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Abstract—Various spectrum management schemes have been
proposed in recent years to improve the spectrum utilization in
cognitive radio networks. However, few of them have considered
the existence of cognitive attackers who can adapt their attacking
strategy to the time-varying spectrum environment and the sec-
ondary users’ strategy. In this paper, we investigate the security
mechanism when secondary users are facing the jamming attack,
and propose a stochastic game framework for anti-jamming
defense. At each stage of the game, secondary users observe
the spectrum availability, the channel quality, and the attackers’
strategy from the status of jammed channels. According to this
observation, they will decide how many channels they should
reserve for transmitting control and data messages and how
to switch between the different channels. Using the minimax-Q
learning, secondary users can gradually learn the optimal policy,
which maximizes the expected sum of discounted payoffs defined
as the spectrum-efficient throughput. The proposed stationary
policy in the anti-jamming game is shown to achieve much better
performance than the policy obtained from myopic learning,
which only maximizes each stage’s payoff, and a random defense
strategy, since it successfully accommodates the environment
dynamics and the strategic behavior of the cognitive attackers.

Index Terms—Security mechanism, spectrum management,
cognitive radio networks, game theory, reinforcement learning.

I. INTRODUCTION

IN RECENT years, cognitive radio technology [1] [2] [3]
has been proposed as a promising communication paradigm

to solve the conflict between the limited spectrum resources
and the increasing demand for wireless services. By exploiting
the spectrum in an opportunistic fashion, cognitive radio en-
ables secondary users to sense which portion of the spectrum
is available, select the best available channel, coordinate the
spectrum access with other users, and vacate the channel when
a primary user reclaims the spectrum usage right. In order
to utilize the spectrum resources efficiently, various spectrum
management approaches have been proposed in the literature,
such as the pricing-based spectrum sharing approaches [5]–
[13], where primary users lease the available spectrum bands
to secondary users, and the opportunistic spectrum sharing
approaches based on sensing and stochastic modeling about
the primary user’s access [14]–[16].
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Although these proposed approaches have been shown to
be able to improve the spectrum utilization or bring monetary
gains for the primary users, most of them are based on
the assumption that the users only aim at maximizing the
spectrum utilization, either in a cooperative way where all
users are coordinated by the same network controller and
serve a common goal, or in a selfish manner where the
autonomous secondary users want to maximize their own
benefit. However, such an assumption does not hold when the
secondary users are in a hostile environment, where there exist
malicious attackers whose objective is to cause damage to the
legitimate users and prevent the spectrum from being utilized
efficiently. Therefore, how to secure spectrum sharing is of
critical importance to the wide deployment of the cognitive
radio technology.

Malicious attackers can launch various types of attacks in
different layers of a cognitive radio network [4]. In [17],
the authors studied the primary user emulation attack, where
the cognitive attackers mimic the primary signal to pre-
vent secondary users from accessing the licensed spectrum.
Localization-based defense mechanism was proposed, which
verifies the source of the detected signals by observing the
signal characteristics and estimating its location. The work
in [18] investigated the spectrum sensing data falsification
attack, and proposed a weighted sequential probability ratio
test to alleviate the performance degradation due to sensing
error. Other possible security issues such as denial of service
attacks in cognitive radio networks are discussed in [19] and
[20]. However, most of these works [19][20] only provide
qualitative analysis about the countermeasures, and have not
considered the real dynamics in the spectrum environment
and the cognitive attackers’ capability to adjust their attacking
strategy.

In this work, we focus on the jamming attack in a cognitive
radio network and propose a stochastic game framework
for anti-jamming defense design, which can accommodate
the dynamic spectrum opportunity, channel quality, and both
the secondary users and attackers’ strategy changes. The
jamming attack has been extensively studied in wireless net-
working, and existing anti-jamming solutions include physical
layer defenses, such as directional antennas [22] and spread
spectrum [23], link-layer defenses such as channel hopping
[25][26][27][28], and network-layer defenses, such as spa-
tial retreats [29]. However, they are not directly applicable
to cognitive radio networks, since the spectrum availability
keeps changing with the primary users returning/vacating
the licensed bands. For instance, the work in [28] proposed
to use error-correcting codes (n, m) to ensure reliable data
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communications with a high throughput. However, this ap-
proach requires that at each time there are at least n channels
available, which may not be satisfied if many licensed bands
are occupied by primary users.
Moreover, most of the works assume that the attackers adopt

a fixed strategy that will not change with time. However, if the
attackers are also equipped with cognitive radio technology, it
is highly likely that they will adapt their attacking strategy ac-
cording to the environment dynamics as well as the secondary
users’ strategy. Therefore, in our work, we model the strategic
and dynamic competition between the secondary users and
the cognitive attackers as a zero-sum stochastic game. In
order to ensure reliable transmission, we propose to reserve
multiple channels for transmitting control messages, and the
control channels should be switched with the data channels
from time to time, according to the attackers’ strategy. We
define the spectrum availability, the channel quality, and the
observation about the attackers’ action as the state of the
game. The secondary users’ action is defined as how many
control or data channels they should reserve and how to switch
between the control and data channels, and their objective is
to maximize the spectrum-efficient throughput, defined as the
ratio between the expected achievable throughput over the total
number of active channels used for transmitting control and
data messages.
Using the minimax-Q learning algorithm, the secondary

users can obtain the optimal policy, with a proved conver-
gence. Simulation results show that when the channel quality
is not good, the secondary users should reserve a lot data chan-
nels and a few control channels to improve the throughput.
As the channel quality becomes better, they should reserve
more control channels to ensure communication reliability.
When the channel quality further increases, the secondary
users should be more conservative by reserving less data
channels to improve the spectrum-efficient throughput. At the
states when some control or data channels are observed to be
jammed, the secondary users should adopt a mixed strategy
to avoid being severely jammed next time. When there are
more than one licensed band available, the attackers’ decision
making becomes more difficult, and the secondary users can
take more aggressive action by having more data channels. It
is also shown that the secondary users can achieve a higher
payoff using the stationary policy learned from the minimax-Q
learning than using myopic learning and a random strategy.
The remaining of the paper is organized as follows. In

Section II, we introduce the system model about the secondary
user network and the anti-jamming defense. In Section III,
we formulate the anti-jamming defense as a stochastic game
by defining the states, actions, objective functions, and the
state transition rules. In Section IV, we obtain the optimal
policy of the secondary user network using the minimax-Q
learning algorithm. In Section V we present the simulation
results, followed by conclusions in Section VI.

