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Abstract—Peer-to-peer (P2P) systems have become more and
more popular in nowadays by providing decentralized, self-
organizing and fault tolerant file sharing services. As the selfish
users do not benefit from providing free service, they tend to
download files from other users and yet not to upload for
the others, resulting in low system efficiency. In this paper,
we propose a correlated equilibrium-based file sharing game to
enhance users’ performance. We first characterize users’ utility
with their expected delay. Then, using the correlated equilibrium
concept, instead of optimizing their own benefits alone, the users
are aware of the best response for them to jointly optimize
their strategies together and achieve the correlated equilibrium.
Simulation results are presented to demonstrate the efficiency of
the proposed scheme.

I. INTRODUCTION

With the rapid development of networking and communi-
cation technologies, in recent years, peer-to-peer (P2P) file
sharing services have become more and more popular, such
as Napster [1], Gnutella [2], KaZaA [3], and BitTorrent [4].
By combining sophisticated searching techniques with a large
scale decentralized file storage, P2P file sharing systems allow
users to download files directly from each other. Therefore,
they offer a decentralized, self-organizing, scalable, and fault
tolerant file sharing service providing an effective balancing
of storage and bandwidth resources [5].

Current P2P systems rely on the assumption that users will
altruistically serve files to the community for free. However,
reserving a certain upload bandwidth to serve the others
incurs a cost to a user. Since users are selfish and do not
benefit from providing free service, many of them tend not
to contribute to uploading their files while leech the other
users [6]. Hence, it is of great importance to motivate user
cooperation in P2P systems to make more files available. In the
literature, various incentive schemes based on game-theoretic
modeling have been proposed to increase the proportion of
users that share files. Tit-for-tat strategy was proposed in
BitTorrent application to prevent user free-riding [7]–[9]. The
authors of [10] studied the incentives for cooperation based
on repetition and reputation by modeling file sharing as
an evolutionary prisoner’s dilemma. A differential service-
based incentive scheme was proposed in [11] to improve the
system’s performance. The work in [12] proposed a micro-
payment incentive mechanism in which users earn rewards
by uploading to others and pay for downloading. The authors
of [13] modeled the bandwidth allocation in P2P systems as
an exchange economy and proposed the proportional response
dynamics to achieve the market equilibrium.

However, most of the existing game-theoretic frameworks
of P2P systems assumed that the system users optimize their
own benefits individually without considering the other users’
actions, and would stick to noncooperative strategies even at
the high risk of having no user upload files and suffering
poor individual performance. In this paper, we propose a
correlated equilibrium-based file sharing game to enhance
the users’ performance. We first model the file sharing as
a non-cooperative game, where we characterize the users’
utility using the expected delay they experience in file sharing.
Specifically, if no users contribute to uploading files for the
others, the server has to respond to all data requests from the
users and the users may experience a long delay. If some of
the users cooperate in uploading files, all the other users can
download files from both the server and the cooperative users,
so the expected delay can be reduced. The noncooperative
users who free ride may enjoy a shorter delay, but are also
aware of the risk of having an unaffordable delay if no one
cooperates. Using the correlated equilibrium (CE) concept
[15], the selfish but rational users are aware of the risk of
having no one contribute to uploading files, so that it is
the best response for them to jointly optimize their actions
and achieve a higher degree of cooperation at CE with a
better performance. Simulation results also illustrates that the
expected delay at CE is greatly reduced compared to the delay
performance at Nash equilibrium.

The rest of the paper is organized as follows. In Section
II, we present the system model of P2P file sharing and
derive the expected delay using queuing theory. We model file
sharing as a noncooperative game in Section III, and analyze
the proposed game using the correlated equilibrium concept
in Section IV. Simulation results are presented in Section V.
Finally, Section VI concludes the paper.

We adopt the following notation: λ and µ are arrival rate and
service rate, respectively. D is the delay, R is the download
rate, r is the upload rate, U is the utility, p is the probability,
E is the expectation, S is user set, Ω is the action set, and R
is the regret.

