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Abstract-Multicarrier Modulation (MCM) gains growing interests 
in high data rate communications for both wire and wireless environ- 
ment. The channel estimation is a crucial aspect in MCM systems. A 
novel channel estimation algorithm [6] exploiting the channel informa- 
tion contained in the cyclic prefix outperforms the existing adaptive 
equalization scheme [Z]. In this paper theoretical analysis is carried on 
the convergence of the adaptive channel estimation algorithm consid- 
ering both channel noise and decision error. We prove that the algo- 
rithm is guaranteed to converge with proper loading. We also analyze 
several factors that affect the convergence rate such as data structure 
and loading function. Computer simulation shows that our analytical 
results are quite close to the simulation. 

I. INTRODUCTION 

Multicarrier modulation (MCM) is now considered an ef- 
fective technique for both wire and wireless communica- 
tions [ 13. MCM provides an easy way to optimize the chan- 
nel capacity usage by adjusting the bit rate and transmit 
power according to the conditions of subchannels. It has a 
relative longer symbol duration which produces greater im- 
munity to impulse noise and fast fading. Because of these 
advantages, MCM becomes a promising approach in digi- 
tal subscriber line (xDSL), digital video/audio broadcasting, 
and wireless communications [ 11. 

The channel information is essential to bit and power al- 
locations and signal detection in MCM systems. Without 
perfect knowledge of channel parameters, the MCM system 
either can not work or may incur significant performance 
loss. The channel estimation can be done using some train- 
ing processes. If the channel is time varying, periodical 
training sequence, such as pilot symbols [5] have to be sent 
to track the variation. However, people are trying to estimate 
the channel more efficiently by directly estimating from the 
transmitted data. In MCM systems, there is a feature makes 
such an estimation even more practical, which is the cyclic 
prefix. The cyclic prefix originally designed to reduce in- 
tersymbol interference (ISI). However, in [6] and [7], it is 
observed that the cyclic prefix can be viewed as periodically 
sending training sequence. An adaptive block recursive least 
square (RLS) estimation algorithm is proposed based on this 
observation. The algorithm uses decision directed samples 
and hence no extra training is needed. The system with this 
adaptive channel estimation outperforms more robustly than 
the existing system with adaptive equalization [2]. In this 
paper, we try to analyze the convergence of the algorithm 

theoretically. 
A lot of research has been done on the convergence 

of the decision directed blind equalization approaches 
[8][10][11][12]. The understanding of those blind algo- 
rithms is that due to the nonlinearity of the decision directed 
scheme, the cost function usually has more than one lo- 
cal minima and some kinds of smart initialization schemes 
must be used to force the system converges to the global 
minimum. However, the algorithm proposed is quite dif- 
ferent from those blind equalization schemes. The goal of 
the adaptive estimation algorithm is to estimate the channel 
itself instead of channel inverse. The decision directed sam- 
ples are treated as the filter input data and appear in both 
data correlation matrix and cross-correlation vector instead 
of just the cross-correlation vector of Wiener-Hopfequation. 
Moreover, most of work before is done under the open eye 
pattem assumption which means no decision error exists. 
The channel noise is also ignored in those analysis. In this 
paper, we are trying to consider both channel noise and de- 
cision error. The problem becomes complicated because the 
decision error affects the channel estimation while the chan- 
nel estimation error also affects the decision error. We first 
separate the analysis problem into two parts and study the 
effect of decision error on the estimation algorithm and the 
effect of estimation error on signal detection. We then link 
the two parts together by constructing an recursive mapping 
of SER. The conclusions are drawn by studying the conver- 
gence of this recursive mapping. 