II. SYSTEM MODEL

In this section, we present the model assumptions about the
secondary user network and the anti-jamming defense against
the malicious attackers.

A. Secondary User Network

In this paper, we consider a dynamic spectrum access
network where multiple secondary users equipped with cog-
nitive radio are allowed to access temporarily-unused licensed
spectrum channels that belong to multiple primary users. There
is a secondary base station in the network, which coordinates
the spectrum usage of all secondary users. In order to avoid
conflict or harmful interference to the primary users, the
secondary users need to listen to the spectrum before every
attempt of transmission. We assume the secondary network
is a time-slotted system, and at the beginning of each time
slot, secondary users need to reserve a certain time to detect
the presence of a primary user. Various detection techniques
are available, such as energy detection, or feature detection if
the secondary users know some prior information about the
primary users’ signal. In cooperative spectrum sharing such
as a spectrum auction, secondary users can avoid harmful
interference by listening to the primary users’ announcement
about whether they would share the licensed channels with
the secondary users. To simplify analysis, we assume perfect
sensing or cooperative spectrum sharing in this work. There-
fore, the secondary user network can take every opportunity
to utilize the currently unused licensed spectrum, and vacate
the spectrum whenever a primary user reclaims the spectrum
rights.
Due to the primary users’ activity and channel variations,

the spectrum availability and quality keep changing. In order
to coordinate the spectrum usage and achieve efficient spec-
trum utilization, necessary control messages need to be ex-
changed between the secondary base station and the secondary
users through dedicated control channels1. Control channels
serve as a medium that can support high-level network func-
tionality, such as access control, channel assignment, spectrum
handoff, etc. If the control messages are not correctly received
by the secondary users or base station, certain network func-
tions will get impaired.

B. Anti-Jamming Defense in Cognitive Radio Networks

Radio jamming is a Denial of Service (DoS) attack which
targets at disrupting communications at the physical and link
layers of a wireless network. By keeping the wireless spectrum
busy, e.g., constantly injecting packets to a shared spectrum
[25], a jamming attacker can prevent legitimate users from
accessing an open spectrum band. Another type of jamming
is to inject high interference power around the vicinity of
a victim [21] [29], so that the signal to noise ratio (SNR)
deteriorates heavily and no data can be received correctly.
In a cognitive radio network, malicious attackers can launch

jamming attack to prevent efficient utilization of the spectrum
opportunities. In this paper, we assume that the characteris-
tics of the transmitted signal by the primary users and the
secondary users are distinguishable, and the attackers also
listen to the licensed band when the secondary users are
sensing the spectrum. The attackers will jam the secondary

1Many wireless networks employ control channels for sending system
control information [38], e.g., the GSM cellular communication system has
multiple control channels, which are located at very specific time slots and
physical frequency band.
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Fig. 1. Illustration of the anti-jamming defense.

users’ transmission, while will not jam the licensed bands
when the primary users are active, either because there may
be a very heavy penalty on the attackers if their identities
are known by the primary users, or because the attackers
cannot get close to the primary users. Moreover, due to the
limitation of the number of antennas and/or the total power, we
assume that the attackers can jam at most N̄ channels in each
time slot. Then, the objective of the attackers is to cause the
most damage to the secondary user network with the limited
jamming capability.
Given the limited jamming capability, the attackers can

adopt an attacking strategy that targets at as many data
channels as possible to reduce the gain of the secondary user
network by transmitting data. On the other hand, if the number
of control channels is less than N̄ , while the number of data
channels is greater than N̄ , the attackers can try to target at
the control channels to make the attack even more powerful. If
the secondary user network adopts a fixed channel assignment
scheme for transmitting data and control messages, a cognitive
attacker can capture such a pattern2, distinguish between the
data channels and control channels, and target at only the data
or control channels and cause the highest damage.
Therefore, secondary users need to perform channel hop-

ping/switching to alleviate the potential damage due to a
fixed channel assignment schedule. As shown in Figure 1, the
channels that are used for transmitting data/control messages
in this time slot may no longer be data/control channels in the
next time slot. By introducing randomness in their channel
assignment, secondary users’ access pattern becomes more
unpredictable. Then, the attackers also have to strategically
change the channels they will attack with time. Therefore,
channel hopping is more resistant to the jamming attack than
a fixed channel assignment.
When designing the channel hopping mechanism in a

cognitive radio network, the secondary users need to take the

2Since control messages may have distinguishable features from data
messages, for instance, different lengths, headers, and acknowledgement, the
attackers can determine whether the jammed channels are control or data
channels after jamming for a number of time slots. Similar assumptions can
be found in [39].

following facts into consideration.

• There is a tradeoff in choosing a proper number of control
channels. The secondary network functionality relies
heavily upon the correct reception of control messages.
Thus, it is more reliable to transmit duplicate control
messages in multiple channels (i.e., control channels).
However, if the secondary user network reserves too
many control channels, the number of channels where
data messages are transmitted (i.e., data channels) will
be small, and the achievable gain through utilizing the
licensed spectrum will be unnecessarily low. Therefore,
a good selection should be able to balance the risk of
having no control messages successfully received and
the gain of transmitting data messages. To make the
defense mechanism more general, we assume that the
secondary user network can choose to transmit nothing in
some channels even when the licensed band is available.
This is because when the secondary base station believes
it has reserved enough data or control channels under
very severe jamming attack, allocating more channels
for transmitting messages can only result in a waste the
energy, and it will be better the leave some channels
as idle, if the energy consumption is a concern of the
secondary user network.

• The channel hopping mechanism must be adaptive to the
attackers’ strategy. This is because the attackers may
also be equipped with cognitive radio technology and
adjust their strategies based on the observation about the
spectrum environment dynamics and the secondary users’
strategy. Thus, the secondary users cannot pre-assume
that the attackers will adopt a fixed attack strategy. In-
stead, they need to build a stochastic model that captures
the dynamic strategy adjustment of the attackers, as well
as the spectrum environment variations.

According to the above-mentioned assumptions about the
system model and the jamming attack, we know that the
secondary users aim at maximizing the spectrum utilization
with carefully-designed channel switching schedules, while
the malicious attackers want to decrease the spectrum uti-
lization by strategic jamming. Therefore, they have opposite
objectives and their dynamic interactions can be well modeled
as a noncooperative (zero-sum) game3. As we assume that
the spectrum access of all the secondary users is coordinated
by the secondary base station, and the malicious users work
together to cause the most damage to the secondary users,
we can view all the secondary users in the network as one
player, and all the attackers as another player. Moreover,
considering that the spectrum opportunity, channel quality, and
both the secondary users and malicious attackers’ strategies
are changing with time, the noncooperative game should be
considered in a stochastic setting, i.e., the dynamic anti-
jamming defense in the secondary user network should be
formulated as a stochastic game.

