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ABSTRACT 
The Spatial Smoothing(S.S.) technique has been proved 

to be effective in decorrelating coherent signals thus mak- 
ing MUSIC algorithm operative in a coherent interference 
environment. However, such scheme can only be applied to 
uniformly spaced linear arrays which are known to be very 
sensitive to the directions of arrivals(D0As) and can be 
used to estimate azimuth angles only. To significantly im- 
prove the robustness of DOA estimation, to estimate both 
azimuth and elevation angles, we developed techniques for 
applying S.S. on arrays with arbitrary geometry. We also 
study the cause of ambiguities in a multiple signal environ- 
ment and find the necessary and sufficient conditions of an 
ambiguity free three-sensor array manifold. We evaluated 
the Forward/ Backward Spatial Smoothing on a nonlinear 
array with central symmetry and found that this technique 
outperform regular S.S. in terms of improved efficiency and 
estimation resolution. Finally, we expand the application 
of our technique to ESPRIT. All the predicted results are 
verified by simulations. 

1. INTRODUCTION 
Sensor array processing has been a key technology in 
radar/sonar, cellular communications and underwater 
acoustics. Much of the recent work in array processing 
has focused on methods for high-resolution DOA estima- 
tion. These include well known MUSIC [I] algorithm and 
ESPRIT [?] algorithm. However, an important drawback 
of these techniques is the severe degradation of the esti- 
mation accuracy in the presense of highly correlated or 
coherent signals. To counter the deleterious effects due 
to some coherent signals, a pre-processing scheme, the S.S. 
proposed by Evans et  al. [3] and further developed by Shau 
et al. [4], has been shown to be an effective approach ill  

decorrelating coherent signals. However, such scheme can 
only be applied to uniformly spaced linear arrays. Liii- 
ear arrays are known to be limited only to DOA within 
180'. We will also show in this paper that the accuracy 
of DOA estimation by performing S.S. on a linear array is 
very sensitive to  the DOAs. As a result, a linear array is 
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not practically applicable in radar/sonar, and is more so 
in cellular communications where users can never predict 
the coming directions of the moving targets. 

The objectives of this work are to develop S.S. tech- 
niques for an array of arbitrary geometry to gain robust- 
ness in DOA estimation and to estimate both azimuth and 
elevation angles. We discovered and proved the conditions 
on arrays with arbitrary geometry for applying S.S. These 
conditions are (1) such an array must have an orientation 
invariant structure; (2) its center array and all the subar- 
rays must have ambiguity free array manifold; and (3) the 
number of subarrays is larger than or equal to the largest 
number of mutually coherent signals. We also proved the 
necessary and sufficient conditions for an ambiguity free 
three-sensor array manifold and then identify several sit- 
uations for a higher order sensor array manifold in which 
ambiguity may arise, so that we can design ambiguity free 
center arrays and subarrays. We confirmed by simulation 
that S.S. can be applied to an array satisfying the afore- 
mentioned conditions (and conditions for applying MU- 
SIC) to make MUSIC operative in a coherent interference 
environment and thus achieving robustness. To further in- 
crease efficiency and estimation resolution, we evaluated 
the FBSS [5 ] ,  which was previously used in linear arrays, 
for applications in nonlinear arrays. We found this tech- 
nique, when applied to a nonlinear array with central sym- 
metry, can reduce the number of sensors and improve the 
estimation resolution for closely spaced incoming signals. 
Finally, we expand the application of our technique to ES- 
PRIT. All the predicted performance are confirmed by sim- 
ulations. 

2. ARRAY OF ARBITRARY GEOMETRY 

Consider an array of p sensors. Let d narrow-band signals 
impirige 011 I.he array at incident. angles 81, ..., Rd with ad- 
ditive White Gaussian noise. The array output covariance 
matrix has the form: 

R = E ( r ( t ) r H ( t ) )  = AR,AH + 0 2 1 .  (1) 

The MUSIC algorithm is operative only under the follow- 
ing two conditions: (1) The matrix A is of full collumn 
rank, i.e. the array has ambiguity free array manifold, and 
(?) The signal covariance matrix R ,  is full rank. 
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2.1. Ambiguity Free Array Structure 
The ambiguity arises when one steering vector can be ex- 
pressed as a linear combination of other steering vectors 
in an array manifold A. For a linear array, the rank-I 
ambiguity [l] cannot be avoided since the DOAs' which 
are "mirror images" with respect to the array line, have 
the same steering vector. This limits the range of DOAs 
estimable by a linear array to within 180'. Generally, to 
avoid ambiguity, an array used for DOA estimation must 
have a proper structure. An ambiguity free array manifold 
has been assumed in several papers [6]- [8]. Our attempt is 
to identify all the situations in which ambiguity may arise. 

