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Abstract- Dynamic spectrum access has become a
promising approach to fully utilize the scarce spectrum re-
sources. In a dynamically changing spectrum environment,
it is very important to design a distributed access scheme
that can coordinate different users' access adapt to spec-
trum dynamics with only local information. In this paper,
we propose a self-learning repeated game framework for
distributed primary-prioritized dynamic spectrum access
through modeling the interactions between secondary users
as a noncooperative game. With the proposed framework,
the inefficiency due to users' selfish behavior can be highly
improved, and the secondary users can distributively
obtain their optimal access probabilities with only local
observations. The simulation results show that the pro-
posed framework can achieve comparable performances
with those of the centralized primary-prioritized dynamic
spectrum access scheme.

I. INTRODUCTION

With the dramatic development of the mobile telecom-
munication industry in the last decades, the demand for
wireless spectrum resources has been growing rapidly.
However, the inflexible spectrum policies by FCC result
in a large portion of the scarce spectrum resources
remaining unutilized. The inefficient usage of the limited
spectrum necessitates recent development of dynamic
spectrum access techniques [1], [2], through the use
of cognitive radio technology [3]. By exploiting the
spectrum in an opportunistic fashion, dynamic spec-
trum access enables the secondary users to sense which
portions of the spectrum are available, select the best
channel, coordinate access to spectrum channels with
other users and vacate the channel when a licensed user
appears.

In order to fully utilize the limited spectrum resources,
efficiently and fairly sharing the spectrum among mul-
tiple dissimilar secondary users becomes an important
issue. There are several previous efforts addressing this
issue, on an opportunistic basis [4]-[6], or a negotiated
basis [7]-[12]. In [4], a novel random access protocol
by using agile radios was proposed to "pack" all the

radio systems tightly together in the spectral domain, and
achieve airtime fairness between dissimilar secondary
users. The work in [5] examined the impact of sec-
ondary user access patterns on achievable improvement
in spectrum utilization, and proposed a feasible spectrum
sharing scheme. The authors in [6] proposed a primary-
prioritized Markov dynamic spectrum access to opti-
mally coordinate secondary users' spectrum access and
achieve a good tradeoff between efficiency and fairness
statistically.

In order to study the users' selfish behaviors for dis-
tributed dynamic spectrum access in wireless networks,
game theoretical approaches have been developed for
dynamic spectrum access. A local bargaining mech-
anism was proposed in [7] to distributively optimize
the efficiency of spectrum allocation and maintain bar-
gaining fairness among secondary users. In [8], auction
mechanisms were proposed for sharing spectrum among
multiple users such that the interference was below
certain level. In [9], the authors proposed a repeated
game approach to enlarge the set of achievable rates, in
which the spectrum sharing strategy could be enforced
by the Nash Equilibrium of dynamic games. In [10]-[12],
belief-based dynamic pricing approaches were developed
to optimize the overall spectrum efficiency while keeping
the participating incentives of the selfish users based on
double auction rules.

Although existing dynamic spectrum access schemes
have successfully enhanced spectrum efficiency, in order
to achieve more flexible spectrum access in long-run
scenarios, some basic questions still remain unanswered.
First, considering the constant spectrum environment
variations and lack of centralized authorities, the spec-
trum access scheme should be able to distributively adapt
to the spectrum dynamics due to channel variations,
varying traffic load, and user mobility with only local
observations. From the game theoretical point of view,
the spectrum access scheme needs to be designed as a
multi-stage repeated game framework instead of a static
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game. Furthermore, the users may belong to different
authorities and aim to maximize their own interests, so
they have no incentives to cooperate with each other,
and the noncooperative behavior may result in inefficient
and unfair outcomes. Therefore, novel spectrum access
schemes should be developed to enhance the efficiency
and fairness of the game.