3Note that if the individual cost of the attacker, e.g. cost due to energy
consumption of jamming, is a concern of the attackers, the payoff of the
attackers will not be the negative of the secondary users’ payoff, and the game
is better modeled as a general-sum game. However, to simplify analysis, in
this paper we only discuss the zero-sum stochastic game and case of general-
sum games can be studied in a similar way.
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III. STOCHASTIC ANTI-JAMMING GAME FORMULATION

Before we go into details of the stochastic anti-jamming
game formulation, let us first introduce the stochastic game
to get a general idea. A stochastic game [31][36][37] is an
extension of Markov Decision Process (MDP) [32] by consid-
ering the interactive competition among different agents. In a
stochastic game G, there is a set of states, denoted by S, and
a collection of action sets, A1, · · · ,Ak, one for each player
in the game. The game is played in a sequence of stages. At
the beginning of each stage the game is in some state. After
the players select and execute their actions, the game then
moves to a new random state with transition probability de-
termined by the current state and one action from each player:
T : S ×A1 × · · · × Ak �→ PD(S). Meanwhile, at each stage
each player receives a payoff Ri : S × A1 × · · · × Ak �→ R,
which also depends on the current state and the chosen actions.
The game is played continually for a number of stages, and
each player attempts to maximize his/her expected sum of
discounted payoffs, E{∑∞j=0 γjri,t+j}, where ri,t+j is the
reward received j steps into the future by player i and γ is
the discount factor.
After introducing the concepts of a stochastic game, we next

formulate the anti-jamming game by defining each component
of the game.

A. States and Actions

We consider a spectrum pooling system, where the sec-
ondary user network can use the temporarily unused spectrum
bands that belong to L primary users. As the bandwidth of
different licensed bands may be different, we assume that
each licensed band is divided into a set of adjacent channels
with the same bandwidth. Then, there are Nl channels in
primary user l’s band, and we assume all of them will be
occupied/released when primary user l reclaims/vacates the
band. Then, we can denote primary user l’s states in the l-th
band at time t as P t

l , whose value can be either P t
l = 1,

meaning primary user l is active at time t, or P t
l = 0,

meaning primary user l will not use the licensed band at
time t and the secondary users can access the channels in
the l-th band. According to some empirical studies on the
primary users’ access pattern [30], the states P t

l can be
modeled by a two-state Markov chain, where the transition
probabilities are denoted by p1→1

l = p(P t+1
l = 1|P t

l = 1)
and p0→1

l = p(P t+1
l = 1|P t

l = 0).
The secondary user network will achieve a certain gain by

utilizing the spectrum opportunity on the licensed bands. The
gain can be defined as a function of the data throughput, packet
loss, delay, or other proper Quality of Service (QoS) measure,
and is often an increasing function of the channel quality. Due
to the channel variations on each licensed band, the channel
quality may change from one time slot to another, so the gain
of utilizing a licensed band also changes over time. We assume
that the gain of each channel within the same licensed band l is
identical at any time t, and it can take any value from a set of
discrete values, i.e., gt

l ∈ {q1, q2, · · · , qn}. Since the channel
quality (in terms of SNR) is often modeled as a finite-state
Markov chain (FSMC) [24], the dynamics of the l-th licensed
band’s gain gt

l can also be expressed by an FSMC. Note that

the achievable gain of utilizing the licensed bands also depends
on the primary users’ status, i.e., when the primary user is
active in the l-th band (P t

l = 1), the secondary users are not
allowed to access band l, and thus gt

l = 0. So the state of the
FSMC should be able to capture the joint dynamics of both
the primary users’ access and the channel quality, which can
be denoted by (P t

l , gt
l ).

The transition probability of the FSMC with states (P t
l , gt

l )
can be derived as follows. When the l-th licensed band is not
available for two consecutive time slots, the transition depends
only on the primary users’ access pattern, so we have

p(P t+1
l = 1, gt+1

l = 0|P t
l = 1, gt

l = 0) = p1→1
l . (1)

When the l-th band becomes available with gain qn at time
t + 1, we have

p(P t+1
l = 0, gt+1

l = qn|P t
l = 1, gt

l = 0) = (1 − p1→1
l )p0→n

gl
,
(2)

where p0→n
gl

denotes the probability that the gain of band l is
qn at time t + 1, given that P t

l = 1 and P t+1
l = 0. When the

l-th band is available for two consecutive time slots, we have
the state transition probability as

p(P t+1
l = 0, gt+1

l = qn|P t
l = 0, gt

l = qm) = (1−p0→1
l )pm→n

gl
,

(3)
where pm→n

gl
is the probability that the gain transits from qm

at time t to qn at time t+1. Finally, when the l-th band turns
unavailable from time t to time t+1, the transition probability
is

p(P t+1
l = 1, gt+1

l = 0|P t
l = 0, gt

l = qm) = p0→1
l , (4)

since the transition does not depend on the the gain gt
l at time

t.
In the above, we have discussed the dynamics of primary

users’ returning/vocating the licensed bands and the gains of
utilizing the licensed spectrum. Clearly, these dynamics will
affect the secondary users’ decisions about how to allocate
the channels for transmitting control and data messages. For
instance, in order to obtain higher utilization of the spectrum
opportunities, the secondary users tend to allocate more chan-
nels with higher gains as data channels and those with lower
gains as control channels. However, their channel allocation
decisions should also depend on the observations about the
malicious attackers’ strategies, which can be conjectured from
the channels that get jammed by the attackers. Thus, the sec-
ondary users should maintain a record about which channels
have been jammed by the attackers and what type of messages
have been transmitted in the jammed channels. Since the
channels within the same licensed band are assumed to have
the same gain, what matters to the secondary users is only the
number and the type of the jammed channels. Based on these
assumptions, the observations of the secondary user network
are denoted by {J t

l,C , J t
l,D}, where J t

l,C and J t
l,D denotes the

number of control and data channels that get jammed in the
l-th band observed at time slot t, and l ∈ {1, 2, · · · , L}. Such
observation can be obtained when the secondary users do not
receive a confirmation about message receipt from the receiver.
The secondary users cannot tell whether an idle channel gets
jammed or not, since no messages are transmitted in those



