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D
ynamic spectrum access with cognitive radios has
become a promising approach to improve spec-
trum efficiency by adaptively coordinating differ-
ent users’ access according to spectrum dynamics.
However, selfish users competing with each other

for spectrum may exchange false private information or collude
with others to get more access to the spectrum and achieve
higher profits. In this article, we investigate two game-theoreti-
cal mechanism design methods to suppress cheating and collu-
sion behavior of selfish users: a self-enforcing truth-telling
mechanism for unlicensed spectrum sharing and a collusion-
resistant multistage dynamic spectrum pricing game for
licensed spectrum sharing.

INTRODUCTION
With the emergence of new wireless applications and
devices, the last decade has witnessed a dramatic increase in
the demand for radio spectrum, which has forced govern-
ment regulatory bodies, such as the U.S. Federal
Communications Commission (FCC), to review their poli-
cies. Since the bandwidth demands may vary rapidly along
the time and space dimensions, the traditional rigid alloca-
tion policies by the FCC have severely hindered efficient uti-
lization of scarce spectrum. Hence, dynamic spectrum
access, with the aid of cognitive radio technology [1], has
become a promising approach, enabling wireless devices to
utilize the spectrum adaptively and efficiently.
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Cognitive radio, featured with cognitive capability and recon-
figurability [2], [3], enables the wireless devices not only to rap-
idly sense the information from the radio environment but also
to dynamically adapt operational parameters, so that more effi-
cient and intensive spectrum utilization is possible. Since 2002,
the FCC has been considering more flexible and comprehensive
use of spectrum resources [4].
Researchers have also proposed
various approaches to optimally
share the available resources using
cognitive radio technology in dif-
ferent scenarios. Since competi-
tors for spectrum rights often
belong to different authorities,
they have no incentive to cooper-
ate with each other and may act
selfishly to maximize their own revenues. Therefore, game theo-
ry, which analyzes the conflict and cooperation among intelli-
gent, rational decision makers, is an excellent tool and has been
widely used in designing efficient spectrum sharing schemes.

In [5] and [6], the authors investigated whether spectrum
efficiency and fairness can be obtained by modeling the spec-
trum sharing as a repeated game. The authors in [7] proposed
local bargaining to achieve distributed conflict-free spectrum
assignment that adapted to network topology changes. In [8], a
no-regret learning algorithm using the correlated equilibrium
concept to coordinate the secondary spectrum access was con-
sidered. Various auction and pricing approaches were proposed
for efficient spectrum allocation, such as auction games for
interference management [9], [10], the demand responsive
pricing framework [11], and pricing for bandwidth sharing
between WiMAX networks and WiFi hot spots [12]. A belief-
assisted distributive double auction was proposed in [13] that
maximized both primary and secondary users’ revenues, and a
game-theoretical overview for dynamic spectrum sharing was
presented in [14]. [A primary user (or licensed user) refers to a
spectrum license holder, e.g., TV transmitter, radar transmitter;
a secondary user (or unlicensed user) refers to a user who has
no spectrum license, e.g., users in the industrial, scientific and
medical (ISM) band.]

Although the approaches listed above have boosted the spec-
trum efficiency, most of them are based on the assumption that
the players (e.g., wireless users/devices) are honest and will not
cheat. Nevertheless, selfish players aim only to maximize their
own interests; if they believe their interests can be further
increased by cheating, the users will no longer behave honestly,
which usually results in a disastrous outcome for the spectrum
sharing game. Therefore, designing a robust spectrum sharing
scheme that can suppress cheating behaviors of selfish users is
of critical importance.

Motivated by the preceding, mechanism design theory [15],
whose founders, L. Hurwicz, E.S. Maskin, and R.B. Myerson,
won the Nobel Prize in Economics in 2007, is a powerful tool to
implement an optimal system-wide solution to a decentralized
optimization problem with self-interested players. By carefully

setting up the structure of the game, each player has an incen-
tive to behave as the system designer intends, which results in a
desired outcome. In this article, we investigate mechanism
design-based dynamic spectrum access approaches in two sce-
narios: spectrum sharing in unlicensed bands and licensed
bands. First, a self-enforcing truth-telling mechanism for unli-

censed spectrum sharing is pro-
posed based on repeated game
modeling, in which the selfish
users are motivated to share unli-
censed spectrum, under the threat
of punishment, and their cheating
behavior is suppressed with the aid
of a transfer function. The transfer
function represents the payment
that a user receives (or makes if it

is negative) based on the private information he/she announces
in the spectrum sharing game. In the proposed mechanism, it is
shown that the users can get the highest utility only by announc-
ing their true private information. Then, a collusion-resistant
multistage dynamic spectrum pricing game for licensed spec-
trum sharing is proposed to optimize the overall spectrum effi-
ciency and combat possible user collusion. Both approaches are
demonstrated to alleviate the degradation of the system perform-
ance due to selfish users cheating.