II. SYSTEM MODEL

In this section, we define a general model of a P2P file
sharing system in which we assume symmetric exchange of
data between peers. By symmetric, we mean that the server
has all the required data of all peers, while some big data
file is divided into several chunks, each peer owns some of
the chunks, and can download the remaining chunks from
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either the server or the other peers who would contribute
some bandwidth for uploading data. We begin by modelling a
simple two-peer (N = 2) file sharing, and then generalize it
to multiple peers (N > 2).

A. Two-Peer File Sharing

In general, the server has only a limited bandwidth, so
not all the requests for data chunks from the peers can be
immediately satisfied, and the peers may experience delay.
Thus, in this paper, we characterize the performance in file
sharing by the expected delay a peer experiences (i.e., mean
steady-state time in queue).

Without loss of generality, we assume for the arrival process
of the chunk requests, the inter-arrival time is exponentially
distributed with parameter λ−1, and the duration that a data
source (i.e., the server or a peer) uploads a chunk is µ−1. Then
we can model the file service process as an M/D/1 queue, and
the delay function, denoted by f(λ, µ), can be written as [21]

f(λ; µ) =
λ

2µ(µ− λ)
. (1)

In Figure 1, we show the system model for two-peer file
sharing. For case I, neither peer 1 nor peer 2 would upload
data chunks for each other, so they both send their requests
to the server, and the expected delay for peer 1 and peer 2 in
this case can be represented as

Di = f(R1 + R2; r0), i = 1, 2, (2)

where R1 and R2 is the downloading rate (or chunk request
rate) of peer 1 and peer 2, respectively, and r0 is the uploading
rate (or service rate, uploading bandwidth) of the server, with
stability requirement R1 + R2 < r0

1.
As we mentioned earlier, both the peers may experience

a certain delay due to the limited capacity/bandwidth of the
server. A possibly better choice for the peers is to contribute
some bandwidth to uploading data so that they can download
chunks from two sources, which may potentially lower the
burden of the server and reduce the delay. This corresponds
to case II in Figure 1 where both peer 1 and peer 2 cooperate.
We assume that each peer requests data chunks from the server
and the other peer with equal probability, so the downloading
rate from either of them is Ri/2. We also assume the total
upload bandwidth r is equally shared by the two cooperative
peers. Since the queuing process at the server and each peer
is assumed to be independent from each other, by applying
Little’s Law [21], we get the expected delay of peer i as

Di =
1
2
[
f(

R1 + R2

2
; r0) + f(

Ri

2
;
r

2
)
]
, i = 1, 2, (3)

with stability requirement R1 + R2 < 2r0 and Ri < r.
However, peers in p2p file sharing are selfish and would

prefer to download chunks from the other peers rather than
contribute to upload for the others, since reserving uploading

1We assume throughout the paper that the stability requirements are always
satisfied when using (1), otherwise we set the delay as infinity without using
(1).

Fig. 1. System model

bandwidth incurs cost to peers. This case is illustrated in case
III and IV of Figure 1. In case III, where peer 1 is cooperative
and peer 2 leeches, we have the peer’s expected delay as

D1 = f(R1 +
R2

2
; r0), (4)

and
D2 =

1
2
[
f(R1 +

R2

2
; r0) + f(

R2

2
, r)

]
, (5)

with stability requirement 2R1 + R2 < 2r0 and R2 < 2r.
Similarly for case IV where peer 1 leeches and peer 2 is

cooperative, we have the expected delay as

D1 =
1
2
[
f(

R1

2
+ R2; r0) + f(

R1

2
, r)

]
, (6)

and
D2 = f(

R1

2
+ R2; r0), (7)

with stability requirement R1 + 2R2 < 2r0 and R1 < 2r.

B. N-Peer File Sharing (N > 2)

In the following, we extend the derivation above to N-peer
file sharing with N > 2. Assume there are in total N peers,
denoted by set S. A subset Sc ⊆ S, would reserve their
own bandwidth for uploading data chunks. Then the remaining
noncooperative peers form a set Sn = S \ Sc.