Motivated by the preceding, in this paper we propose
a self-learning repeated game framework for distributed
primary-prioritized dynamic spectrum access [6]. Con-
sidering multiple secondary users coexist and constantly
access some temporarily unused licensed spectrum band,
we model the spectrum access as a noncooperative game.
To solve the inefficiency of static game Nash Equilibrium
(NE) due to secondary users' selfish behavior, we de-
velop an efficient self-learning repeated game approach
to enhance the game to a cooperating point with only
local observations. The contributions of the proposed
repeated game framework are multi-fold. First, by mod-
eling the spectrum access process as a self-learning
repeated game, we are able to optimally coordinate
secondary users' access adapt to the spectrum dynam-
ics with only local information. More importantly, the
spectrum efficiency is improved compared to the static
game NE. Moreover, the proposed distributed repeated
game approach can achieve comparable performances
with those of the centralized proportional-fair dynamic
spectrum access [6], therefore, provide better fairness
among dissimilar secondary users than the static game
NE along with higher spectrum efficiency.
The remainder of this paper is organized as follows:

The system model of the dynamic spectrum access is
described in Section II. The self-learning repeated game
approach for the dynamic spectrum access is proposed
in Section III. The simulation studies are provided in
Section IV. Finally, Section V concludes this paper.

II. SYSTEM MODEL

We consider dynamic spectrum access networks where
multiple secondary users are allowed to access the
temporarily unused licensed spectrum bands on an op-
portunistic basis, without conflicting or interfering the
primary spectrum holders' usage. Such scenarios can
be envisioned in many applications. Considering the
fact that heavy spectrum utilization often takes place in
unlicensed bands while licensed bands often experience
low (e.g., TV bands) or medium (e.g., some cellular
bands) utilization, IEEE 802.22 [13] proposes to reuse
the fallow TV spectrum without causing any harmful
interference to incumbents (i.e., the TV receivers). With
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Fig. 1: System model.

the development of cognitive radios, ancillary services
carried by the Ultra-High Frequency (UHF) television
transmission are technically feasible. Moreover, with re-
gard to more efficient utilization of some cellular bands,
in [14], it is proposed to share the spectrum between a
cellular communication system and wireless local area
network (WLAN) systems. In rural areas where there is
little demand on the cellular communication system, the
WLAN users can efficiently increase their data rates by
sharing the spectrum.

In order to take advantage of the temporally unused
spectrum holes in the licensed band, without loss of
generality we consider a snapshot of the above spectrum
access networks shown in Fig. 1, where two secondary
users and one primary user coexist, and the secondary
users opportunistically utilize spectrum holes in the
licensed band. Note that the system diagram shown here
serves only as an example model and can be extended to
the scenario with multiple secondary users in a similar
way.

Let's denote the primary user by P, and the sec-
ondary users by A and B. For each user -y, where
a Ec {A, B, P}, its offered traffic is modeled with two
independent Poisson processes, with the service-request
rate A-, and the departure rate ,.

Since the primary user's spectrum usage in its licensed
band should not be affected by the operation of any
other secondary user [15] [16], we assume that once
primary user P appears, any secondary user should stop
transmission, buffer their interrupted traffic, continue
scanning the licensed band, and immediately resume
transmission once the licensed band becomes idle again.
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Fig. 2: The rate diagram of PP-CTMC.

TABLE I: The Eight States of PP-CTMC
Index State Description

0 (0, 0) Spectrum is idle
I (0, B) Secondary user B is in service
2 (0, A) Secondary user A is in service
3 (0, AB) Both A and B are in service
4 (P, 0) Primary user P is in service
5 (P, B.) P is in service; B is waiting
6 (P, A,) P is in service; A is waiting
7 (P, (AB),) P is in service; A and B are waiting

Moreover, if more than one secondary users are allowed
to share the licensed frequency-band, the efficiency of
spectrum usage can be further improved. However, too
much coexistence of the secondary users may result in
severe mutual interference, and we will describe later
how to coordinate the access of secondary users to
alleviate the interference level.
From the preceding assumptions, it is clear that the

spectrum environment is highly dynamic. The conven-
tional spectrum allocation schemes specific for a static
spectrum environment are no longer feasible. This is
because using global optimization approaches, after each
change in the spectrum environment, e.g., a secondary
user enters or leaves some frequency band, the network
needs to re-optimize the spectrum allocation for all users
completely, resulting in high computational complexity.
Therefore, in order to characterize the dynamics of the
spectrum environment and fully utilize the statistics of
different users' spectrum access, we model the interac-
tions between the primary user and the secondary users
as a Primary-Prioritized Continuous-Time Markov Chain
(PP-CTMC), illustrated in Figure 2. The states of PP-
CTMC are described in Table I.
Assume at first the licensed spectrum band is idle,