GAME THEORY BASICS FOR
COGNITIVE RADIO NETWORKS
In cognitive radio networks, the network users make intelligent
decisions on spectrum usage and communication parameters
based on the sensed spectrum dynamics and other users’ deci-
sions. Furthermore, the network users who compete for spec-
trum resources may have no incentive to cooperate with each
other and behave selfishly. Therefore, it is natural to study the
intelligent behaviors and interactions of selfish network users
from the game theoretical perspective.

Game theory is a mathematical tool that analyzes the strategic
interactions among multiple decision makers. Three major com-
ponents in a strategic-form game model are the set of players, the
strategies/action space of each player, and the utility/payoff func-
tion, which measures the outcome of the game for each player. In
cognitive radio networks, the competition and cooperation
among the cognitive network users can be well modeled as a spec-
trum sharing game. Specifically, in open spectrum sharing, the
players are all the secondary users that compete for unlicensed
spectrum; in licensed spectrum sharing, where primary users
lease their unused bands to secondary users, the players include
both the primary and secondary users.

The strategy space for each player may vary according to the
specific spectrum sharing scenario. For instance, the strategy
space of secondary users in open spectrum sharing may include
the transmission parameters they want to adopt, such as the
transmission powers, access rates, time duration, etc.; while in
licensed spectrum trading, their strategy space includes which
licensed bands they want to rent and how much they would pay

IN THIS ARTICLE, WE INVESTIGATE
TWO GAME-THEORETICAL

MECHANISM DESIGN METHODS
TO SUPPRESS CHEATING AND

COLLUSION BEHAVIOR OF
SELFISH USERS.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 4, 2009 at 10:02 from IEEE Xplore.  Restrictions apply.



for leasing those licensed bands. For the primary users, the
strategy space may include which secondary users they would
lease each of their unused bands to and how much they will
charge for each band. The utility functions for different users
are accordingly defined to characterize various performance cri-
teria. In open spectrum sharing, the utility function for the sec-
ondary users is often defined as a nondecreasing function of the
quality of service (QoS) they receive by utilizing the unlicensed
band; in licensed spectrum trading, the utility function for the
users often represents the monetary gains (e.g., revenue minus
cost) by leasing the licensed bands.

In a noncooperative spectrum sharing game with selfish net-
work users, each user only aims to maximize his/her own utility by
choosing an optimal strategy. And the outcome of the noncoopera-
tive game is often measured by the Nash equilibrium (NE). The NE
is defined as the set of strategies for all the users such that no user
can improve his/her utility by unilaterally deviating from the equi-

librium strategy, given that the other users adopt the equilibrium
strategies. So the NE indicates that no individual user would have
the incentive to choose a different strategy. However, in a static
noncooperative game, that is, the game is played only once, the
users are myopic and only care about the current utility, and the
competition between selfish users often results in an NE that is
not system efficient. Therefore, stimulation of cooperation among
selfish users is very important to achieve social welfare.
Considering that the spectrum sharing in cognitive radio networks
is a dynamic process, repeated game models better capture inter-
actions in long-run scenarios. In repeated game modeling, the
users play a similar static game many times, so they will make
decisions conditioned on other users’ past moves. In this way,
cooperation can be enforced by establishing the threat of punish-
ment, individual reputation, mutual trust, and so on.

Due to the selfish nature of the network users, they will not
reveal their true private information (e.g., channel quality values
in open spectrum sharing and the evaluation of licensed bands in
licensed spectrum trading) if they believe that cheating can fur-
ther improve their own utility values. Cheating usually results in
a disastrous outcome. Therefore, certain incentives have to be
provided so as to suppress users’ cheating behaviors. To this end,
mechanism design [15] can be employed to implement an opti-
mal system-wide solution to a decentralized optimization prob-
lem even though the players are self-interested. By carefully
designing the rules of the game, selfish users in the spectrum
sharing game will behave as the system designer intends, result-
ing in a desired outcome with social welfare.

SPECTRUM SHARING IN UNLICENSED BANDS
Consider the spectrum sharing in unlicensed bands shown in
Figure 1(a), where K secondary users coexisting in the same
area compete for spectrum access rights in an open, unlicensed
band. The cognitive radio architecture is shown in Figure 1(b),
which can interface with the radio environment to gather and
exchange channel measurements among distributed users, ana-
lyze the collected measurements via signal processing blocks,
and assign frequency bands to specific users by mechanism
design to optimize the spectrum allocation efficiency.