We further assume a peer directs his/her requests to the
server and all the cooperative peers with equal probability
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for simplicity. Hence, if peer i chooses to cooperate (C) in
uploading data, he/she can either download data from the
server or the remaining (K − 1) other cooperative peers,
and the request rate of peer i to each of them is essentially

Ri

(1−K)+1 = Ri

K . On the other hand, peer j who prefers not
to cooperate (N) can choose downloading from the server or
the K cooperative peers, and his/her request rate to each data
provider is Rj

K+1 . Therefore, for the queue at the server side,
the arrival rate of data requests is

λs =
∑

j∈Sn

Rj

K + 1
+

∑

i∈Sc

Ri

K
, (8)

and the service rate is µs = r0.
For the queue at a cooperative peer, say peer i, the arrival

rate of requests is

λpi
=

∑

j∈Sn

Rj

K + 1
+

∑

l∈Sc,l 6=i

Rl

K
, (9)

and the service rate is µpi
= r

K since the K cooperative peers
equally contribute to an upload bandwidth of r.

Therefore, from the assumption that each queue is indepen-
dent and using Little’s Law [21], we obtain the expected delay
of a cooperative peer i as

Dc
pi

=
1
K

[
f(λs;µs) +

∑

l∈Sc,l 6=i

f(λpl
;µpl

)
]
, if K ∈ [1, N ],

(10)
and the delay of a non-cooperative peer j is

Dn
pj

=
1

K + 1
[f(λs;µs)+

∑

i∈Sc

f(λpi ; µpi)], if K ∈ [1, N−1],

(11)
and

Dn
pj

= f(
∑

i∈S
Ri; µs), if K = 0. (12)

III. FILE SHARING GAME AND CORRELATED
EQUILIBRIUM

As the peers are greedy, and aims at minimizing their
delay, we can model the file sharing as a game. Let G =
{S, (Ωi)i∈S , (Ui)i∈S} be a finite N -player2game in strategic
form, where Ωi = {C,N} (C stands for cooperation and N
stands for non-cooperation) is the strategy space for player i,
and Ui is the utility function for player i. Define Ω−i as the
strategy space for player i’s opponents, and denote the action
for player i and his/her opponents as ri and r−i, respectively.
In the file sharing game, since the peers try to minimize their
expected delay, we can define their utility function as a non-
increasing function of the expected delay. For simplicity, we
use the negative of the expected delay a peer experiences
as his/her utility, i.e., Ui = −Di. In other word, we want
to maximize the utility by minimize the delay. Other utility
functions with similar properties can also be analyzed, e.g.
the delayed sensitive utilities for multimedia applications.

2We use user, player and peer interchangeably.

Nash equilibrium (NE) is a well-known concept to charac-
terize the outcome of a game, which states that at equilibrium
every player will select a utility-maximizing strategy given
the strategies of every other player. However, computing the
mixed-strategy NE of a N -player game in polynomial time is
generally very difficult, since it requires to solve multiple high-
order polynomial equations. Nevertheless, correlated equilib-
rium can be computed in polynomial time in essentially all
kinds of multi-player games [20]. Further, due to peers’ selfish
nature, NE may not be system efficient as peers only aim at
maximizing their individual utility (i.e., minimizing the delay).
Therefore, we next study the concept of correlated equilibrium
(CE), which is more general than the NE [15].

The idea of CE is that a strategy profile is chosen randomly
according to a certain distribution. Define p(ri, r−i) as the
joint distribution of users to perform a specific action. Given
the recommended strategy, it is to the players’ best interests
to conform with this strategy, and the distribution is called the
correlated equilibrium, i.e., for all i ∈ S , ri, r

′
i ∈ Ωi, and

r−i ∈ Ω−i,
∑

r−i∈Ω−i

p(ri, r−i)[Ui(r′i, r−i)− Ui(ri, r−i)] ≤ 0. (13)

Inequality (13) means that when the recommendation to player
i is to choose action ri, then choosing action r′i instead of ri

cannot result in a higher expected utility to player i. In the
file sharing game, peers can obtain some information from
the server, such as data request rates of other peers, the total
shared bandwidth (r), and the server’s uploading rate. This
way, they will consider the potential long delay when no user
contributes to serving files, and it is the best response for them
to jointly optimize their actions so as to attain a higher degree
of cooperation and reduce delay.