11. MCM SYSTEM AND ADAPTIVE CHANNEL 
ESTIMATION ALGORITHM 

A. MCM System Using Cyclic Prejix 

Fig. 1 shows a MCM system using cyclic prefix with 
adaptive channel estimation. The system has m/2 com- 
plex parallel subchannels. Input data are first buffered 
to blocks and then divided into m/2 bit streams and 
mapped to some complex constellation points Xi ,&,  i = 
1, . . . , m/2 at time I C .  The modulation is implemented by 
m-point inverse discrete Fourier transform (IDFT), X i , k  = 

xk = [Xo,k X1,k . . .  Xm-l,kIT are just the conjugate 
of the first m/2 samples. Therefore the modulated data 

1 m-1 - fi c ~ = ~  x1,kei*, where the last m/2 samples of 
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Fig. 1 .  The MCM System with Cyclic Prefix and Adaptive Channel Esti- 
mation 

x k  = [ z o , ~  Z l , k  . . . Zm-1 ,kIT  are real samples. A cyclic 
prefix X i f )  = [Z-~ ,~C . . . Z-1 ,k lT  is constructed by Z- i ,k  = 
Z m - i , k ,  i = 1,. . . ,U and transmitted before x k .  At the 
receiver, the prefix part y i f )  = [Y-u,k . . . y - l , k ~ ~  is dis- 
carded. The demodulation is performed only on Y k  = 
[Yo,k Y1,k  . . . Ym-1,klT by the DFT operation. The de- 
modulated data is Y k  = [YO& &,k ... ~ ~ - ~ , k ] ~  with 

The channel is usually modeled as a FIR filter with 
length v + 1. The impulse response of the channel is 
h = [ho, hl ,  . . . , h , I T .  The channel noise n i , k ’ s  are as- 
sumed to be i.i.d. Gaussian distribution with zero mean and 
variance u2. If the cyclic prefix is longer enough, there is 
no IS1 between &’s and the subchannels can be viewed as 
independent with each other, i.e., 

&,k = x i , k H i  + N i , k ,  (1) 

where H i  = cy=o h l e - j ? .  and N i , k  is the noise of the 
ith subchannel also with variance u2. N i , k ’ s  are also inde- 
pendent with each other. 

For the independent subchannel of (1) only a one-tap 
equalizer W i , k  is needed to get the estimation of X i , k  from 
K , k ,  i.e., X i , k  = &,k . W i , k .  For the zero-forcing equalizer, 
W i , k  = &. Then the decision is made upon k i , k  resulting 
in x i , k  = q ( k i , k ) ,  where q ( . )  is some type of quantization 
function. 

B. Adaptive Channel Estimation Algorithm 

In the MCM system, usually the received cyclic prefix 
part y i f )  is discarded. However, it is found in [6] that if all 
the prefix parts concatenate together, it forms a training se- 
quence. Based on this observation, a block RLS algorithm 
is adopted to adaptively estimate the channel. The is sum- 
marized as follows. 

Input: yif) and Y k .  

Selecting parameters: p 1  and p 2 .  
Initialization: k = 0, an initial training process is used 

Computation: k = 1 .2 .3 . .  ’ . 
to initialize h ( O ) ,  r i  E [ ~ ~ x i , k ~ ~ 2 ]  and @((I). 

1. 

2. 
3. 

4. 

5. 
In above algorithm, a loading algorithm is performed to 

allocate bit and energy at the initialization based on the the 
information got by initial training. The loading is not only 
try to optimize the system performance, but also try to limit 
the decision error to such a level that the system behaves 
near the equilibrium. 

The loading is done to meet some requirements on SER 
with energy constraint E, = E [ l l ~ ? , , 1 ) ~ ]  = $ CiEU ri 5 
C, where U is the set of all the used subchannels. For the 
QAM constellation used in our systems, the SER require- 
mentis P e , i ( 0 )  = Pe(0) = 4Q ( d i ~ ‘ o ’ ’ )  , where P e , i ( 0 )  

is the initial SER and d i  is the minimum distance between 
constellation points of the ith subchannel. P,(O) is some 
preset required value of SER which will guarantee the sys- 
tem performance and Q(z) = J,“ -&e-Tdz. 