ONE-SHOT UNLICENSED SPECTRUM SHARING GAME
As mentioned in the previous section, in the unlicensed spec-
trum sharing the players are all the secondary users, and the
strategy for user i is the set of transmission power level pi, with
pi ∈ [0, pmax

i ] and pmax
i representing the peak power con-

straint. The utility function for user i can be defined as an
increasing function of his/her QoS, and we use the data
throughput as the utility for simplicity, which is expressed as 

Ri(p1, p2, . . . , pK) = log2

(
1 + pi |hii|2

N0 + ∑
j �=i pj |hji|2

)
. (1)

In (1), |hji| represents the channel gain from user j’s transmit-
ter to user i ’s receiver, N0 is the noise power, and the mutual
interference is treated as Gaussian noise.

[FIG1] System model and cognitive radio architecture.
(a) Spectrum sharing in licensed/unlicensed bands. (b) Cognitive
radio architecture.
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It is shown that the only NE for this static spectrum-
sharing game is (pmax

1 , pmax
2 , . . . , pmax

K ) . In the NE, the
unlicensed spectrum is excessively exploited as all the self-
ish users occupy the spectrum with maximal transmission
power. Thus, each of them will receive a very low payoff due
to the strong mutual interference. As the spectrum sharing
lasts over quite a long period of time, a punishment-based
repeated game model is proposed in order to provide users
with the incentive to cooperate.

REPEATED GAME WITH COOPERATION STIMULATION
In a repeated game, the overall payoff is represented as a nor-
malized discounted summation of the payoff at each stage game,
i.e., [16], [17], 

Ui = (1 − δ)

+∞∑
n=0

δn Ri[n], (2)

where Ri[n] is user i ’s payoff at the nth stage, δ (0 < δ < 1) is
the discount factor which indicates that a user values the current
stage payoff more than the payoffs in future stages, and (1 − δ)

can be viewed as a normalization factor. As Ri[n] is assumed to
be a finite value, Ui is well defined in the repeated game. If δ is
close to one, we say that the user is patient; if δ is close to zero,
we say that the user is myopic. In general, the spectrum sharing
in unlicensed bands lasts for a long time, and we can assume that
δ is close to one. Because the users care about not only the cur-
rent payoff but also the rewards in the future, they have to con-
strain their behavior in the present to keep a good credit history;
otherwise, a bad reputation may cost even more in the future.

The optimal strategy for the selfish users in the one-shot
game is to transmit with the maximal power, which leads to a
very low payoff rS

i (the superscript S stands for selfish).
However, if all the players follow some predetermined rules to
share the spectrum, higher expected one-shot payoffs rC

i (C
stands for cooperation) may be achieved, i.e., rC

i > rS
i for

i = 1, 2, . . . , K . For example, the cooperation rule may
require that only several players access the spectrum simulta-
neously, and hence mutual interference is greatly reduced.
Nevertheless, without any commitment, selfish players always
want to deviate from cooperation. One player can take advan-
tage of the others by transmitting in time slots that he/she is
not supposed to and consequently gets a larger instantaneous
payoff rD

i (D stands for deviation).
Although cooperation is not a stable equilibrium in the

one-shot game, it can be enforced by the threat of punishment
in the repeated game. The aim of punishment is to prevent
deviating behaviors from happening. As long as the punish-
ment is long enough to negate the reward from a one-time
deviation, no player has the incentive to deviate. The strategy,
called punish-and-forgive, is stated as follows. The game starts
from the cooperative stage at time 0 and will stay in the coop-
erative stage until some deviation happens at an arbitrary time
slot T0. Then, the game jumps into the punishment stage for
the next (T− 1) time slots before the misbehavior is forgiven

and cooperation resumes from the (T0 + T)th time slot. In the
cooperative stage, every player shares the spectrum in a coop-
erative way according to their agreement; while in the punish-
ment stage, players occupy the spectrum noncooperatively as
they would do in the one-shot game. By the Folk Theorem
with Nash threats [16], provided rC

i > rS
i for all

i = 1, 2, . . . , K, there exists δ̄ < 1, such that for sufficiently
large discount factor δ > δ̄, the game has a subgame perfect
equilibrium with discounted utility rC

i , if all players adopt the
punish-and-forgive strategy.

The duration of punishment, T, can be determined by analyz-
ing the incentive of the players. Assume that user i, who devi-
ates at time T0, will have his/her instantaneous payoff at that
slot increased to at most RD

i . After T0, the punishment stage will
last for the next T− 1 slots. Denote the overall payoff for user
i in the repeated game by U D

i if he/she deviates, then the
expected value u D

i is upper-bounded by 

u D
i � Ehji

[
U D

i

]
≤ (1 − δ)

·
(

T0 −1∑
n=0

δnrC
i + δT0 R D

i +
T0 +T−1∑
n=T0 +1

δnrS
i +

+∞∑
n=T0 +T

δnrC
i

)
,

(3)

where the expectation of U D
i is with respect to all channel real-

izations {hji}s. In general, cooperation guarantees an average
payoff rC

i at each time slot, but the worst-case instantaneous
payoff at time T0 would be zero, which means user i has no right
to utilize the open spectrum at that time. Denote the overall
payoff for user i without deviation by U C

i , then its expected
value uC

i is lower bounded by 

u C
i � Ehji

[
U C

i

]
≥ (1 − δ)

(
T0 −1∑
n=0

δnrC
i + 0 +

+∞∑
n=T0 +1

δnrC
i

)
.

