion in the observed action due to rational choices of customers.
Nevertheless, it turns out that a way to avoid this is to consider
not only the rational customers but also naive customers in the
system. The naive customers, who follow a predetermined pol-
icy to select the table given the observed state, is commonly seen
in most systems. In wireless networks, for instance, the naive
customers could be the legacy devices which follow the existing
protocols without strategic thinking. In social networks, on the
other hand, the naive customers could be the agents who are
naive with short-term memory, which is commonly observed in
the literature [26], [27]. The naive policy πn followed by the
naive customers are predictable, not influenced by the rational
customers, and potentially can be informative if the received
signal influences the output of the policy πn .

The action of these naive customers will be treated as an
external information source to reveal the hidden state in the
proposed Grand Information Extraction process. Nevertheless,
it can be difficult to distinguish the action of naive customers
from rational ones. In the proposed H-CRG, as we illustrated in
Section III, we assume that these actions are indistinguishable.
The naive policy πn applied by these naive customers, on the
other hand, is known by the rational customers. When the ratio
of naive customers increases, the observed action potentially
will be more informative and predictable. The proposed Grand
Information Extraction process will automatically extract the
information conditioning on the naive policy and the customer
type ratio. Due to the complexity of the process, it is still an
open problem to derive the lower bound of customer type ratio
to guarantee the existence of pure-strategy Nash equilibrium.

VI. APPLICATION: CHANNEL ACCESS IN COGNITIVE

RADIO NETWORKS

In this section we introduce an important application of
H-CRG: channel access in cognitive radio networks. We de-

scribe the problem first and then illustrate the corresponding
H-CRG model. We then evaluate the performance of H-CRG
through data-driven simulations [8].

We consider a cognitive radio network with some primary
users and secondary users who share the channels. The primary
users have the higher priority to access the channels. That is,
secondary users are not allowed to access the channel as long
as the primary users already occupied it. In some cases, the
secondary users may need to pay a penalty if they accidentally
interfere the primary user transmissions. Secondary users there-
fore are required to detect the activity of primary users through
channel sensing before the actual transmission. Nevertheless,
the channel sensing is imperfect, especially when the protocol
of primary users is unknown. Either miss detection or false alarm
may damage the service quality experienced by both primary
and secondary users. Cooperative sensing is a popular approach
to enhance the detection accuracy through aggregating the sens-
ing results from all nodes. The aggregated results could lead
to a better consensus on the channel states and therefore better
decisions on channel access.

Here we propose a new approach for cooperative sensing in-
spired by the stochastic social learning techniques in H-CRG.
The secondary users now detect not only the activity of primary
users but also the access attempts of other secondary users.
Specifically, a secondary user will first wait for few slots and
detect the access attempts of other secondary users in the chan-
nels. Then, it will detect the activity of primary user through
traditional channel sensing. The secondary user may learn the
sensing results of other secondary customers from the collected
channel access pattern. The advantage of this approach is that
no control channel or signaling exchanges between secondary
users are required, which makes it more practical for networks
with limited channel resources. Nevertheless, such an advantage
comes with a cost: each secondary user must wait for a period of
time before access the channel. This introduces an extra delay
and therefore reduces the average throughput. When the accu-
racy of sensing result is high, the cost in extra delay may cancel
out the benefit retrieved in the proposed learning process.

We now formulate the system model. Let us consider M
channels, while one of them is currently occupied by the primary
users. The secondary users sense the channels and determine
the channel occupied by the primary user. We assume that the
sensing is imperfect, that is, with a probability of p < 1 that
the occupied channel will be detected correctly. The access
probability of the secondary users per slot is given by pa <
1. Notice that when multiple users access the channel at the
same time, the transmissions will collide with each others and
failed. Therefore, given that the channel is unoccupied by the
primary users and k secondary users select the same channel,
the expected access opportunity a secondary user may get is

E[u(1, k)] = pa(1− pa)k−1 . (31)

On the other hand, when the channel is occupied by the primary
user, the secondary user who attempts to access the same channel
will need to pay a penalty:

E[u(0, k)] = C < 0. (32)
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When a secondary user arrives, she selects a channel for access-
ing. We assume that she will wait for H slots and detect the
access pattern of other customers. At the final slot, she will also
sense the activity of primary users in each channel. We called
these slots as sensing slots. Then, she will choose the channel
to access with until her departure. We call these following slots
are accessing slots. We assume that there are two kinds of sec-
ondary users: legacy and strategic users. The legacy secondary
users will access the channel following her own sensing results.
This represents the legacy devices without cooperative sensing
capability. Strategic secondary users, on the other hand, will
utilize all the observed information to select the channel giving
him the largest expected utility.

The long-term expected utility of a secondary user is the
average expected successful access attempt before he leaves
the system, including both sensing slots and accessing slots.
Notice that all secondary users will wait in the sensing slots
before access the channel, which means that each secondary
users have zero access opportunities for the first H slots. The
larger the H , the smaller portion of accessing slots in the
duration of a secondary user’s stay.