A 

2 

The transmitted energy of ith subchannel is l?i = 
E:;’ v d q ,  with Mi as the number of constellation 

points. After calculating d i  form the SER requirement, us- 
ing the energy constraint we can find M i  for each subchan- 
nel. If Mi = 0, then the subchannel is unused. 

Fig. 2 compares above adaptive channel estimation algo- 
rithm with the adaptive equalization scheme in [2]. In such 
a scheme, the one tap equalizer updated independently for 
each subchannels. The equalizer coefficient is updated by 

The MCM system used in the simulation has 256 complex 
subchannels. The average transmit energy is 1. initially the 
channel transfer function used is HO (0) = 1--o.120 and the 
loading is done according to it. After some time, the channel 
changes to H ( D )  = - . The figure shows the averaged 
SER which is defined as 

W i , k  = W i , k - l  + p ( X i , k  - x i , k ) q y k .  

0.9923 

where P e , i ( k )  is SER of ith subchannel of kth block. 
In [8][ IO], the convergence of such an adaptive equaliza- 

tion scheme is proved under the condition that the chan- 
nel noise is small and no decision error exists. However, 
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Fig. 2. Average SER (pi  = 0.9, pz = 1) 

in Fig. 2, our simulation shows that such a system fails to 
follow the channel variation while our adaptive channel es- 
timation works. 

111. CONVERGENCE ANALYSIS 

In this adaptive algorithm, if ideal samples of the cyclic 
prefix is available , then we know from many literatures [ 131 
that the algorithm converges to an unbiased estimation lin- 
early and the convergence rate is determined by the eigen- 
value spread of the data correlation matrix R = E[ulufi]. 
Unfortunately, we can only use the decision directed data 
in practice. The decision error will affect the channel es- 
timation. However, if the channel variation is within some 
ranges, then the decision error can be controlled to some 
small level by doing proper loading. Under this condition, 
we can begin our analysis. 

A First define frequency domain decision error as q i , k  = 
x i , k  - Xi,$ where qi,k'S are independent with differ- 
ent i ' s  and k's with the energy a:i ( k ) .  Define time 

A domain decision ermr as ei,k = Zi,k - xi,k = 
. 2 s f i  - ql,ke-Jm, i = -21,. . . , -1. The estimated 

data vector can be written as Ul(k) = ul(k) + e l (k) ,  

e l (k)  = [e- l ,k . . . e-l,k e-,,,k-l . . . e-l,k-1IT. The deci- 
sion error can be determined by SER with given constella- 
tion. 

The time domain estimation error is defined as &i,k = 
h i , k  - hi and E ( k )  = [&O,k . . . &u,kIT. And the frequency 
domain estimation ermr is defined as AHi,, = f i i , k  - Hi. 
The energy of the frequency domain estimation error is 

In order to analyze the behavior of the channel estimation, 
we make following assumptions about the input data and 
decision error. 

1. The input data xi,k is independent with the chan- 

whereul(k) = [ X - l , k . . . X - l , k  5 - , , k - i  . . .  X-l,k-1IT and 

( k )  e E[llAHi,k112]3 

nel noise ni,k.and the decision error ei,k, which is 
true if the constellation used is large enough. We 
also observed that the decision error ei,k in the esti- 
mated cyclic prefix is independent with ni,k, i = 
-w, . . . , -1. 

2. The input data vector ul(k) is generated from the 
(w + 1)-dimensional Gaussian distribution N(0,  R) in- 
dependently. Then it is proved that E[@-l(k)] = 

3. The statistics of the decision error varies slowly so that 
R-l. k ~ - U - 2  

Re(k) = E[el(k)efi(k)]. 

A. Effect of decision ermr 

In the following analysis, we only consider p1 = p2 = 1. 
We assume that el(k) is stationary, i.e., R,(k) = Re. 