(4)

From the selfish user’s perspective, the strategy with the
higher payoff is the better choice, so T should be chosen
such that uC

i > u D
i for all i = 1, 2, . . . , K to prevent the

users from deviating.

BAYESIAN MECHANISM DESIGN FOR TRUTH-TELLING
In the spectrum sharing game, users can exchange their
channel state information over a common control channel.
Based on this information, each individual user can independ-
ently determine who is eligible to transmit in the current
time slot according to certain spectrum sharing rules. To uti-
lize the unlicensed spectrum efficiently, only a few users with
small mutual interference can access the spectrum simultane-
ously. In an urban area with high user density, it is proper to
allow only one user to occupy the spectrum in each time slot
[22]. Then an efficient spectrum sharing rule can be defined
to assign the spectrum rights to the user with the highest
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instantaneous received signal power, i.e., the cooperation rule
is d(g1, g2, . . . , gK) = argmaxi gi , with gi = pmax

i |hii|2 . The
user with index d(g1, g2, . . . , gK) can access the channel,
with data throughput defined as Ri(gi, d(g1, g2, . . . , gK))

� log2(1 + (gi/N0)) , if d(g1, g2, . . . , gK) = i , and 0 other-
wise. The private information (g1, g2, . . . , gK) needs to be
exchanged among the users. Nevertheless, this spectrum-
sharing rule favors the user who claims the highest received
signal power, so the selfish users tend to exaggerate their
claimed gi value to acquire more spectrum access. Therefore,
the users have to be motivated to report their true private
information gis to guarantee effi-
cient spectrum usage, and
Bayesian mechanism design [16]
is employed to provide users with
the incentive to tell the truth.

To be specific, the user claim-
ing a higher gi value is asked to
pay a tax, and the amount of tax
will increase as the claimed value
increases, whereas the users
reporting a low value will get some monetary compensation.
This is called “transfer” in Bayesian mechanism design theory. If
the transfer of a user is negative, he/she has to pay the others;
otherwise, he/she will get compensation from the others.
Because the users care for not only the gain of data transmission
but also their monetary balance, the overall payoff is the gain of
transmission plus the transfer. In other words, after introducing
transfer functions, the spectrum sharing game actually becomes
a new game with the original payoffs replaced by the newly
defined overall payoffs. By appropriately designing the transfer
function, the players can get highest payoff only when they
claim their true gi values. Assume that at one time slot,
{ g̃1, g̃2, . . . , g̃K} is the set of real, instantaneous received signal
powers and that { ĝ1, ĝ2, . . . , ĝK} is the set of exchanged values
claimed by the users, then the transfer function for user i is
defined as

ti( ĝ1, ĝ2, . . . , ĝK) � �i( ĝi) − 1
K − 1

K∑
j=1, j �=i

� j( ĝj), (5)

where

�i( ĝi) � Ehji

⎡
⎣ K∑

j=1, j �=i

Rj(gj, d(g1, g2, . . . , gK))|gi = ĝi

⎤
⎦
(6)

represents the expected sum of all the other users’ data
throughput according to the aforementioned spectrum sharing

rule d(g1, g2, . . . , gK), given that
user i claims ĝi. Intuitively, if user
i claims a higher ĝi, he/she will
gain a greater chance to access the
spectrum, and all the other users
will have a smaller spectrum
share. So �i( ĝi) will decrease,∑K

j=1, j �=i � j ( ĝj )/(K − 1); will
increase, and therefore, the trans-
fer value for user i tends to

decrease. This may negate the additional gain from more spec-
trum access through exaggerating the channel gain. On the
contrary, if the claimed ĝi is lower, user i will receive some com-
pensation at the cost of less chance to occupy the spectrum.
Therefore, in the proposed mechanism, it is equilibrium that
each user reports his/her true private information. We can also
show that all users’ transfer values add up to zero at any time.
This means that the monetary transfer is exchanged with nei-
ther surplus nor deficit, and therefore the proposed mechanism
is suitable for the unlicensed spectrum sharing.