Theorem 1 In an azimuth only system, a necessary and 
suficient conditionfor an ambiguity free three-sensor array 
manifold is all these three sensors are not on one line and 
have mutual distance less than i .  

It  is our conjecture, that a p sensor array has an ambigu- 
ity free array manifold if it  satisfies that no more than I f ]  
sensors are on the same line and for any sensor in the array, 
there are a t  least two other sensors within the range of 5 .  
The rationale is that it is less likely to have ambiguity in 
higher order arrays [6]. 

2.2. Conditions for Applying Spatial Smoothing 
on Arrays with Arbitrary Geometry 

When some of the incoming signals are coherent ones, the 
signal covariance matrix R, is no longer full rank. We first 
provide the following lemmas to obtain the necessary and 
sufficient conditions for applying S.S. on an array with ar- 
bitrary geometry, so that we can achieve the nonsingularity 
of the modified signal covariance matrix. 

Lemma 1 For steering matrices A and E ,  given by A = 
[a(&), . . . , o(e,)] and B = [b(B1), . . . , b ( e d ) ]  there ezists a 
mapping relation B = A C  if and only if C is an diago- 
nal matrixgiven by C = diag{cll(s~),czz(ez),...,Cdd(Bd)) 
with b ( & )  = C l l ( e l ) ~ ( ~ l ) , " ' , b ( e d )  = Cdd(ed)O(ed) .  

Lemma 2 For h' steering matrix AI ,  Az, . ' , A,<, each A; 
can be mapped to a steering matrix B, if and only if there 
exists a mapping relation: A, = A,C,, between any A, and 
A, .  

Lemma 3 Suppose A, and A, are steering matrices asso- 
ciated with the ith and the j t h  subarroys. There exists a 
mapping relation A, = A,C,, if and only if the ith and the 
j t h  subarrays are identical and have the same orientotion. 

From Lemma 1 to Lemma 3,  we have: 

Theorem 2 Suppose an array can be divided into h' sub- 
arrays, each having a p x d steertng motriz A, (i = 
1 , 2 , .  . . , h-), then AI,  Az, . . . ,AI; can be mapped to a p x d 
steering matriz B by A, = BD, if and only if all these 
subarrays are identical and have the some orientation. 

Definition 1 (Orientational Invariant Structure) 
An array has an Orientational Invariant Structure if it 
can be divided into h' subarrays and all these suborrays 
are identical and have the same orientation. 

Definition 2 (Center Array) If an array with orienta- 
tional invariant structure can be divided into h' subarrays, 
which can also be overlapped, then the collection of a11 the 
Jirst sensors of the I(- subarrays form a center array. 

We can then get the necessary and sufficient conditions: 

Theorem 3 S.S. can be applied to a n  orray with arbi- 
trary geometry to get a full rank smoothed signal covariance 
matriz i f  and only if an array has orientational invariant 
structure, its center array has ambiguity free structure, the 
number of subarrays K is larger than or  equal to the sire 
of the largest group of coherent signals. 

Based on the smoothed data  covariance matrix obtained 
by performing S.S., MUSIC algorithm can be successfully 
applied. 

2.3. Further Improvement 
The FBSS technique can always be applied to a linear array 
to reduce the required number of sensors and to improve 
estimation resolution. FBSS is performed to get K addi- 
tional backward subarrays by reversing the order of the 
subarrays and the order of the sensors within each subar- 
ray. For arrays of arbitrary geometry, there is some re- 
quirements on the geometry for successful implementation 
of the backward method. We first give the following defi- 
nition of central symmetry which is a feature we identified 
to be necessary for applying FBSS: 

Definition 3 (Central Symmetry) The orray is cen- 
tral symmetric if it is identical before and after rotating 
180' about its center of m a s .  

We proved that generally, FBSS cau be applied to an 
array that satisfies conditions for applying S.S. and is also 
central symmetric. 

We found that the results obtained for a nonlinear array 
in the azimuth-only system remain valid in an azimuth- 
elevation system, if all the elevations are a t  one side of a 
plane array. 

3. SPATIAL SMOOTHING FOR ESPRIT 
Similar to MUSIC, the ESPRIT algorithm [2] is another 
approach to the signal parameter estimation problem. It 
exploits an underlying data  model at a significant compu- 
tational savings. The ESPRIT algorithm is also limited 
to estimating the parameters in noncoherent incoming sig- 
nals. 