We note from (13) that the set of correlated equilibria is
nonempty, closed and convex in every finite game [16]. More-
over, it may include the distribution that is not in the convex
hull of the Nash equilibria. In fact, every Nash equilibrium
is a point inside the correlated equilibria set, and the NE
corresponds to the special case where p(ri, r−i) is a product
of each individual user’s probability for different actions, i.e.,
the action of the different players is independent [15], [16].

Among the multiple CE, which one is the most suitable
should be very carefully considered in practical design. In [17]
[22], the authors proposed the criterion of correlated optimal,
which is the solution that achieves the highest social welfare,
i.e.,

Definition 1: A multi-strategy rall is correlated optimal if
it satisfies the following conditions,

p(rall) = arg max
p

∑

i∈S
Ep(Ui), (14)

s.t.
∑

r−i∈Ω−i

p(ri, r−i)[Ui(r
′
i, r−i)− Ui(ri, r−i)] ≤ 0,

∀ri, r
′
i ∈ Ωi, and ∀i ∈ S .

Other criterion can also be considered, such as the max-min
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fairness criterion, defined as

p(rfair) = arg max
p

min Ep(Ui). (15)

TABLE I
TWO-PEER GAME (A) UTILITY TABLE (LEFT); (B) STRATEGY NOTATION

(RIGHT).

(a) C N

C (U (1)
1,1 ,U (2)

1,1 ) (U (1)
1,2 ,U (2)

1,2 )
N (U (1)

2,1 ,U (2)
2,1 ) (U (1)

2,2 ,U (2)
2,2 )

(b) C N
C p1,1 p1,2

N p2,1 p2,2

Overall, the generalized system model is to employ any
system optimization goal with the correlated equilibrium
constraint and other physical constraints, so as to achieve
higher mutual benefits by cooperating on the joint probability
distribution of users’ actions. In this paper, we use sum utility
as an example, but other optimization criteria can be employed
in a similar way.

IV. ANALYSIS OF THE PROPOSED GAME

In this section, we investigate two approaches for the pro-
posed game. The first one is by linear programming method,
and the second one is distributed learning algorithm.

A. Linear Programming Method

We study the properties of CE using a two-peer game as an
example. A general utility table is shown in Table I, in which
U

(k)
i,j is the utility for player k when the joint action pair is

in the ith row and the jth column, and pi,j is defined as the
corresponding joint probability for that action pair.

The linear programming problem (14) to obtain the corre-
lated optimal strategy becomes

max
{pi,j}

2∑

j=1

2∑

i=1

(U (1)
i,j + U

(2)
i,j )pi,j , (16)

constrained by

p1,1 + p1,2 + p2,1 + p2,2 = 1, (17)

p1,1(U
(1)
1,1 − U

(1)
2,1 ) ≥ p1,2(U

(1)
2,2 − U

(1)
1,2 ), (18)

p2,1(U
(1)
2,1 − U

(1)
1,1 ) ≥ p2,2(U

(1)
1,2 − U

(1)
2,2 ), (19)

p1,1(U
(2)
1,1 − U

(2)
1,2 ) ≥ p2,1(U

(2)
2,2 − U

(2)
2,1 ), (20)

p1,2(U
(2)
1,2 − U

(2)
1,1 ) ≥ p2,2(U

(2)
2,1 − U

(2)
2,2 ), (21)

where inequalities (18)-(21) represent the constraints of CE in
(13).

Let ∆3 = {(p1,1, · · · , p2,2) ∈ R4
+|p1,1 + · · · + p2,2 = 1}

denote the 3-dimensional simplex of R4. Since the above
constraints and the objective function are all linear, similar to
[18], we can derive the set of correlated equilibria as follows.