PERFORMANCE EVALUATION
We assume a homogeneous spectrum sharing scenario, in
which all the secondary users have the same maximal trans-
mission power, the channel gains {hii} ∼ CN (0, 1) , and
{hij} ∼ CN (0, 1). In Figure 2, we illustrate the idea of the
punishment-based repeated game with two users. Assume user 1
deviates from cooperation at time 150, and the duration of the
punishment stage is T = 150. According to the punish-and-for-
give strategy, the game will stay in the punishment stage from
time slot 151 to 300. We simulated 100 independent runs, in
each of which a series of i.i.d. channel realizations is generated
and the instantaneous payoff at each slot is calculated. Figure 2
shows the averaged payoff for the deviating user. We can see that
although the player gets a high payoff at time slot 150 by devia-
tion, the temporary profit will be negated in the punishment
stage. Hence, considering the consequence of deviation, the self-
ish users have no incentive to deviate. Then we examine the pro-
posed cheat-proof strategy in a three-user spectrum sharing
game. At one specific time slot, the true channel gains are
assumed to be g̃1 = 0.4, g̃2 = 0.8, and g̃3 = 1.1.In Figure 3, the
expected overall payoff (throughput plus transfer) versus the
claimed channel gains is shown for each user, given the other
two are honest. From the figure we see that the overall expected[FIG2] Illustration of the punishment-based repeated game.
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payoff is maximized only if the player honestly claims its true
information. Therefore, the users are self-enforced to tell the
truth with the proposed mechanism.

SPECTRUM SHARING IN LICENSED BANDS
Consider a wireless network where multiple primary users and
secondary users operate simultaneously, as shown in Figure 4.
The network users are equipped with cognitive radio devices,
which enables a more flexible spectrum access by allowing sec-
ondary users to gain access to multiple primary operators or
having multiple secondary users compete for available spec-
trum. A spectrum pooling [20] architecture is used to collect
unused or under-used licensed spectra and divide them into
orthogonal frequency channels based on orthogonal frequency-
division multiplexing (OFDM) techniques. There may not be a
centralized authority. A management point may exist to handle
the billing information for spectrum leasing activities, and con-
trol channels are assumed for exchanging spectrum sharing
information. The characteristics of spectrum resources may vary
over frequency, time, and space due to user mobility, channel
variations, or wireless traffic fluctuations.

DOUBLE AUCTION MECHANISM FOR
DYNAMIC SPECTRUM ALLOCATION
In general, the primary users have to pay certain operating costs
to acquire the spectrum licenses while the authorized spectrum
of the primary users may not be fully utilized over time, so they
prefer to lease the unused channels to secondary users for mon-
etary gains. The utility function for a primary user Pi can be
defined as the total payments collected from all the secondary
users who lease certain channels from Pi minus the acquisition
cost of Pi for the licensed channels. On the other hand, as the
unlicensed spectrum becomes more and more crowded, the sec-
ondary users may try to
lease some unused
channels from the pri-
mary users for more
communication gains
by providing leasing
payments. Then, the
utility function for a
secondary user Sj can be
defined as the entire
reward (gains from
communication) if Sj

successfully leases some
licensed channels
minus the charge to Sj.

We assume that all
users are selfish, ration-
al, and not malicious,
which means that their
objectives are to maxi-
mize their own utilities
and not to cause dam-

age to other users. Then, the users have conflicting interests
with each other: the primary users want to earn as much rev-
enue as possible by leasing the unused channels, while the sec-
ondary users aim to obtain more spectrum usage rights by
providing the least possible payments to the primary users.
Furthermore, spectrum allocation involves multiple channels
over time. Therefore, the interaction between primary and sec-
ondary users can be modeled as a multistage noncooperative
pricing game [16], [17]. However, selfish users will not reveal
their private information to the others in general. This leads to a
noncooperative game with incomplete information, which is
complex and difficult to study as the users do not know the per-
fect strategy profile of others. Therefore, proper mechanisms
have to be applied to guarantee that it is not harmful for the
selfish users to disclose the private information. Based on our

[FIG3] The expected overall payoff versus different claimed values.
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game setting, the auction mechanism [18] can be employed to
formulate and analyze this spectrum pricing game.

In the spectrum auction, the primary users are viewed as the
auctioneers, who determine the resource allocation and the
prices based on bids from the secondary users; on the other
hand, the secondary users compete with each other to buy the
permission of using the primary users’ channels. Note that mul-
tiple primary and secondary users coexist, so not only the sec-
ondary users but also the primary users need to compete with
each other by offering attractive prices on their licensed bands.
This indicates the double auction scenario [18], where multiple
buyers bid to buy goods from multiple sellers and the sellers
also compete with each other simultaneously. In the spectrum
double auction, the primary/secondary users express their
charge/payment of a certain licensed band in the form of an ask
or a bid, to make beneficial transactions. The double auction
mechanism is in general highly efficient, such as in the New
York Stock Exchange, and incentive compatibility can be
assured, which indicates that no selfish user will cheat on the
auction mechanism unilaterally.