WANG et al.: AN ANTI-JAMMING STOCHASTIC GAME FOR COGNITIVE RADIO NETWORKS 881

channels. Thus, the number of idle channels that get jammed
is not an observation of the secondary users, and will not be
considered in the state of the stochastic game. In summary, the
state of the stochastic anti-jamming game at time t is defined
by st = {st

1, s
t
2, · · · , st

L}, where st
l = (P t

l , gt
l , J

t
l,C , J t

l,D)
denotes the state associated with the l-th band.
After observing the state at each stage, both the secondary

users and the attackers will choose their actions for the current
time slot. The secondary users may no longer choose the
previously jammed channels as control or data channels if they
believe that the attackers will stay in the jammed channels
until they detect no activity of the secondary users. On the
other hand, if the attackers believe that the secondary users
will hop away from the jammed channels, they will choose the
previously un-attacked channels to jam; then for the secondary
users, staying still in the previously jammed channels may
be a better choice. When facing such uncertainty about each
other’s strategy, both the secondary users and the attackers
should adopt a randomized strategy. The secondary users will
still transmit control or data messages in part of the previously
jammed channels in case that the attackers are more likely to
jam the previously un-attacked channels, and start transmitting
in part of the previously un-attacked channels in case that
the attackers are more likely to keep jamming the previously
jammed channels for a while. Similarly, the attackers will keep
jamming some of the previously jammed channels and start to
jam the channels that were not jammed in the previous time
slot.
In addition, as discussed in Section II, the secondary users

may need to perform channel switching to make their channel
access pattern more unpredictable to the attackers and alleviate
the potential damage due to jamming. Thus, at every time
the secondary users can switch a control channel to a data
or an idle channel, and vice versa. If so, when there are Nl

channels in each licensed band l, the secondary users will
have 3Nl different actions to choose from on the l-th band and∏L

l=1 3Nl actions in total. This will complicate the decision
making of the secondary users. To have the decision making
computable in a reasonable time, we formulate the action set
for both players as follows. Note that more complicated action
modeling will only affect the performance, while not affecting
the stochastic anti-jamming game framework.
Mathematically, the actions of the secondary users

are defined as at = {at
1, a

t
2, · · · , at

L}, with at
l =

(at
l,C1

, at
l,D1

, at
l,C2

, at
l,D2

), where action at
l,C1

(or at
l,D1

) means
that the secondary network will transmit control (or data) mes-
sages in at

l,C1
(or at

l,D1
) channels uniformly selected from the

previously un-attacked channels, and action at
l,C2

(or at
l,D2

)
means that the secondary network will transmit control (or
data) messages in at

l,C1
(or at

l,D1
) channels uniformly selected

from the previously jammed channels. Similarly, the actions
of the attackers are defined as at

J = {at
1,J , at

2,J , · · · , at
L,J},

with at
l,J = (at

l,J1
, at

l,J2
), where action at

l,J1
(or at

l,J2
) means

that the attackers will jam at
l,J1

(or at
l,J2
) channels uniformly

selected from the previously un-attacked (or attacked) chan-
nels at current time t. It can be seen that the above choice
of actions has modeled the players’ uncertainty about each
other’s strategy on the jammed and un-jammed channels, as
well as the need for channel switching.

B. State Transitions and Stage Payoff

With the state and action space defined, we next discuss
the state transition rule. We assume that the players choose
their actions in each band independently, then the transition
probability can be expressed by

p(st+1|st, at, at
J ) =

L∏
l=1

p(st+1
l |st

l , a
t
l , a

t
l,J). (5)

Since the dynamics of the primary users’ activity and the
channel variations are supposed to be independent of the
players’ actions, the transition probability p(st+1

l |st
l , a

t
l , a

t
l,J)

can be further separated into two parts, i.e.

p(st+1
l |st

l , a
t
l , a

t
l,J) = p(J t+1

l,C , J t+1
l,D |J t

l,C , J t
l,D, at

l , a
t
l,J)

× p(P t+1
l , gt+1

l |P t
l , gt

l ),
(6)

where the first term on the right hand side of (6) represents
the transition probability of the number of jammed control and
data channels, and the second term represents the the transition
of the primary user status and the channel condition. As the
second term has been derived in (1)-(4), we only need to derive
the first term for different cases.
Case 1: P t

l = 1. As discussed in Section II, we assume
that the attackers will not jam the licensed bands when the
primary users are active; then, when the l-th band is occupied
by the primary user at time slot t, i.e., P t

l = 1, the action of
the attackers will be at

l,J = (0, 0), and the state variable J t+1
l,C

and J t+1
l,D will be 0. Therefore, when P t

l = 1, we have

p(st+1
l |st

l , a
t
l , a

t
l,J) = p(P t+1

l , gt+1
l |P t

l , gt
l ),

if J t+1
l,C = 0 and J t+1

l,D = 0.
(7)

Case 2: P t
l = 0. When the l-th band is available to the

secondary users, according to the observation J t
l,C and J t

l,D

at time t about the jammed channel status in the previous
time slot, the secondary network will choose an action at

l =
(at

l,C1
, at

l,D1
, at

l,C2
, at

l,D2
), and the attackers choose an action

at
l,J = (at

l,J1
, at

l,J2
). As the jammed control (or data) channels

at the next time slot t + 1 include those control (or data)
channels that the secondary network has selected from both the
previously un-jammed and jammed channels, when deriving
the transition p(J t+1

l,C , J t+1
l,D |J t

l,C , J t
l,D, at

l , a
t
l,J), we need to

consider all possible pairs of (nC1 , nC2) and (nD1 , nD2),
where nC1 (or nD1) denotes the number of jammed control
(or data) channels that are previously un-jammed, nC2 (or
nD2 ) denotes the number of jammed control (or data) channels
that are previously jammed, with nC1 + nC2 = J t+1

l,C , and
nD1 +nD2 = J t+1

l,D . Given that the secondary users uniformly
choose at

l,C1
(or at

l,D1
) channels as control (or data) channels

out of the un-jammed Nl − J t
l,C − J t

l,D channels, and the
attackers uniformly jam at

l,J1
channels, the probability that

nC1 control channels and nD1 data channels get jammed at
time t can be written by

p(nC1 , nD1 |J t
l,C , J t

l,D, at
l , a

t
l,J)