Lemma 1: The set of correlated equilibria for the game
defined in Table I is a hexahedron of ∆3 with five vertices

TABLE II
FIVE VERTICES OF THE CORRELATED EQUILIBRIA SET

p p1,1 p2,2 p2,1 p1,2

NE1 0 0 0 1
NE2 0 0 1 0
NE3 1

(1+a)(1+b)
ab

(1+a)(1+b)
b

(1+a)(1+b)
a

(1+a)(1+b)

CE1 1
1+a+b 0 b

1+a+b
a

1+a+b

CE2 0 ab
a+b+ab

b
a+b+ab

a
a+b+ab

given in Table II, where

a =
|U (1)

1,1 − U
(1)
2,1 |

|U (1)
2,2 − U

(1)
1,2 |

, and b =
|U (2)

1,1 − U
(2)
1,2 |

|U (2)
2,2 − U

(2)
2,1 |

. (22)

Because (16) is a linear programming problem, its solution
will be one of the five vertices shown in Table II, according
to the coefficients of pi,j . Specifically, NE1 and NE2 are the
two pure-strategy NE, and will be the solution to the problem
in (16) if U

(1)
1,2 + U

(2)
1,2 (or U

(1)
2,1 + U

(2)
2,1 ) is the largest among

all U
(1)
i,j + U

(2)
i,j s. However, it is more often the case that the

highest social welfare is achieved if all players cooperate, i.e.
U

(1)
1,1 + U

(2)
1,1 is the largest coefficient in (16), and when no

user cooperates the social welfare U
(1)
2,2 + U

(2)
2,2 is the lowest.

Due to the CE constraints, always cooperating can not be
achieved among the selfish users (p1,1 < 1 in all five vertices).
However, since the users who adopts CE strategy now jointly
optimize their actions by considering the low utility of mutual
non-cooperation and the high utility when both cooperate, the
degree of cooperation is increased. For instance, at CE1, p1,1

is the largest and p2,2 is the smallest among the five vertices,
so the social welfare at CE1 is the highest. Moreover, since the
set of Nash equilibria is formed by all convex combinations
of the three NE vertices, it is impossible to achieve an even
higher social welfare in the NE set than that of CE1. Therefore,
the system performance using the correlated optimal strategy
will be higher than any strategy in the NE set.

For multiuser asymmetric case, the linear programming can
still be employed. The solution can be computational easy
due to some fast algorithms such as Simplex algorithm [23].
However, extensive signalling might be necessary to gather all
the information. Next, we will propose a distributed solution.

B. Multiuser Distributed Learning Algorithm

It is shown that regret-matching algorithm [16] can converge
to the set of CE. Specifically, for any two distinct actions
ri 6= r′i in Ωi, the regret of user i at time T for not playing
r′i is

RT
i (ri, r

′
i) := max{QT

i (ri, r
′
i), 0}, (23)

where

QT
i (ri, r

′
i) =

1
T

∑

t≤T

(
U t

i (r
′
i, r−i)− U t

i (ri, r−i)
)
. (24)
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TABLE III
REGRET-MATCHING LEARNING ALGORITHM

Initialize arbitrarily probability for taking action of user i,
p1

i (ri), ∀i ∈ K.
For t=2,3,4,...

1. Find Qt−1
i (ri, r

′
i) as in (24).

2. Find average regret Rt−1
i (ri, r

′
i) as in (23).

3. Let ri ∈ Ωi be the strategy last chosen by user i,
i.e. rt−1

i = ri. Then the probability distribution of the
actions for the next period, pt

i is defined as
pt

i(r
′
i) = 1

µR
t−1
i (ri, r

′
i) ∀r′i 6= ri,

pt
i(ri) = 1−∑

r′i 6=ri
pt

i(r
′
i),

where µ is a certain constant that is sufficiently large.

QT
i (ri, r

′
i) can be viewed as the average extra payoff that user

i would have obtained, if it had played action r′i every time in
the past instead of choosing ri, and RT

i (ri, r
′
i) can be viewed

as a measure of the average regret. The probability pi(ri) for
user i to take action ri is a linear function of the regret. The
details of the regret-matching algorithm is shown in Table III.
The complexity of the algorithm is O(|Ωi|).

For every period of T , let’s define the relative frequency of
users’ joint action r played till T periods of time as

zT (r) =
1
T

#{t ≤ T : rt = r}, (25)

where #(·) denotes the number of times the event inside the
bracket happens and rt is all users’ action at time t. It is
proved in [16] that zT converges almost surely to a set of CE
in the long run if every player adjusts strategy according to
the algorithm in Table III.