COLLUSION-RESISTANT
STRATEGY WITH BELIEF ESTABLISHMENT
Users may cheat whenever they believe cheating behaviors can
help increase their payoffs. One prevalent cheating behavior, the
bidding collusion among users, has been generally overlooked.
The collusive cheating behaviors among several selfish users
will pose severe threats to efficient spectrum allocation and

deteriorate the efficiency of the game outcomes. To be specific,
the bidders (or sellers) act collusively and engage in bid rigging
with a view to obtaining lower prices (or higher prices). The
resulting arrangement is called a bidding ring. In the scenarios
of auction-based spectrum allocation, a bidding ring among pri-
mary users (or secondary users) will result in increasing their
utilities by collusively leasing the spectrum channels at a higher
price (or at a lower price). 

In Figures 5 and 6, we illustrate a snapshot of pricing-based
dynamic spectrum access networks with and without user col-
lusion, respectively. In these figures, we consider the primary
base station as the primary user and the unlicensed mobile
users as secondary users. When there is no user collusion as in
Figure 6, the pricing interactions between the primary user and
secondary users lead to efficient spectrum allocation. When
there exist several bidding rings as in Figure 5, each bidding
ring will elicit only one effective bid for spectrum resources,
which distorts the supply and demand of spectrum resources
and yields inefficient spectrum allocation. Further, in the
extreme case that all secondary users collude with each other,
arbitrarily low bid price will become eligible. Thus, collusion-
resistant dynamic spectrum allocation is important for efficient
next-generation wireless networking.

In a traditional ascending-price open auction [18], where
there is one seller and multiple buyers (or one buyer and mul-
tiple sellers), to combat collusion, the seller/buyer can
enhance his/her payoff by setting an optimal reserve price,
which means the seller/buyer will not sell/buy the spectrum
resources at prices lower/higher than the reserve price. A simi-
lar idea can also be applied to the spectrum auction game with
multiple primary and secondary users.

First, let’s consider an example network with multiple sec-
ondary users and one primary (MSOP) user Pi as shown in
Figure 6. The standard open ascending price auction is chosen
for the secondary users to compete for the spectrum resources,
which is theoretically equivalent to sealed-bid, second-price auc-
tion [18]. Denote the highest and second highest reward value
among all effective secondary users as v(1) and v(2), respectively.
Let’s denote the optimal reserve price for primary user Pi by
φr,pi . Then, the spectrum channel can be leased by Pi if and only
if v(1) > φr,pi . Moreover, if v(2) > φr,pi , the spectrum channel is
leased for v(2); otherwise, it is leased at the reserve price φr,pi .

Let Fv(1)
(x) and Fv(2)

(x) denote the cumulative distribution
functions (CDFs) of v(1) and v(2), respectively. Let fv(1)

(x) and
fv(2)

(x) denote the probability density functions (PDFs) of v(1)

and v(2), respectively. Thus, the expected utility gain of the pri-
mary user with reserve price φr,pi by leasing her/his j th channel
can be written as

E
[

U j
pi

(
φr,pi

)] =
(
φr,pi − c j

i

) (
Fv(2)

(
φr,pi

) − Fv(1)

(
φr,pi

))
+

∫ M

φr,pi

(
z − c j

i

)
fv(2)

(z)dz, (7)

where M represents the largest possible reward value of pri-
mary user Pi ’s j th channel among the competing secondary

[FIG5] User collusion in pricing-based dynamic spectrum allocation.

[FIG6] No collusion in pricing-based dynamic spectrum allocation.
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users, and c j
i denotes the chan-

nel acquisition cost of primary
user Pi. Note that the first term
on the right-hand side (RHS) of
(7) represents the utility when
the spectrum channel is leased
at the reserve price. This hap-
pens if v(1) > φr,pi but v(2) < φr,pi

because this channel won’t be able
to be leased at the second highest
bid but the reserve price. Since event {v(2) < φr,pi} =
{v(2) < φr,pi < v(1)}

⋃{v(1) ≤ φr,pi} , where the latter two
events are mutually exclusive, we know that
(Fv(2)

(φr,pi) − Fv(1)
(φr,pi)) is the probability that event

{v(2) < φr,pi < v(1)} happens. The second term on the RHS of
(7) represents the expected utility when v(2) ≥ φr,pi . 

Assuming that an interior maximum exists for (7), the opti-
mal reserve price φ∗

r,pi
satisfies the following first-order condi-

tion of (7),

Fv(2)

(
φ∗

r,pi

) − Fv(1)

(
φ∗

r,pi

) −
(
φ∗

r,pi
− c j

i

)
fv(1)

(
φ∗

r,pi

) = 0. (8)

Thus the optimal reserve price can be determined by (8) if the
statistical descriptions for v(1) and v(2) are available. Similarly,
in the scenario with one secondary user and multiple primary
users, the optimal reserve price for the secondary user can also
be obtained, if the statistical descriptions for the acquisition
costs among all effective primary users are available. However,
due to the network dynamics and imperfect available informa-
tion, the users cannot make a credible assumption about the
presence of user collusion or the number of collusive users.
Therefore, they need to build up certain beliefs of other users’
future possible strategies to assist their decision making.