i.e., PP-CTMC is in state (0, 0). The two secondary
users contend to operate in the spectrum. Upon the
first access attempt of some user, say user A, PP-
CTMC enters state (0,A) with transition rate AA. If
user A finishes its service duration before any other
user requests spectrum access, PP-CTMC then transits
to state (0, 0) with rate uA. If user B's service request
arrives before A completes its service, PP-CTMC transits
to state (0, AB) with rate AB, where both secondary
users share the spectrum usage using Code-Division
Multiple Access (CDMA) techniques. Once user B (or
A)'s service duration is completed, PP-CTMC transits
from state (0, AB) to (0, A) (or (0, B)), with rate /B
(or /A).

However, primary user P may, once in a while, appear
during the service duration of the secondary users, i.e.,
when PP-CTMC is in state (0, A), (0, B) or (0, AB).
Suppose the licensed band is being occupied by user A.
If user A detects that primary user P needs to acquire
the spectrum band, A ceases its transmission, buffers
its interrupted traffic, and keeps sensing the band until
P finishes operating in the band. Therefore, PP-CTMC
transits from state (0, A) to (P, A,) with rate Ap. If
primary user P finishes its service before B's access,
A will continue its transmission, and PP-CTMC transits
from state (P, Aw) to (0, A) with rate pup. In contrast,
if the access request of B arrives before primary user P
completes its service duration, B also buffers its traffic,
and PP-CTMC transits to state (P, (AB)w) with rate AB.
In state (P, (AB)w), both A and B keep sensing the
spectrum. Once P is sensed to vacate, PP-CTMC transits
to state (0, AB) with rate p§p, where A and B share the
spectrum band. Also, when PP-CTMC is in state (P, 0),
if secondary users attempt to access the spectrum, they
are kept sensing until P finishes its service, and PP-
CTMC transits to state (P, Aw) or (P, Bw), with rate
AA or AB, respectively.
The equation array governing the above system is

given by
(AA + AB + Ap)Ho = /Br11 + /AH2 + /PH4,
(IB + Ap + AA)H1 = ABHO + /AH3 + /PH5,

(8A + Ap + AB)H2 = AAHO + PBH3 + PPH6,

(8A + [uB + Ap)H3 = AAY1 + ABH2 + /PH7,

(lp + AA + AB)H4 = Aprl,
(lp + AA)H5 = ApHE + ABH4,
(lp + AB)H6 = ApH2 + AAH4,
liP117 = ABH6 + ApH3 + AAH5,
lo +1 +112 +113 +114 +115 +116 +H7 =

(1)
(2)

(3)
(4)
(5)
(6)
(7)
(8)

1. (9)
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The stationary probability of each state is solvable from
the above linear equation array, since the corresponding
coefficient matrix can be verified nonsingular.
As the traffic of the secondary users becomes heavier,

they have more chances to coexist in the band, and suffer
more throughput degradation due to mutual interference.
To coordinate secondary users' access and manage the
interference, a centralized control is often needed. This
approach, however, requires global information from
all users. Thus, in the following we will develop a
distributed game theoretical framework to optimize the
system performance with only local information.

III. SELF-LEARNING REPEATED GAME FRAMEWORK

According to the system model, in this section, we
first describe a centralized optimal dynamic spectrum
access problem. Then, we formulate the spectrum access
problem as a noncooperative game to study secondary
users' selfish behaviors, and further develop a distributed
repeated game framework to enhance the efficiency of
the game equilibrium.