Theorem I :  If the previous three assumptions are valid 
around the equilibrium of the system, the optimal channel 
estimation in term of minimizing the cost function of RLS 
algorithm is a biased estimation with stationary decision er- 
ror. The channel estimation in this case is 

h = [I - R-'R?(I + R?R-lR?)-lRj]h. (3)  
If there is no decision error in the data, it is well known 

that the solution of IUS is unbiased. However, the theo- 
rem states that with a stationary decision error, the channel 
estimation becomes biased. If we further assume that all 
eigenvalues of R-lR, are much less than 1, this bias can 
be simplified to 

h - h = R-lR,h. (4) 

The dynamic of such a convergencecan be analyzed when 
the decision error is near stationary, i.e., limk,, Re(k) = 
Re and all eigenvalues of @(k)-lA@(k) are all much 
less than 1, th,en, the estimation error can be approximated 
as ~ ( k )  = h(k) - h M @-'(k)e(k), where ~ ( k )  = 

el(n)efi(n)h. We then can show that 
E:=, c;='=l ul(n)ntl,, + el(n)n*_l,, - ul(n>efi(n>h - 

As k + m, this mean value goes to the stationary point 
which is given in (4). 

B. Effects of the estimation ermr 
A Define the residual noise at the decision point as <i,k = 

is the output of the 
equalizer. The coefficient of the equalizer is @i,k = 1. 
Using the first order approximation, it comes pi,$ = A M 

Wi,k (l+*). Then we can derive the following theorem. 

- Xi&. From section 11-A, 

Hi,* 

Hi 
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Theorem 2: If we assume that the decision error e ;?k  are 
Gaussian distributed, with the first order approximation, 
the estimation error propagates to the decision point as an 
extra additive Gaussian noise independent with the trans- 
mitted signal conditioned on the knowledge of the ideal 
data, i.e, E [ ( i , k X i , k I X i , k ]  = 0. and E [ J I & , k l I 2 I X i , ~ ]  = 

((Xi,kIIZWHR-’W;[u2+hHR~(k--l)hl, where wi = 
(kt~-2t~-2)))Hi )I2 

e - j e u  T 
&+ 
[1 e - j e  . . . I ’  

We then can use those familiar formula derived for 
AWGN channel to calculate the SER. 

C. Recursive mapping of SER and Convergence 

Approximates the frequency domain decision error as 
o:, ( k )  = Pe,l (k)d; .  Then the time domain estimation error 
can be calculated as hHRe(k)h = $ 

Using the formula in [ 141, the SER of ith subchannel of k 
block is 

(6) 

c:, (k)llHi112. 

p e , i ( k )  = E [ 4 ~ i , k ( 1  - q i , k ) l ,  

where q i , k  = 1 - 2 Q (A) with X = ( m> 

make some channel with small channel gain unused, result- 
ing in a bad-conditioned data auto-correlation matrix and 
slow convergence. 

It is easy to show that p ( k )  should be smaller to accel- 
erate the convergence. Then, from (7), we have p ( k )  2 
g(Hi,  Hi,o, q i , k )  where g is some function. The equality is 
valid if and only if IlHill = AlJHi,~ll, where A is a constant. 
This means that the initial channel response which we use 
for loading should have the same shape as the ideal channel 
response to guarantee a fast convergence. Furthermore, A is 
the larger the better, i.e., the ideal channel response would be 
better have higher gain than the initial channel response for 
loading, or it would be better to leave more gap in loading to 
ensure the convergence of the channel estimation algorithm. 

Unlike the existing equalization scheme which treated 
each subchannel independently, the SER iteration for any 
individual subchannel depends on the performance of the 
whole system p ( k  - 1) as shown in (6). Our algorithm can 
recover even though the performances of some subchannels 
if the overall system still performs well. 