We can formulate the channel access problem as a H-CRG if
we treat M channels as tables, the sensing results as the signal
s, and the utility as the access opportunity minus the penalty.
In addition, the restaurant state θ = {1, 2, . . . ,M} denotes the
channel occupied by primary users. We may derive both the
centralized policy and Nash equilibrium policy for the strategic
secondary users. Notice that in this system a secondary user may
observe the action applied by previous users but not the current
grouping. That is, the observed state Io = {h, s}. Therefore,
the rational customers not only need to derive the belief on
the primary user occupation but also estimate the number of
secondary users choosing the same channel.

A. Simulation Results

We evaluate the performance of proposed policies through
data-driven simulations with user process and network models
using time-invariant parameters extracted from the real dataset.
Specifically, the proposed H-CRG framework requires several
components, such as the user arrival process, departure process,
and utility functions. We extract the required parameters for
each component from the dataset and determine the appropri-
ate settings for the problem. In the simulation, the parameters of
user process and network models are extracted from the CRAW-
DAD Dartmouth campus WLAN trace [8], [9]. The arrival and
departure of secondary users follow the distribution extracted
from the trace in the dataset. For the utility function, we con-
sider the slotted ALOHA access mechanism and assume that
secondary users focus on the successful access attempts, with a
penalty imposed by the primary user if an interference occurred.
The sensing accuracy, on the other hand, depends on the sensing
techniques the system applied and here we left it as an adjustable
parameter in the simulations. It can be replaced with the corre-
sponding accuracy when certain sensing technique is chosen.

We simulate a cognitive radio network with 2 channels and
maximum 8 secondary users. The length of a slot is 5 minutes.

The primary users may choose either channel to occupy with
equal probability. The arrival and departure of secondary users
follow the distribution extracted from [8], that is, the arrival rate
of naive and strategic secondary users are 0.2106 and 0.1479
per slot, respectively. The departure rate per secondary user is
0.0715 per slot [9]. For each secondary user in the network, the
access probability per slot is 0.7. The penalty for interfering
primary user is −0.7 per slot.

We compare the performance of the derived policy from H-
CRG with four other policies: signal, belief, myopic, and cen-
tralized. The signal policy is the same as the policy applied
by legacy devices, where the users always access the channel
following their own signal. This demonstrates the performance
bound if the secondary users do not cooperate at all. The belief
policy represents the strategy to follow the belief on the primary
user occupation extracted by the Grand Information Extraction
by (15), but to ignore the estimation on the number of users. This
shows the performance upper bound if secondary users cooper-
ate with each other in the sensing but ignore the effect of network
externality. The myopic policy represents the strategy that both
the primary user occupation and number of secondary users are
estimated by Grand Information Extraction, but the payoff in
the future slots is ignored. This shows the performance bound if
secondary users consider both the sensing results and network
externality, but ignore the influences of other secondary users in
the future. Finally, the centralized policy is the policy we derived
from Algorithm 1. This represents the policy that there exists a
centralized-control node to determine the channel access policy
for secondary users. It serves as the performance upper bound
of social welfare if a centralized control mechanism is applied.

We evaluate the performance of different policies with two
metrics: expected long-term individual utilities for new strategic
users and average social welfare per slot.

We first evaluate the influence of history length to the per-
formance of all policies. We let the signal quality p = 0.85 and
then simulate with different history length from 1 to 5. This
simulation helps us understand whether the increased history
information helps improve the accuracy of the belief on the hid-
den state and the utilities of the secondary users. The simulation
results are shown in Fig. 2. A clear trend shows that the increase
in history length benefits the expected individual utility of the
user. This is due to the increase in the observed state space,
which contains more information to be extracted by Grand In-
formation Extraction. We observe that the proposed equilibrium
policy from H-CRG provides highest individual expected utility
among all the policies. In addition, H-CRG is the only policy
which guarantees positive expected utilities for new users. In-
terestingly, the increases in H also brings a positive effect on
the expected utility of signal policy. This is due to the fact that
the signal policy receives a negative expected utility and the
accuracy is not affected by the history length. Given that the
expected utility is negative in accessing slots, a reduction in the
portion of accessing slots will bring a positive impact on the
expected utility under the signal policy.

For the social welfare, on the other hand, we observe that the
trend is inverse for the equilibrium policy for H-CRG. This is
due to the fact that the increase in the history length suggests
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Fig. 2. Influence of history length. (a) Expected individual utility. (b) Average
social welfare. (c) Gain vs. cost for p = 0.85. (d) Gain gained from history length.

better understanding on the hidden state, which also leads to a
fiercer competitions among the secondary users. This may have
a negative impact on the social welfare. Nevertheless, the pro-
posed equilibrium policy is still closest to the centralized policy.
We also observe that H-CRG outperforms centralized policy in
expected utility of new secondary users but not in social wel-
fare. The reason is that some users may be sacrificed in order to
achieve better social welfare in centralized policy. For instance,
some secondary users may be forbidden to enter the system in
centralized policy in order to protect other existing users from
higher collision rates in channel access, even if these new users
may receive positive utilities if they enter. Such protections lead
to a higher social welfare but may impale the utility of new
customers. For H-CRG, on the other hand, new secondary users
will access the channel which maximize their own utilities,
regardless whether this attempt will damage the social welfare.
Therefore, the expected utility of new customer should be higher
with this policy, in exchange of a lower social welfare.