A. Centralized Optimal Dynamic Spectrum Access

One of the most important goals in spectrum sharing
is efficient spectrum utilization, i.e., high throughput
achieved by each secondary user through successful
acquisition of a spectrum band. From a statistical point of
view, the secondary users want to maximize their average
throughput. Given the system equation array in Sec-
tion II, we can obtain the stationary state probabilities,
denoted by Hf,, where si E {(O,A), (O,B), (O, AB)}.
Since Ili can be equivalently viewed as the ratio of
allocation time to state si to the entire reference time,
the product of Il, and the capacity that secondary user
a' achieves when operating in state si represents one
average throughput component acquired by user a in
state si. Therefore, we can express the total average
throughput for user -a as follows,

Ua = l(0,)r- + fl(O,AB) rT (10)
where r7 and r_' are channel capacities for user a' when
it operates in the licensed band alone and with the other
secondary user, respectively.

In order to alleviate the mutual interference among
secondary users, we introduce the spectrum access prob-
ability for user A and user B, denoted by aA and aB,
respectively. Then, the resulting random access process
can be approximated by slightly modifying the origi-
nal CTMC. Because each secondary user -y's traffic is
admitted with probability a-, the actual arrival rate is

approximated by a A Therefore, the system optimiza-
tion goal is to determine aA and aB, such that the utility
function of the system can be maximized, i.e.,

{a-I = arg max U... ({a-}) (1 1)
A

where Va E S-{A, B}.
Since a good spectrum sharing scheme not only can

efficiently utilize the spectrum resources, but also can
provide fairness among different users, the centralized
optimal dynamic spectrum access scheme can be de-
fined to maximize the average throughput based on
the proportional-fairness (PF) criterion. Thus, in (11),

UsV (aA, aB) can be written as [6]

(12)Usys(aA, aB) = UIU,(aA, aB)-
-Ycs

In order to solve (11), a centralized management point
is required to collect all the information about the traffic
statistics and the channel capacities from the secondary
users, which is difficult to implement in a real spectrum
access scenario. Therefore, in the next we will develop
game theoretical approaches to solve this problem with
only local information.

B. Spectrum Access Game and Nash Equilibrium
Different secondary users may belong to different

authorities, so it is natural to assume that each secondary
user ay selfishly selects its access probability a- to
optimize its own throughput. In this case, game theory
[17] is a successful approach to study the interactions
between selfish secondary users.

Let G = {S, (A) s (U-) s} be a finite spectrum
access game in strategic form, where S is the set of
players, A- is the strategy space for player -y, and Ua is
the utility function for player -y. Then, in our spectrum
access game, we have S = {A, B}, A = [0, 1], and
Ua is defined in (10) with all Ak-'s replaced by aX-A's.
Let's denote the action for user a' and its opponent as
a- and a--, respectively, and define A-- as the strategy
space for user y's opponents. Then, the Nash Equilibrium
(NE), which states that in the equilibrium each user
selects the best response strategy given that the other
users are playing the Nash Equilibrium as well, is defined
as follows,

Definition 1: A strategy profile a* = (a*, a* ,) is a
Nash Equilibrium if, Vy E S, Var, a*, c A , a* cE A_,

U-4(a*, a*>) > U4(a-, a*a). (13)
Since the spectrum occupation time ratios H(O ,) and

H1(o,AB) are increasing with the access probability a-,
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TABLE II: Utility table of the spectrum access game
User B Cooperate(PF) Non-Cooperate

UserA
Cooperate(PF) (U(C)c U(C,C)) (UAc,n UB' )
Non-cooperate (U(nc) uBC(U(c') U(n')

we can verify that &U,/&aa > 0. Thus, the NE for
the spectrum access game is a- = l,Vly. By greedily
accessing the licensed band, each secondary user in-
creases its occupation time duration, so as to boost its
average throughput. However, if the secondary users are

located very close to each other, such a greedy access

pattern will greatly increase the probability that both the
secondary users coexist in the spectrum band, and thus
heavily degrade each user's throughput due to severe

mutual interference. When more than two secondary
users compete for the licensed spectrum, the throughput
each secondary user can obtain will become even worse

if all of them access the spectrum with a- = 1. Consider
an example illustrated in Table II, where the "Coop-
erate(PF)" represents the secondary users access the
spectrum band with the optimal probability a oPt through
solving (11) with PF criterion, the "Non-Cooperate"
represents the access probabilities for both secondary
users are 1, with U(c:n) < u(n,n) < U(c,c) < U(n,c) and
U(n,c) < u(n,n) < U(c,C) < U(c'n) We can observe that
when the secondary users cooperate with each other and
access the spectrum band less aggressively, both of them
can get higher utilities than those in the NE. Therefore,
it is not efficient for the secondary users to play NE
in the spectrum access game. To enhance the game to
an efficient cooperating point rather than the NE, we

propose a self-learning repeated game framework in the
next.