Considering that there are multiple users with private infor-
mation in the spectrum allocation game, and the bid/ask prices
directly affect the outcome of the game, it is more efficient to
define a belief function for each user based on the publicly
observable bid/ask prices instead of generating a specific belief of
every other user’s private information. Thus, primary/secondary
users’ beliefs are defined as the ratios of their bid/ask prices
being accepted at different price levels.

Let x and y be the ask price of the primary users and the bid
price of the secondary users, respectively. At each time, the ratio
of asks from primary users at x that have been accepted can be
written as

r̃p(x) = μA(x)
μ(x)

, (9)

where μ(x) and μA(x) are the number of asks at x and the num-
ber of accepted asks at x, respectively. Similarly, at each time
during the dynamic spectrum sharing, the ratio of bids from
secondary users at y that have been accepted is

r̃s(y) = ηA(y)
η(y)

, (10)

where η(y) and ηA(y) are the
number of bids at y and the num-
ber of accepted bids at y, respec-
tively. Usually, r̃p(x) and r̃s(y) can
be accurately estimated if a great
number of buyers and sellers are
participating in the pricing at the
same time. However, in our pric-
ing game, only a relatively small
number of players are involved in

the spectrum sharing at a specific time. The beliefs, namely,
r̃p(x) and r̃s(y) cannot be practically obtained so that we need to
further consider using the historical bid/ask information to
build up empirical belief values.

Take the auction game with one primary user and multi-
ple secondary users as an example. If a bid ỹ > y is rejected,
the bid at y will also be rejected; if a bid ỹ < y is accepted,
the bid at y will also be accepted. Generalizing the observa-
tions above to the case with multiple primary and secondary
users, some new observations are as follows: if a bid ỹ > x is
made, then an ask at x will be accepted; if an ask x̃ < y is
made, then the bid at y will be accepted. According to the
observations above, we can define the primary users’ belief
value for each potential ask at x as

r̂p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x = 0∑
w≥x

μA(w)+
∑

w≥x
η(w)∑

w≥x
μA(w)+

∑
w≥x

η(w)+
∑

w≤x
μR(w)

x ∈ (0, M)

0 x ≥ M

,

(11)

where μR(w) is the number of asks at w that have been rejected,
and M is a large enough value so that asks greater than M will
definitely be rejected. Similarly, we can define the secondary
users’ belief value for each potential bid at y as

r̂s(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 y = 0∑
w≤y

ηA(w)+
∑

w≤y
μ(w)∑

w≤y
ηA(w)+

∑
w≤y

μ(w)+
∑

w≥y
ηR(w)

y ∈ (0, M)

1 y ≥ M

,

(12)

where ηR(w) is the number of bids at w that have been rejected.
After obtaining belief values on discrete bid/ask price lev-

els, we can use interpolation to obtain the belief function over
the entire price space. Considering the characteristics of open
ascending auction in the scenarios of MSOP, the secondary
user with the highest reward value doesn’t need to bid his/her
true value to win the auction. Instead, he/she only needs to
bid at the second highest possible payoff to have all the other
secondary users drop out of the auction. Therefore, the sec-
ondary users’ belief function (12) actually represents the CDF
of v(2). Further, since the total number of secondary users and

GAME THEORY, WHICH ANALYZES
THE CONFLICT AND COOPERATION
AMONG INTELLIGENT, RATIONAL

DECISION MAKERS, HAS BEEN
WIDELY USED IN DESIGNING

EFFICIENT SPECTRUM
SHARING SCHEMES.
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the statistics of their reward values are generally available, the
CDF of v(1) in the scenarios of MSOP can be obtained using
the order statistics [23] as

Fv(1)
(x) =

∏
i ∈ {1,2,... ,K}

Fvi(x). (13)

Therefore, the optimal reserve price φr,pi for the primary user to
combat user collusion in the scenarios of MSOP can be obtained
from (8) using (12) and (13), and the optimal reserve price for
the secondary user can be similarly obtained. Based on the

above discussions, we illustrate our collusion-resistant dynamic
pricing algorithm for spectrum allocation in Table 1.

PERFORMANCE EVALUATION
We consider a general scenario with multiple primary and sec-
ondary users in wireless networks as in Figure 4 and evaluate
the performance of our proposed belief-assisted dynamic spec-
trum sharing approach. Considering a wireless network cover-
ing a 100 m × 100 m area, we simulate J primary users by
randomly placing them in the network. Here we assume the
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[FIG7] Comparison of the total utilities of the CE, pricing scheme without reserve prices, and the proposed scheme with
different user collusion.
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1) INITIALIZE THE USERS’ BELIEFS AND BIDS/ASKS
• THE PRIMARY USERS INITIALIZE THEIR ASKS AS LARGE VALUES CLOSE TO M AND THEIR BELIEFS AS SMALL POSITIVE VALUES LESS THAN 1;
• THE SECONDARY USERS INITIALIZE THEIR BIDS AS SMALL VALUES CLOSE TO 0 AND THEIR BELIEFS AS SMALL POSITIVE VALUES LESS THAN 1.