=

(
at

l,C1
nC1

)(
at

l,D1
nD1

)(Nt
l,1−at

l,C1
−at

l,D1
at

l,J1
−nC1−nD1

)
(Nt

l,1
at

l,J1

) ,
(8)
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where N t
l,1 = Nl − J t

l,C − J t
l,D. Similarly, the transition

probability of nC2 and nD2 is expressed as

p(nC2 , nD2 |J t
l,C , J t

l,D, at
l , a

t
l,J)

=

(
at

l,C2
nC2

)(
at

l,D2
nD2

)(Nt
l,2−at

l,C2
−at

l,D2
at

l,J2
−nC2−nD2

)
(Nt

l,2
at

l,J2

) ,
(9)

where N t
l,2 = J t

l,C + J t
l,D denotes the number of jammed

channels. Then, the transition probability of J t
l,C and J t

l,D

becomes

p(J t+1
l,C , J t+1

l,D |J t
l,C , J t

l,D, at
l , a

t
l,J) =

∑
nC1+nC2=Jt+1

l,C∑
nD1+nD2=Jt+1

l,D

[
p(nC1 , nD1 |J t

l,C , J t
l,D, at

l , a
t
l,J)

× p(nC2 , nD2 |J t
l,C , J t

l,D, at
l , a

t
l,J )

]
.

(10)

Substituting (3)(4) and (10) into (6), we can get the state
transition probability.
After the secondary users and the attackers choose their

actions, the secondary users will transmit control and data
messages in the selected channels, and attackers will jam their
selected channels. In order to coordinate the spectrum access
and simplify operation, we assume that the same control
messages are transmitted in all the control channels, and one
correct copy of control information at time t is sufficient for
coordinating the spectrum management in the next time slot
t + 1. The gain of a channel can only be achieved when
it is used for transmitting data messages and at least one
control channel is not jammed by the attackers. Considering
that it costs energy for the secondary users to transmit control
and data messages and they may be energy-constrained, the
objective of the secondary users is to achieve the highest
gain with a limited energy. Therefore, the stage payoff of the
secondary users can be defined as the expected gain per active
channel. Another explanation of the stage payoff is that the
secondary users want to maximize the spectrum-efficient gain.
Based on these assumptions, the stage payoff can be ex-

pressed by

r(st, at, at
J ) = T (st, at, at

J) × (1 − pblock(st, at, at
J)), (11)

where T (st, at, at
J) denotes the expected spectrum-efficient

gain when not all control channels get jammed, and
pblock(st, at, at

J ) denotes the probability that all control chan-
nels in all L bands are jammed.
As explained in Section III-A, we assume that the attackers

uniformly select at
l,J1

channels from the previous N t
l,1 un-

attacked channels to jam, and select at
l,J2

channels from the
previous N t

l,2 attacked channels to jam. Then, the probability
that a channel will not be jammed at time t can be represented

by (1− at
l,J1

Nt
l,1

) and (1− at
l,J2

Nt
l,2

), respectively. Given the gain of
the channels gt

l and assuming that different data is transmitted
in different channels, we have the expected gain of using band

l as [at
l,D1

(1−at
l,J1

Nt
l,1

)+at
l,D2

(1−at
l,J2

Nt
l,2

)]gt
l . Then, we can express

T (st, at, at
J) as (12), where the denominator denotes the total

number of control and data channels. Thus, (12) reflects the
spectrum-efficient gain.

Only when all the control channels in each licensed band l
are jammed can the secondary network be blocked. Therefore,
the blocking probability pblock(st, at, at

J) can be expressed as

pblock(st, at, at
J)

=
L∏

l=1

(at
l,C1

at
l,C1

)(Nt
l,1−at

l,C1
at

l,J1
−at

l,C1

)
(Nt

l,1

at
l,J1

) ×
(at

l,C2
at

l,C2

)(Nt
l,2−at

l,C2
at

l,J2
−at

l,C2

)
(Nt

l,2

at
l,J2

)

=
L∏

l=1

(Nt
l,1−at

l,C1
at

l,J1
−at

l,C1

)
(Nt

l,1
at

l,J1

) ×
(Nt

l,2−at
l,C2

at
l,J2
−at

l,C2

)
(Nt

l,2
at

l,J2

) ,

(13)

where the first (or second) term in the product represents the
probability that all the control channels uniformly selected
from the previously un-jammed (or jammed) channels in the
l-th band get jammed at time t.
Substituting (12) and (13) back into (11), we can obtain the

stage payoff for the secondary users, and the attackers’ payoff
is the negative of (11).

IV. SOLVING OPTIMAL POLICIES OF THE STOCHASTIC
GAME

Based on the stochastic anti-jamming game formulation in
the previous section, in this section, we discuss how to come
up with the optimal strategy, i.e., the optimal defending policy
of the secondary users.
In general, the secondary users have a long sequence of

data to transmit, and the energy of the attackers can afford
to jam the secondary network for a long time given that the
number of the jammed channels at each stage will not exceed
N̄ . Thus, we can assume that the anti-jamming game is played
for an infinite number of stages. Moreover, the secondary
users treat the payoff in different stages differently, e.g.,
delayed messages usually have less value in delay-sensitive
applications, and a recent payoff should weigh more than a
payoff that will be received in the faraway future. Then, the
secondary users’ objective is to derive an optimal policy that
maximizes the expected sum of discounted payoffs

max E{
∞∑

t=0

γtr(st, at, at
J)}, (14)

where γ is the discount factor of the secondary user network.
A policy in the stochastic game refers to a probability distri-
bution over the action set at any state. Then, the policy of the
secondary network is denoted by π : S → PD(A), and the
policy of the attackers can be denoted by πJ : S → PD(AJ ),
where st ∈ S, at ∈ A, and at

J ∈ AJ . Given the current state
st, if the defending policy πt (or jamming policy πt

J ) at time
t is independent of the states and actions in all previous time
slots, the policy π (or πJ ) is said to be Markov. If the policy is
further independent of time, i.e., πt = πt′ , given that st = st

′

the policy is said to be stationary.
It is known [33] that every stochastic game has a non-

empty set of optimal policies, and at least one of them is
stationary. Since the game between the secondary network and
the attackers is a zero-sum game, the equilibrium of each stage
game is the unique minimax equilibrium, and thus the optimal
policy will also be unique for each player. In order to solve
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T (st, at, at
J) =

∑L
l=1

[
at

l,D1
(1 − at

l,J1
Nt

l,1
) + at

l,D2
(1 − at

l,J2
Nt

l,2
)
]

gt
l∑L

l=1(a
t
l,C1

+ at
l,D1

+ at
l,C2

+ at
l,D2

)
, (12)

the optimal policy, we can use the minimax-Q learning method
[33]. Here, the Q-function Q(st, at, at