C. Self-Learning Repeated Game Framework

From the previous discussion, the NE of the sta-
tic spectrum access game is a- = 1, lV-y, which is
inefficient. In practice, however, the secondary users

have continuous spectrum access requests as long as

the primary user does not occupy the licensed band.
Therefore, the game is played more than once and can be
modeled as a repeated game. The definition of a repeated
game is stated as follows [18].

Definition 2: If we denote G as a static spectrum
access game and d as a discount factor, the T-period
repeated game, denoted by G(T, d), consists of game G
repeated T times. The average payoff to user a' is the
expected sum of stage game utilities discounted at rate

TABLE III: Self-Learning Repeated Game Algorithm

6, represented by

(14)C-T- = (1 _ 6)E 6(t-1) U, (a(t))
t=l

where U, (d(t)) represents the utility of user a' at each
stage game played at time t.

Since the secondary users always have continuous
spectrum access requests with high probability, without
loss of generality, we can further model the game as

a repeated game with infinite horizon. Unlike a game

played once, a repeated game allows for a strategy to be
contingent on past moves, thus allowing for reputation
effects and retribution. The player's payoff in a repeated
game is a discounted summation of her/his payoff at each
stage. One of the most important results in repeated game
theory is Folk Theorem [18], which asserts that for
infinite repeated games there exists a discount factor d <
1 such that any feasible and individually rational payoff
can be enforced by an equilibrium for any discount factor
d Ec (d, 1). Thus, by playing a strategic game many

times, more efficient Nash Equilibria can be achieved
in a repeated game framework.

Further, if we assume in the infinitely repeated game,

the secondary users are aware that whenever a noncoop-

eration is detected, all the other cooperative secondary
users will turn to be noncooperative, thus resulting
in a global performance decrease, it is better for the
secondary users to conform with the cooperating point.
Therefore, we can develop a self-learning algorithm for
the infinitely repeated game, by which the secondary
users can learn the optimal access probabilities in a

distributed way. The heuristics of the self-learning algo-
rithm is stated as follows. With only local information,
the secondary users can only observe the history of
their own actions and the corresponding utility functions.
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Learning Curve of Repeated Game
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Fig. 3: Learning curves for the repeated game.

Therefore, the best way for the secondary user to learn
the optimal access probability is to observe how it will
affect its own utility value to change the access proba-
bility. Assume under the threat of potential punishment,
the secondary users simultaneously increase the access

probabilities from very small values (e.g., 0.1) gradually.
If the new utility is greater than the previous one,

the new access probability will be adopted. Otherwise,
the previous access probability is kept. The proposed
algorithm is shown in Table III. We note that the access

probability is increased proportionally to the increase in
the utility function AU/t -1; however, in order to keep the
updated access probability bounded, normalization factor
needs to be employed here. Therefore, we introduce
U1t-(at-1), the utility obtained before changing the
access probability, as the denominator of AUt-1. The
increase in the access probability depends on the "step
size" r1 and the normalized increment in the secondary
user's utility function. The access probabilities are in-
creased iteratively until no improvement in the utilities
can be achieved. Note that the algorithm showed in Table
III can also be employed to the scenario with more than
two secondary users by carefully choosing the increment
( and r,. And we will show by simulations in the next
section that the self-learning process will converge to a

near optimal cooperating point within several iterations.

IV. SIMULATION RESULTS AND ANALYSIS

In order to evaluate the performance of the proposed
self-learning repeated game approach for the primary-
prioritized dynamic spectrum access scheme, we first
study the convergence of the learning algorithm. Then,
we compare the results of the self-learning algorithm

Fig. 4: Comparison of the learned access probabilities
and the theoretical optima vs. AA.

with the theoretical optimal solutions through solving
(11) with the PF criterion.