Iv.  COMPUTER SIMULATION d ,  Hi 

w ~ R - ~ w ~ I I x ~ , ~ I I ~ ( ~ ~ + ~  (w) E,,, * P ~ , I W - ~ ) )  Since weuse someapproximationin aboveanalysis, com- 
puter simulation is done to verify the analysis results. The k v - 2 v - 2  +U2 

The condition for this iteration to converge is If’@) I < 1. 
By some mathematics, we find out lf’(p)] is bounded by 

The boundness implies that limk,, If’(p)l < 1, which 
leads to the following theorem, 

Theorem 3: The adaptive channel estimation algorithm is 
guaranteed to converge linearly just as the usual IUS algo- 
rithm. 

Further analysis of the bound of If’@) I, we found that the 
algorithm would converge faster if wHR-’wi is smaller. 
wHR-’wi = tr[R-’] if R is diagonal matrix. Then it 
comes to the familiar conclusion that the convergence rate 
is decided by the eigenvalue spread of the auto-correlation 
matrix of data. The well-conditioned data ensures a fast 
convergence rate. If all the subchannels are used and have 
same energy, then the condition number of the data auto- 
correlation matrix is 1. However, loading algorithm may 

same system used in section II-B is also used in this section. 
We first show how a stationary decision error affects 

the channel estimation. Ideal channel information is used 
for equalization, i.e., no estimation error propagates to 
decision point. The transfer function used is H ( D )  = 
l ~ f ~ $ ~ ~ 6 ~ ~ 2 .  Fig. 3 shows the learning curves with and 
without decision error. The learning curve evaluates the av- 
eraged residual noise which is $ oz. It can be seen 
that there is a constant difference between the two curves 
which corresponds to the bias of the channel estimation 
caused by the decision error. However, the bias is quite 
small only about 1dB with the SER requirement of lo-’. 

Fig 4 verifies the convergence of the recursive mapping 
with a flat channel whose Hi is constant. Since the channel 
is flat, the transmit rate and energy for all the subchannels 
are the same. Fig. 4 (a) shows the analytical and the sim- 
ulated results of the iteration of the averaged SER defined 
in (2). The average channel estimation error $ Cl a:l and 
its standard deviation is shown in Fig. 4 (b). The analyti- 
cal results and the simulation results are very close in both 
figures. There are two scenarios with different initial SER 
requirement lo-’ and lov3 are shown in Fig. 4 (a). In both 
scenarios the simulation results are very close to the analyt- 
ical results. When lop3, results for different noise levels 
are plotted. We found that the two iteration curves are very 
close to each other. This is because the loading does not 
change and so does correlation of the time domain data due 
to the flat channel response in both cases. 
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Fig. 3. Learning curves (v = 64, U’ = 0.1 and Pe(0) = 

Fig. 5 shows the effect of initial loading. The transfer 
function used here is the one used in Fig. 2. Two cases are 
simulated. In one case, the loading is done according to 
the ideal channel response. In the other case, we assume 
no knowledge of the channel available, so flat loading is 
used. Once again, the simulation results verify the analyt- 
ical result. It also shows that the system converges faster 
when loading is done according to the ideal channel infor- 
mation. It converges in about 10 iterations when ideal load- 
ing is done while in about 20 iterations with flat loading. 

L L  

Fig. 4. (a) SER iteration (b) Channel estimation error (v = 32 and 
~ ~ ( 0 )  = 

V. CONCLUSION 

In this paper, we investigates the convergence analysis 
problem of the adaptive channel estimation algorithm pro- 
posed in [6] .  Our studies show that existence of decision 
error results in a biased channel estimation and the channel 
estimation error appears at decision point as an additional 
noise. Based on these conclusions, we derive a recursive 
expression of SER. Considering the convergence of this it- 
eration, we prove that the system is guaranteed to converge 
as the iteration goes on. The convergence rate is determined 
by the eigenvalues of the data correlation matrix which is 
affected by the channel noise and loading algorithm. 
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