J ) at stage t is defined as
the expected discounted payoff when the secondary users take
action at, the attackers take action at

J , and both of them follow
their stationary policies thereafter. Since the Q-function is
essentially an estimate of the expected total discounted payoff
which evolves over time, in order to maximize the worst-case
performance, at each stage the secondary users should treat the
Q(st, at, at

J ) as the payoff of a matrix game, where at ∈ A
and at

J ∈ AJ . Given the payoff Q(st, at, at
J ) of the game, the

secondary users can find the minimax equilibrium and update
the Q-value with the value of the game [33]. Therefore, the
value of a state in the anti-jamming game becomes

V (st) = max
π(at)

min
πJ (at

J )

∑
at∈A

Q(st, at, at
J)π(at), (15)

where Q(st, at, at
J ) is updated by

Q(st, at, at
J ) = r(st, at, at

J )+γ
∑
st+1

p(st+1 | st, at, at
J)V (st+1).

(16)
In order to avoid the complexity of estimating the state

transition probability, we can modify the value iteration and
the Q-function is updated according to [34] [35]

Q(st, at, at
J) =(1 − αt)Q(st, at, at

J)
+ αt

[
r(st, at, at

J ) + γV (st+1)
]
,

(17)

where αt denotes the learning rate decaying over time by
αt+1 = μαt, with 0 < μ < 1, and V (st+1) is obtained by
(15). In the modified update in (17), the current value of a
state V (st+1) is used as an approximate of the true expected
discounted future payoff, which will be improved during the
value iteration; and the estimate of Q(st, at, at

J ) is updated by
mixing the previous Q-value with a correction from the new
estimate at a learning rate αt that decays slowly over time. It is
shown that [34] the minimax-Q learning approach converges
to the true Q and V values and hence the optimal policy, as
long as each action is tried in every state for infinitely many
times.
Then, the minimax-Q learning for the secondary users to

obtain the optimal policy is summarized in Table I. Since no
secondary user (or attacker) will transmit in (or jam) a licensed
band when the primary user is active, when the primary users’
status are different in various states, the corresponding action
spaces of the players at these states are also different. Thus,
the action space depends on the state. At the beginning of each
stage t, the secondary users check whether they have observed
state st before: if not, they will add st to the observation
history about every state shist, and initialize the variables used
in the learning algorithm, Q, V , and policy π(st, a). If st

already exists in the history shist, the secondary users just
call the corresponding action sets and function values. Then,
the secondary users will choose an action at: with a certain
probability pexp, they choose to explore the entire action

TABLE I
MINIMAX-Q LEARNING FOR THE ANTI-JAMMING STOCHASTIC GAME

1. At state st, t = 0, 1, · · ·
� if state st has not been observed previously, add st to shist ,
• generate action set A(st), and AJ (st) of the attackers;
• initialize Q(st, a, aJ )← 1, for all a ∈ A(st), aJ ∈ AJ (st);
• initialize V (st)← 1;
• initialize π(st, a)← 1/|A(st)|, for all a ∈ A(st);

� otherwise, use previously generated A(st), AJ (st), Q(st, a, aJ ), V (st),
and π(st);

2. Choose an action at at time t:
� with probability pexp, return an action uniformly at random;
� otherwise, return action at with probability π(st, a) under current state st.
3. Learn:
Assume the attackers take action at

J , after receiving reward r(st, at, at
J ) for

moving from state st to st+1 by taking action at

� Update Q-function Q(st, at, at
J ) according to (17);

� Update the optimal strategy π∗(st, a) by
π∗(st)← arg maxπ(st) minπJ (st)

P
a π(st, a)Q(st, a, aJ );

� Update V (st)← minπJ (st)
P
a π∗(st, a)Q(st, a, aJ );

� Update αt+1 ← αt ∗ μ;
� Go to step 1 until converge.

space A(st) and return an action uniformly. With probability
1−pexp, they choose to take action at that is drawn according
to the current π(st). After the attackers take action at

J , the
secondary users receive the reward, and the game transits
to the next state st+1. The secondary users update the Q
and V function values, update policy π(st) at state st, and
decay the learning rate. The value iteration will continue until
π(st) approaches the optimal policy, and we will demonstrate
the convergence of the minimax-Q learning in the simulation
results.
Note that in order to obtain the value of a state V (st),

the secondary users need to solve the equilibrium of a matrix
game, where the payoff is Q(st, a, aJ ), for all a ∈ A(st),
and aJ ∈ AJ (st). Assume the attackers form the row player,
whose strategy is denoted by vector πJ (st), and the secondary
users form the column player, whose strategy is denoted by
vector π(st). Then, the value of the game can be expressed
by

max
π(st)

min
πJ (st)

πJ (st)T Q(st, a, aJ)π(st), (18)

which cannot be solved directly. If we assume the secondary
users’s strategy π(st) is fixed, then the problem in (18)
becomes

min
πJ (st)

πJ (st)T Q(st, a, aJ)π(st). (19)

Since Q(st, a, aJ)π(st) is just a vector, and πJ (st) is a
probability distribution, the solution of (19) is equivalent to
mini[Q(st, a, aJ)π(st)]i, i.e., finding the minimal element of
Q(st, a, aJ)π(st). Then, the problem in (18) is simplified as

max
π(st)

min
i

[Q(st, a, aJ)π(st)]i. (20)

Define z = mini [Q(st, a, aJ)π(st)]i, we have
[Q(st, a, aJ)π(st)]i ≥ mini [Q(st, a, aJ)π(st)]i = z.
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Therefore, the original problem (18) becomes

max
π(st)

z

s.t. [Q(st, a, aJ )π(st)]i ≥ z,

π(st) ≥ 0,
1T π(st) = 1,

(21)

where π(st) ≥ 0 means that each probability element in π(st)
must be non-negative. By treating the objective z also as a
variable, (21) can be turned to the following

max
π′

0T
augπ

′

s.t. Q′π′ ≤ 0,
π(st) ≥ 0,
1T

augπ
′ = 1,

(22)

where π′ = [π(st)
z ], Q′ = ([O 1] − [Q(st, a, aJ ) 0]),

1T
aug = [1T 0], and 0T

aug = [0T 1]. Problem (22) is a linear
program, so the secondary users can easily obtain the value
of the game z from the optimizer π′.

V. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the
secondary user network’s performance under the jamming
attack. We first demonstrate the convergence of the minimax-Q
learning algorithm, and analyze the strategy of the secondary
users and attackers for several typical states. Then, we com-
pare the achievable performance when the secondary users
adopt different strategies. For illustrative purpose, we focus
on examples with only one or two licensed bands to provide
more insight; however, similar policies can be observed when
there are more licensed bands available.

A. Convergence and Strategy Analysis

1) Anti-Jamming Defense in One Licensed Band: We first
study the case when there is only one licensed band available
to the secondary users, i.e., L = 1. There are eight channels
in the licensed band, among which the attackers can at most
choose four channels to jam at each time. The gain of utilizing
each channel in the licensed band gt

l can take any value from
{1, 6, 11}, and the transition probability of the gain from any
qj to qi is pj→1

gl
= pj→2

gl
= 0.4, pj→3

gl
= 0.2, for j = 1, 2, 3,

as well as for j = 0 when the primary user becomes inactive.
The transition probabilities about the primary user’s access are
given by p1→1

l = 0.5 and p0→1
l = 0.5. The length of a time

slot is 2 ms.
We first study the strategy of the secondary users and the

attackers at those states when the primary user is inactive and
no channels are observed to be successfully jammed in the pre-
vious stage. Recall that the state of the stochastic anti-jamming
game with L = 1 is denoted by st = {P t

1 , g
t
1, J

t
1,C , J t

1,D},
where J t

1,C and J t
1,D represent the number of jammed control

and data channels observed from the previous stage, then
three such states are (0, 1, 0, 0), (0, 6, 0, 0), and (0, 11, 0, 0).
We show the learning curve of the secondary users’ strategy
in these states in the left column of Figure 2, and the
learning curve of the attackers’ strategy in the right column.

We see from Figure 2 that using the minimax-Q learning,
the strategies of the secondary users and the attackers both
converge within less than 400 time slots (0.8 s), and the
optimal strategy for each player is a pure strategy. Recall that
the action of the secondary users on the l-th band is denoted
by (at

l,C1
, at

l,D1
, at

l,C2
, at

l,D2
), and the action of the attackers

is (at
l,J1

, at
l,J2

). Then, in Figures 2(a) and 2(b) for state
(0, 1, 0, 0), we see that the optimal strategy of the secondary
users finally converges to (2, 6, 0, 0), meaning that the sec-
ondary users uniformly choose 2 channels as control channels,
and 6 channels as data channels; and the attackers’ optimal
strategy converges to (3, 0), meaning uniformly choose 3
channels to jam. This is because the gain of each channel
in this state is only 1, and the secondary users choose to
reserve a lot channels for transmitting data messages and a few
channels for control messages, in hope of obtaining a higher
gain while at a higher risk of having all the control channels
jammed. When the gain increases to 6 per channel, as shown in
Figures 2(c) and 2(d), the secondary users become more risk-
averse by reserving 5 control channels and 3 data channels,
and the attackers become more aggressive by attacking the
maximal number of channels they can. This is because the
gain of each channel is higher, and the secondary users want to
ensure a certain gain by securing at lease one control channel
from being jammed. When the gain further increases to 11
(Figures 2(e) and 2(f)), the secondary users become even more
conservative by only having 2 data channels and 3 control
channels. This is because the objective of the secondary users
is defined as the spectrum-efficient gain as in (12), and leaving
more channels as idle may probably increase the payoff.
Next, we observe how the players’ strategy will change

when some of the state variables are different, for instance,
some control or data channels are jammed by the attackers in
the previous stage. We only choose two states for illustration,
state (0, 6, 2, 0) and state (0, 6, 0, 2), to compare with the
strategy at state (0, 6, 0, 0).
In Figure 3, we demonstrate the learning curve of the

secondary users and the attackers at state (0, 6, 2, 0), where
2 control channels are jammed in the previous stage. We see
that both players’ strategies converge within 50 time slots (0.1
s), and the optimal policies of both players at this state are
mixed strategies. Since in the previous stage, the attackers
successfully jam 2 control channels, it is highly likely that
most of the remaining un-jammed channels are data channels.
Thus, the attackers tend to jam the previously un-jammed
channels with a relatively high probability, as shown by actions
(1, 0), (2, 0), (3, 0), (2, 1) in Figure 3(b), the total probability
of which is very high at the beginning. Then, the secondary
users tend to reserve most of the previously jammed channels
as data channels, as shown by those actions where at

l,D2
≥ 1

with a total probability greater than 0.9; and reserve only a
few of the previously un-jammed channels as data channels,
as shown by actions where al,D1 ≤ 3 with a total probability
greater than 0.8. Moreover, since the attackers will attack less
than 3 channels from the previously un-jammed channels, the
secondary users only reserve at most 3 control channels there
to ensure reliable communications. The attackers generally
jam less than 4 channels. If they choose to jam 4 channels,
the secondary users facing the high chance of being attacked
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(a) action (2, 6, 0, 0) at state (0, 1, 0, 0)
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(b) action (3, 0) at state (0, 1, 0, 0)
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(c) action (5, 3, 0, 0) at state (0, 6, 0, 0)
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(d) action (4, 0) at state (0, 6, 0, 0)
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(e) action (3, 2, 0, 0) at state (0, 11, 0, 0)
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(f) action (4, 0) at state (0, 11, 0, 0)

Fig. 2. Learning curve of the secondary users (left column) and the attackers (right column).

will leave more channels as idle. This may in return increase
the secondary users’ expected payoff, and thus the attackers
at most jam 3 channels.
Both players’ strategies at state (0, 6, 0, 2) are shown in

Figure 4. Since 2 data channels are successfully jammed in
the previous stage, the secondary users tend to reserve less
than 1 channel that are previously jammed as data channels
to avoid “second jammed”, as shown by actions (5, 0, 1, 1)
and (5, 1, 1, 0) with a total probability greater than 0.7. Con-
sidering that the attackers will probably attack the previously

un-jammed channels, the secondary users reserve most un-
jammed channels as control channels to ensure reliability,
again as shown by actions (5, 0, 1, 1) and (5, 1, 1, 0) where
5 un-jammed channels are selected as control channels. In
response to the secondary users’ strategy, the attackers will
keep attacking the previously jammed channels, as shown by
actions (0, 2), (1, 2), (2, 2) with a total probability greater
than 0.94, where al,J2 = 2. Comparing Figure 4 and Figure
3, we find that when the attackers successfully jam some
data channels, more information about the secondary users’
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(a) Learning curve of the secondary users at state (0, 6, 2, 0)
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(b) Learning curve of the attackers at state (0, 6, 2, 0)

Fig. 3. Learning curve of the secondary users and the attackers at state
(0, 6, 2, 0).

strategy (on locating the data channels) is revealed, the damage
of the jamming attack will be more severe, and the secondary
users have to reserve more channels for control use, which
leads to a reduced payoff.