Next, we discuss the impact of sensing slots on the average
utility. We first illustrate the average utility of secondary users in
the whole duration and access slots in Fig. 2(c). The differences
between these two lines are the overhead due to the extra delay
in sensing slots. We observe that the overhead introduced by
the sensing slots grows significantly with the increase of history
length. On the other hand, the increase of average utility in
access slots diminishes with the increase of history length. This
suggests that a proper history length exists in order to balance
the accuracy and the extra overhead brought by the sensing
slots. The results also suggest that the resulting performance is
concave in history length, therefore the optimal history length
can be easily found. We also illustrate the average utility of
secondary users under different signal quality in Fig. 2(d). We
observe that the increase of utility brought by larger history
lengths are more significant when the signal quality is low. This
is due to the fact that when the signal quality is low, the increase
of accuracy due to the extended history is beneficial enough
to compensate the overhead introduced by the extra delay. The
results suggest that the sensing slots should be expanded when
the signal quality is low, and vice versa.

We then evaluate the influence of signal quality (channel
sensing accuracy) to the performance of all policies. We let
the history length H = 4 and then simulate with different sig-
nal quality from 0.9 to 0.45. The results are shown in Fig. 3.
We observe that the increase in signal quality benefits the ex-
pected individual utility of the user. This is due to the increased
signal quality and therefore the information contained within.
Nevertheless, we observe that the proposed equilibrium policy
from H-CRG still provides highest individual expected utility
among all the policies except when the signal quality is high.
For the case that the signal quality is high, the centralized policy
provides a higher expected utility. Nevertheless, the centralized
policy is sub-optimal for some users at certain states, there-
fore is unstable and cannot be implemented without additional
incentive mechanisms.

For the social welfare, on the other hand, we observe that
equilibrium, myopic, and centralized policies provide same
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Fig. 3. Influence of signal quality. (a) Expected individual utility. (b) Average
social welfare.

social welfare when the signal quality is low, but the social
welfare degrades for both equilibrium and myopic ones when
the signal quality is high. This is still the influence of fiercer
competition when the system state is more accurately identified
by better signal. This may have a negative impact on the social
welfare. Nevertheless, the performance of the proposed equilib-
rium policy still is closest to the centralized policy in most cases.

Finally, we compare the performance of the proposed frame-
work with different information sources. Specifically, we re-
place the actions revealed in the observed state in H-CRG with
signals each user receives when she arrives the system. In other
words, users reveal their signals to other users when they access
the channel in the revised model. We define the original H-CRG
as action-based model while the revised one as signal-based
model. The revised model represents the social learning system
using user-generated signals as information source. Notice that
all proposed algorithms still apply to the revised model. The
expected utility of new customers and social welfare under both
models are shown in Fig. 4. We observe that the performance
loss from signal-based to action-based model, if any, is negligi-
ble. The result showed that the revealed actions already contain
enough information for rational customers to learn the hidden
information and make proper decisions.

Fig. 4. Action vs. signal-based model. (a) Expected individual utility.
(b) Average social welfare.

VII. CONCLUSION

We propose a new stochastic game-theoretic framework,
Hidden Chinese Restaurant Game, to utilize the passively-
revealed actions instead of user-generated contents as the main
information source in social learning process. Based on the
stochastic state transition structure and inspired by the Bayesian
learning in Chinese Restaurant Game, the propose Grand Infor-
mation Extraction can extract the belief on the hidden infor-
mation directly from the observed actions. The proposed belief
extraction process is universal for any Markovian system. The
coupling relation between the belief and the policy is further
utilized to transform the original continuous-state formulation
in traditional Partial-Observed MDP (POMDP) into a discrete-
state MDP. The optimal policy is then analyzed in both the
centralized approach and the game-theoretic approach. We no-
tice that the pure-strategy Nash equilibrium may not exist in the
H-CRG. Specifically, the Information Damping phenomenon
may rise in a certain H-CRG in which customers synchronously
switch from one policy to another due to the information loss in
the observed action. Fortunately, the existence of naive cus-
tomers can help ensure the existence of pure-strategy Nash
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equilibrium. Their actions can be treated as signals to stabi-
lize the belief of agents on the observed actions. We evaluate
the performance of H-CRG through simulations by applying
the framework to the channel access problem in cognitive ra-
dio networks. We conduct data-driven simulations using the
CRAWDAD Dartmouth campus WLAN trace. The simulation
results showed that the equilibrium strategy derived in H-CRG
provides higher expected utilities for new users and maintains a
reasonable high social welfare comparing with other candidate
strategies.
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