However, zT after convergence may not be the optimal
correlated strategy. Actually in general, the learning algorithm
in Table III will learn the mixed-strategy NE, which is worse
than the optimal CE strategy. In order to obtain the optimal
CE strategy by maximizing the objective function in (16), we
next derive a new learning algorithm, which allows negotiation
between players.

V. PRELIMINARY SIMULATION RESULTS

In order to evaluate the delay performance in the pro-
posed file sharing game, we conducted several preliminary
simulations. We assume a residential network, where the
downloading rate of each user is set to be R = 400 kb/s,
and the service rate (uploading rate) of server is r0 = 1250
kb/s. We assume three peers are in the P2P system, and vary
the shared upload bandwidth r in the interval of [420, 1800]
kb/s.

In Figure 2, we plot the probability of peer cooperation
at mixed-strategy NE. Since the peers’ downloading rates are
identical, the file sharing game is symmetric in terms of the
utility, so the probability of cooperation is the same for all
three peers. It can be seen from Figure 2 that as the shared
upload bandwidth increases, the probability of cooperation
also increases. This is because when peers share a greater
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Fig. 2. Probability of cooperation at mixed-strategy NE.
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Fig. 3. Comparison of total delay.

upload bandwidth, a higher degree of cooperation can more
greatly reduce an individual user’s delay.

In Figure 3, we compare the total delay of the three users
under no-cooperation, mixed-strategy NE, and the correlated
optimal strategy. We see that when there is no cooperation,
the users experience a very long delay; since the users only
rely on the server to download files, the delay is a horizontal
line with r increasing. At the mixed-strategy NE, the delay
decreases rapidly as r increases, because the peers share an
increasing upload bandwidth and become more cooperative.
The CE strategy has the best performance, since the users now
jointly optimize their actions. Moreover, as the delay does not
decrease too much when r grows beyond 900 kb/s, it suffices
to share a total upload bandwidth at around 900 kb/s, in order
to reduce the cost to the users.

In Figure 4, we show the probability of joint actions of
all three users at their correlated optimal strategy. The y-axis
represents the probability that a subset of the peers choose
cooperation, and the indices of the cooperative peers are
listed inside the square brackets beside each subplot. Since
the probability of all peers cooperating and the probability
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(a) Joint probabilities when peer 3 cooperates

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

r

P
[1

,2
]

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

r

P
[2

]

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

r

P
[1

]

(b) Joint probabilities when peer 3 does not cooperate

Fig. 4. Joint probability at the correlated optimal strategy (the index inside
the square brackets indicates which user contributes to uploading).

of no peer cooperating are both very close to zero, we only
show the other nonzero probabilities. We can see that when
the shared upload bandwidth r is less than 1350 kb/s, since
the probability of only one peer cooperating is around 1/3,
the correlated optimal strategy randomly suggests one user to
provide service to the other two. The reason why no more users
choose cooperation is that the shared bandwidth is relatively
small. For instance, if three users share a 900 kb/s upload
bandwidth, each of them can only offer 300 kb/s uploading
rate, while their request rates are 400 kb/s. More users will
choose cooperation when the shared bandwidth is greater. For
instance, when r is greater than 1350 kb/s, two of the three
users will be randomly picked to upload files, because more
users can provide better services if they upload data with a
greater rate.

In the final version of this paper, the authors plan to
finish the simulation with more than three users. Moreover,
the asymmetric case will be investigated and the distributed
solution will be tested.

VI. CONCLUSIONS

Selfish users in P2P file sharing always try to download
files from the other users without contributing their own
content. This may result in undesirable delay such as the
bottleneck at the server. In order to improve the performance
in file sharing, we propose a game-theoretic framework where
users jointly optimize their strategies. With the correlated
equilibrium concept, users are aware of the very long delay
when there is little cooperation, so it is the best choice for them
to jointly optimize their strategies and increase the degree of
cooperation. Simulation results show that the delay is much
smaller using the correlated optimal strategy than that of Nash
equilibrium.
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