In the simulations, the communication bandwidth is
200 KHz, the transmission power is pa = 2 mW,
and the thermal noise power is no = 10-15 W. The
propagation loss factor is 3.6. The transmitter of user

A is at (Om, Om), and its receiver is at (200m, Om). The
transmitter of user B is at (200m, 120m), and its receiver
is at (Om, 120m). The service rates of P, A and B are all
set to be 100 ms-1. The spectrum access request rates of
P and B are chosen as 85 ms-I and 100 ms-1, while
the spectrum access request rate of A varies from 80
to 120 ms-1. In the self-learning algorithm, we choose
= [5 x 10-4l 5 x 10-4], and r1 = 0.8.
In Figure 3, we show the learning curves of both user

A and B when AA equals to different values, and in
Figure 4 we show the comparison of the learned access

probabilities with the theoretical optimal probabilities.
We can see that the self-learning repeated game algo-
rithm converges to near optimal solutions with about 10
iterations. The fast convergence of the learning algorithm
ensures the secondary users to obtain proportional-fair
utility distributions before the licensed band is required
by the primary user. From Figure 4, we can see that
the learning results of the repeated game is very close
to the PF optimal probability distributions. However,
the learning results are smaller. This is because the
secondary users in the spectrum access game are selfish
and only want to maximize their own utility. Thus, al-
though they agree to simultaneously increase their access

probabilities gradually, once a secondary user can not
getter higher utility by increasing its access probability,
the learning algorithm is forced to stop. While the
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theoretical PF optimal probabilities are obtained with-

out considering the selfishness of the secondary users.

Therefore, the learned access probabilities are smaller

than the theoretical optimal ones.

We can also observe from Figure 4 that the optimal ac-

cess probability for user B is almost the same, regardless

of AA, and user A's access probability is reduced when

AA is increasing. This is because from the simulation

parameters, we have rB1 IrA > rB2 IrA, so the

actual admitted access request rates (a-,A-,) for user A

and B should be the same to ensure fairness. This also

shows that the self-learning repeated game is fair in

the sense that the secondary user's access probability

is only determined by its own traffic statistics and the

channel conditions, and not by other opponent user's

traffic patterns.

In Figure 5, we compare the utility values versus AA

with cooperation and noncooperation of the secondary

users. As is mentioned above, since rB1= IrA > r

IrA, theoretically the two secondary users should be

given equal chance (a-,A-,) to access the licensed band

no matter how AA changes. With the proposed self-

learning repeated game, we can see the secondary users

almost have the same utilities, so fairness is ensured.

However, when neither of the secondary users cooperates

and accesses the spectrum band with probability 1, i.e.,

plays the NE of the static game, the utility distribution

for the secondary users is very unfair. In Figure 6,

we compare the sum of the utility values versus AA

with cooperation and noncooperation of the secondary

users. We observe that with cooperation the secondary

users can obtain a larger aggregate utility than that of

the noncooperation case. As the traffic injected by the

secondary users becomes heavier, the difference of the

utility sum between cooperation and noncooperation be-

comes even greater. This fact indicates that cooperation

among secondary users is especially beneficial when

there is heavy traffic in a dynamic spectrum access

network. If more secondary users share the spectrum

and suffer more severe mutual interference, we can also

expect that by cooperation, the secondary users can

achieve much better aggregate utility than that of the

noncooperation case.

V. CONCLUSIONS

In this paper, we propose a self-learning repeated

game framework for distributed primary-prioritized dy-

namic spectrum access. In order to coordinate secondary

users' access adapt to the spectrum dynamics, the in-

teractions among secondary users are modeled as a

repeated game. To improve the spectrum efficiency under

the selfishness of secondary users, we develop a self-

learning algorithm that helps secondary users obtain their

optimal access probabilities with only local observations.

The simulation results show that the proposed self-

learning algorithm has fast convergence, enhances the

game efficiency, and achieves comparable performance

with those of the PF dynamic spectrum access.
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