2) Anti-Jamming Defense in Two Licensed Bands: We now
discuss the strategy of the secondary users and attackers when
there are two licensed bands available, i.e. L = 2. There
are four channels within each band, and the gain of the
channels in each band still takes value from {1, 6, 11}, with
the same transition probability as that in the one-band case.
The transition probability about the primary user’s access on
the first band is p1→1

1 = p0→1
1 = 0.5, while the transition

probability about the second band is p1→1
2 = p0→1

2 = 0.2,
meaning that the the probability of the second band being
available is higher than that of the first band. The attackers
can jam at most four channels at each time.
To compare with the one-band case, we first study the

strategy of both players at state ((0, 6, 0, 0), (0, 6, 0, 0)), where
both bands are available, with gain gt

1 = gt
2 = 6, and no

control or data channels have been jammed in the previous
stage. We show the learning curve of both players in Figure
5, where the number below each plot denotes the index of
the action shown in that plot. We see that the secondary
users’ strategy converges to the optimal policy within 800
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Fig. 4. Learning curve of the secondary users and the attackers at state
(0, 6, 0, 2).

time slots (1.6 s), while the attackers’ strategy converges
within 400 time slots (0.8 s). Under the optimal policy, the
secondary users mostly take action ((1, 3, 0, 0), (1, 3, 0, 0))
indexed as 104, action ((0, 2, 0, 0), (2, 2, 0, 0)) indexed as
27, action ((2, 0, 0, 0), (1, 3, 0, 0)) indexed as 119, and action
((2, 2, 0, 0), (1, 1, 0, 0)) indexed as 147; the attackers mostly
take action ((0, 0), (3, 0)) indexed as 3, action ((0, 0), (4, 0))
indexed as 4, and action ((4, 0), (0, 0)) indexed as 14. Since
the availability of the second band is higher, the attackers tend
to jam the channels in the second band (with a total probability
0.7 of action 3 and 4). But there is still a chance that they
will attack the first band, indicating that the attackers’ strategy
is random. Compared to the equivalent state (0, 6, 0, 0) in
the one-band case, where the secondary users’ policy is
(5, 3, 0, 0), the secondary users’ policy in the two-band case is
more aggressive, as seen from the fact that the secondary users
assign more data channels and less control channels in total.
This is because there are two available bands, the attackers’
strategy becomes more random, and thus an aggressive policy
can bring a higher gain to the secondary users.

Then, we study the strategy at state ((0, 1, 0, 0),(0, 6, 0, 0)),
where gt

1 = 1, and gt
2 = 6. The learning curves are shown in

Figure 6. Since the second band has higher gain and is also
more likely to be available in the next slot, the attackers tend
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Fig. 5. Learning curve at state ((0, 6, 0, 0), (0, 6, 0, 0)) when L = 2.

to jam the second band, as seen from the probability of action
((0, 0), (3, 0)) indexed as 3 and action ((0, 0), (4, 0)) indexed
as 4. In response to the attackers’ strategy, the secondary users
tend to reserve more control channels in the first band since
it is less likely to be attacked, and more data channels in
the second band since it has a higher gain for each channel,
as seen from the probability of action ((2, 1, 0, 0), (1, 1, 0, 0))
indexed as 132 and action ((3, 0, 0, 0), (0, 4, 0, 0)) indexed as
160.

B. Comparison of Different Strategies

We also compare the performance of the secondary users
when they adopt the stationary policy obtained from the
minimax-Q learning with other policies to evaluate the pro-
posed stochastic anti-jamming game and the learning algo-
rithm. We assume the attackers use their optimal stationary
policy that is trained against the secondary users who adopt
the minimax-Q learning. We then consider the following three
scenarios with different strategies for the secondary users.
• The secondary users adopt the stationary policy obtained
by the minimax-Q learning (denoted by “proposed”).

• The secondary users adopt a stationary policy obtained
by myopic learning. By myopic, we mean that they care
more about the immediate payoff than the future payoffs.
In the considered myopic policy, we assume that the
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secondary users ignore the effect of their current action
on the future payoffs, so it is the extreme case where
γ = 0 (denoted by “myopic”).

• The secondary users adopt a fixed strategy which draws
an action uniformly from the action space A(st) for each
st (denoted by “fixed”).
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In Figure 7, we compare the accumulated average payoff at
each iteration t′, calculated by

r̄(t′) =
1
t′

t′∑
t=1

r(s(t), a(t), aJ (t)). (23)

We see that, since the proposed strategy and the myopic
strategy maximize the worst-case performance, while the fixed
strategy only uniformly picks any action regardless of the
attackers’ strategy, the former two strategies have a higher
average payoff than the fixed strategy. Moreover, as shown in
Figure 8, since the proposed strategy also considers the future
payoff when optimizing the strategy at the current stage, it
achieves the highest sum of discounted payoff (15% more
than that of the myopic strategy and 42% more than that of
the fixed strategy). Therefore, when the secondary users face a
group of intelligent attackers that can adapt their strategy to the
environment dynamics and the opponent’s strategy, adopting
the minimax-Q learning in the stochastic anti-jamming game
modeling achieves the best performance.

VI. CONCLUSION

In this paper, we have studied the design of anti-jamming
defense mechanism in a cognitive radio network. Considering
the spectrum environment is time-varying, and the cognitive
attackers are able to use an adaptive strategy, we model the
interactions between the secondary users and the attackers as
a stochastic zero-sum game. The secondary users adapt their
strategy on how to reserve and switch between control and data
channels, according to their observation about the spectrum
availability, channel quality and the attackers’ actions. Simu-
lation results show that the optimal policy obtained from the
minimax-Q learning in the stochastic game can achieve much
better performance in terms of spectrum-efficient throughput,
compared to the myopic learning policy which only maximizes
the payoff at each stage without considering the environment
dynamics and the attackers’ cognitive capability, and a random
defense policy. The proposed stochastic game framework can
be generalized to model various defense mechanisms in other
layers of a cognitive radio network, since it can well model
the different dynamics due to the environment as well as the
cognitive attackers.
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