We found that our scheme also work for the ESPRIT 
algorithm to estimate parameters in the coherent interfer- 
ence environment. We consider each doublet sensor pair in 
an array with m sensors used by ESPRIT algorithm as one 
element. Then the array consists of f elements. If this 
array satisfies the conditions in Theorem 3, we can get a 
full rank smoot.hed signal covariance matrix. We can then 
successfully perform ESPRIT. 

Although the S.S. enables ESPRIT to estimate DOAs 
in a coherent interference environment, the estimation is 
still limited to identifying DOAs of signals within 180' in 
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an azimuth only system. Hence, in terms of performance 
robustness to DOA, our S.S. is more effective for MUSIC 
then for ESPRIT. 

Figure 3. shows that the DOA estimation resolution are 
much improved by using FBSS method. 

. ~. . ~. , . 
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Figure 1 A nine-sensor square array 4 t h  spacing d 

Figure 3. DOA estimation of two coherent signals at 40' and 
50' by using a nine sensor square array 

I n  the third example. we use a dense square array with 
sixty four sensors. The a r ray  contains 4 subarrays each 
with 49 seiisors. 'I'lif,  spacing between two neighboring 
seiisors is 0.45X. Four (.olier+nt signals at '0'. 65' ,  150' and 
.!110', and three o ther  coherent signals a t  23Oo,25O0 and 
?BOo,  two other coherent signals a t  30' arid 300' and the 
ot,lier a t  :l?Il' are received by thr array. The SNR is 20 dB. 
500 data  sainplcs weir used t o  estiniate t.he array output 
mvariance matrix. First, we applied the FBSS and then 
applitd MUSI(:. Sirniilatioii results are sliown in Fig.4. 

2 I 

Figure 4.  DOA estimation of four groups of coherent signals 
a t  (20°,65', 150°, ."lo), (230,  d50';280'). (:ioo, 300') and 
320' based on a sixty-four sensor square ar ray  

Figure 2 .  S.S and MUSlCfor DOA estimat on of twocoherent 
signals at 70" a n d  85' 

l o  the second example, we use the same square array 
to receive two coherent signals at 40' arid SO'. The SNR 
is X dB. We applied S.S. and FBSS method individually. 

In t.he fourth example, we USE the same arraq as in the 
third example to receive two coherent signals, one is a t  an 
azimuth of 40' and ail elevatioii of 30', the 0thi.r is a t  an 
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azimuth of 50’ and an elevation of 60’. The SNR is 20dB. 
We applied FBSS method. Results is given in Fig.5. 

::I 

um”h 
dMlm 0 0  

Figure 5 .  DOA estimation of two coherent signals at a n  az- 
imuth of 40’ and an elevation of 30’, and at an azimuth of 
50’ and a n  elevation of 60°, respectively 

In the fifth example, we use a twelve-sensor array, con- 
sisting of two overlaped nine sensor square arrays as in 
example one, to receive two coherent signals a t  70’ and 
80°.The SNR is 20dB. 2000 trials were run. Histogram of 
the results is given in Fig.6. We applied FBSS first and 
then applied the ESPRIT. Two angles were clearly identi- 
fied. 

Figure 6. 
coherent signals at 70’ and 80’ 

FBSS and ESPRIT for DOA estimation of two 

5. SUMMARY AND CONCLUSIONS 
To significantly improve robustness of DOA estimation, 
we developed techniques for applying S.S. on arrays with 
arbitrary geometry, thus making MUSIC and ESPRIT op- 
erative in a coherent interference environment. In order 
to apply S.S. t o  an array with arbitrary geometry, this ar- 
ray must have an orientational invariant structure and its 

center array must be ambiguity free. Also the number of 
subarrays must be greater than or equal to the largest num- 
ber of mutually coherent signals. Such an array must also 
satisfy conditions for applying MUSIC. For ESPRIT, two 
identical arrays (or subarrays) separated by a displacement 
vector are used each satisfying the conditions for applying 
S.S. and MUSIC. 

To get ambiguity free array manifolds for subarrays and 
center array, we need to ensure that no more than 
sensors are on one line and for any sensor in the array, 
there are at least another two sensors within the range of 

We evaluated FBSS on a nonlinear array with central 
symmetry and found that this technique outperform reg- 
ular S.S. in terms of improved efficiency and estimation 
resolution. All the predicted results in this work are veri- 
fied by simulations. 
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