2) BELIEF UPDATE BASED ON LOCAL INFORMATION
UPDATE PRIMARY AND SECONDARY USERS’ BELIEFS USING (11) AND (12), RESPECTIVELY.

3) OPTIMAL RESERVE PRICE FOR PRIMARY AND SECONDARY USERS
UPDATE PRIMARY USERS’ OPTIMAL RESERVE PRICES φ∗

r,pi
USING (8), (13) AND (11);

UPDATE SECONDARY USERS’ OPTIMAL RESERVE PRICES φ∗
r,si

SIMILARLY.
4) OPTIMAL BID/ASK UPDATE

• OBTAIN THE OPTIMAL ASK FOR EACH PRIMARY USER BY MAXIMIZING THE EXPECTED UTILITY GIVEN φ∗
r,pi

;
• OBTAIN THE OPTIMAL BID FOR EACH SECONDARY USER SIMILARLY GIVEN φ∗

r,si
.

5) UPDATE LEASING AGREEMENT AND SPECTRUM POOL
IF THE CURRENT HIGHEST BID IS GREATER THAN OR EQUAL TO THE CURRENT LOWEST ASK, THE LEASING AGREEMENT WILL BE SIGNED  BETWEEN THE 
CORRESPONDING USERS; UPDATE THE SPECTRUM POOL BY REMOVING THE ASSIGNED CHANNEL.

6) ITERATION
IF THE SPECTRUM POOL IS NOT EMPTY, GO BACK TO STEP 2.

[TABLE 1]  COLLUSION-RESISTANT DYNAMIC SPECTRUM ALLOCATION.
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primary users’ locations are fixed
and their unused channels are
available to the secondary users
within a distance of 50 m. Then,
we randomly deploy K secondary
users in the network, which are
assumed to be mobile devices.
The mobility of the secondary
users is modeled using a simplified random waypoint model as
in [21]. Let the cost of an available channel in the spectrum
pool be uniformly distributed in [10, 30], and the reward payoff
of leasing one channel be uniformly distributed in [20, 40]. If a
channel is not available to some secondary users, let the corre-
sponding reward payoffs of this channel be zero. We simulate
the case with J = 5 primary users and 1,000 spectrum sharing
stages. Assume each primary user has four unused spectrum
channels and the discount factor of the repeated game is 0.99.

In Figure 7, we compare the total utilities of the optimal
competitive equilibrium (CE) [19], our dynamic pricing scheme
with reserve prices, and our dynamic pricing scheme without
reserve prices under various situations of user collusion. It can
be seen that when there is no user collusion, the dynamic pric-
ing scheme without reserve prices is able to achieve similar per-
formance when compared to the theoretical CE outcomes.
Moreover, with the presence of user collusion, the proposed
scheme with reserves prices achieves much higher total utilities
than those of the scheme without reserve prices. 

We study the effect of user collusion for dynamic spectrum
allocation when each secondary user is constrained by a mone-

tary budget [19], in which each sec-
ondary user needs to optimally allo-
cate the budget among multiple
pricing stages. For comparison, we
define a static scheme in which the
secondary users make their spec-
trum-leasing decisions without
considering their budget limits. In

Figure 8, we compare the total utilities of our proposed scheme
with those of the static scheme for different budget constraints
when user collusion is present. It can be seen from the figure
that in the presence of user collusion, our proposed scheme with
reserve prices achieves significant performance gains over the
static scheme when the budget constraints are taken into consid-
eration. That’s because the performance loss due to setting
reserve prices can be partly offset by exploiting the time diversity
of spectrum resources among multiple sharing stages.

CONCLUSIONS
Dynamic spectrum access in cognitive radio networks has
shown its great potential to solve the conflict between limited
spectrum resources and increasing demand for wireless servic-
es. However, cooperation issues, such as cheating and user col-
lusion, have not been well addressed. In this article, we present
two mechanism design based approaches to achieve efficient
and cheat-proof spectrum allocation. With the Bayesian mech-
anism design, the selfish users have no incentive to cheat and
can achieve cooperative unlicensed spectrum sharing under
the threat of punishment. With collusion-resistant dynamic

[FIG8] Comparison of the total utilities of the proposed scheme with those of the static scheme.
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spectrum pricing, licensed spectrum resources are efficiently
distributed among multiple primary and secondary users, and
user collusion is effectively suppressed by setting up the opti-
mal reserve price in the auction.
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