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Abstract—Collaborative filtering is widely used in recommen-
dation systems. A user can get high-quality recommendations
only when both the user himself/herself and other users actively
participate, i.e., provide sufficient ratings. However, due to the
rating cost, rational users tend to provide as few ratings as possi-
ble. Therefore, there exists a tradeoff between the rating cost and
the recommendation quality. In this paper, we model the inter-
actions among users as a game in satisfaction form and study
the corresponding equilibrium, namely satisfaction equilibrium
(SE). Considering that accumulated ratings are used for gener-
ating recommendations, we design a behavior rule which allows
users to achieve an SE via iteratively rating items. We theoret-
ically analyze under what conditions an SE can be learned via
the behavior rule. Experimental results on Jester and MovieLens
data sets confirm the analysis and demonstrate that, if all users
have moderate expectations for recommendation quality and sat-
isfied users are willing to provide more ratings, then all users can
get satisfying recommendations without providing many ratings.
The SE analysis of the proposed game in this paper is helpful
for designing mechanisms to encourage user participation.

Index Terms—Behavior rule, collaborative filtering (CF), game
theory, satisfaction equilibrium (SE).
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I. INTRODUCTION

A. Collaborative Filtering-Based Recommendation

RECOMMENDATION system has been successfully
applied in a variety of applications [1]. The predominant

approach to building recommendation systems is collaborative
filtering (CF) [2], where the key idea is to utilize the ratings
collected from users to identify users with similar interests
and to predict which items the users may be interested in.
Conventionally, ratings are organized into a user-item matrix
R = [rij]N×M with the rating rij indicating user i’s preference
for item j. The task of the recommendation server (RS) is to
predict the missing values in the matrix.

Users’ rating data are the fundamental resources of CF-
based recommendation systems, which means user participa-
tion is of vital importance for the success of recommendation.
Generally, a user assigns ratings to items after he1 has obtained
experience of the items. In practice, the number of total items
available for recommendation is much larger than the number
of items that a user has experienced, thus the rating matrix
is sparse. To make things worse, due to the cost incurred
by rating items, such as time consumption and privacy dis-
closure [3], users will not rate every item that they have
experienced. The insufficiency of rating data inevitably impairs
the recommendation quality [4].

B. Encourage User Participation

To deal with the aforementioned problem, researchers have
proposed various approaches, such as exploring the con-
tent information [5] and user relationships [6]. Apart from
improving the recommendation algorithms [7]–[9], one can
circumvent the problem by designing incentive mechanisms
to encourage user participation. Though mechanisms proposed
particularly for recommendation systems are rare, incentive
mechanisms have been extensively studied in similar con-
texts such as crowdsourcing [10] and cooperation in wireless
communications [11], [12].

In recommendation systems, the RS can offer various incen-
tives to users so as to compensate their rating cost. In addition
to monetary rewards and other forms of external incentives,
the recommendation quality can be considered as an intrinsic
incentive for users to rate items. In this paper, we investigate

1For ease of description, in this paper we sometimes use he to refer to the
user.
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the influence of the recommendations themselves on users’ rat-
ing behaviors. Specifically, we are interested in the following
questions: whether users, motivated by recommendation qual-
ity solely, can contribute sufficient rating data so that the RS
can generate satisfying recommendations for all users? How
should users behave so that the cost of rating and the quality
of recommendations can be balanced?

C. Game-Theoretic Approach

Intuitively, a user may get better recommendations if he
reveals more information about his preferences to the RS by
rating more items, while in the meantime, the user has to pay
more cost. When deciding whether to rate an item or not,
a user needs to make a tradeoff between the cost of rating
and the quality of recommendation. Moreover, as the name
CF suggests, whether a user can get good recommendations
depends not only on the ratings provided by the user him-
self, but also on the ratings provided by others. Therefore,
interactions of individuals’ rating behaviors should be consid-
ered when one makes decisions on rating. Furthermore, users
are usually rational, in the sense that a user wishes to obtain
good recommendations without rating many items. In such a
case, it is natural to employ game theory [13] to model the
interactions among users in a CF system.

In our previous work [14], we have built a game-theoretic
model to study users’ rating behaviors in a CF-based recom-
mendation system. Application of game theory has been seen
in a few studies of user behavior in a context where individu-
als’ behaviors affect each other [15]–[17]. Particularly, Halkidi
and Koutsopoulos [15] employed game theory to model the
interactions among users in a recommendation system. They
developed a mathematical framework to address the tradeoff
between privacy preservation and high-quality recommenda-
tion. Different from their study, we model the interactions
among users as a satisfactory game with incomplete informa-
tion: each user only has the knowledge of his own ratings and
recommendations, while others’ ratings cannot be observed.
Meanwhile, the CF algorithm adopted by the RS is also
unknown to users. Inspired by Perlaza et al.’s work [18], we
apply the notion of satisfaction equilibrium (SE), which was
originally introduced by Ross and Chaib-draa [19], to analyze
the game with incomplete information. A game is said to be
in SE when all players simultaneously satisfy their individ-
ual constraints. In the context of CF, a user’s expectation for
recommendation quality is seen as his constraint.

Based on the game model proposed in [14], in this paper,
we carefully study how to find the SE of the game. As men-
tioned above, the proposed game is a game with incomplete
information. Hence, different from the equilibrium concepts in
the context of complete information games, the SE arises as
a result of a learning process, rather than the result of ratio-
nal thinking on players’ beliefs and observations [19]. Based
on the characteristics of recommendation systems, we design
a learning algorithm which allows users to achieve an SE.
Convergence of the proposed learning algorithm is analyzed
theoretically. And we conduct a series of experiments on the
Jester data set and the MovieLens data set to verify the fea-
sibility of the learning algorithm. We think that the derived

convergence conditions can provide some implications to the
design of external incentives.

The rest of this paper is organized as follows. Section II
presents the experimental proof for the basic assumption
based on which we build the game model. Section III briefly
describes the system model while Section IV presents in
details the game formulation. In Section V, we introduce the
proposed learning algorithm to achieve the SE. The conver-
gence analysis is conducted in Section VI. Finally, the sim-
ulation results are shown in Section VII and the conclusions
are drawn in Section VIII.

II. PRELIMINARY ANALYSIS

A fundamental assumption of this paper is that given the
items that the users have experienced and the recommendation
algorithm adopted by the RS, the quality of recommendations
increases as users provide more ratings. This assumption is
quite general. Yet in order to make this paper more rigor-
ous, we have conducted some simple experiments to verify
the assumption. Experiments were performed on a set of rat-
ings chosen from the Jester data set [20]. Given the original
rating matrix, we randomly set some nonzero elements to “0”
(denoting missing values). Let σR denote the ratio of remaining
nonzero elements to original nonzero elements. By this way,
we can observe how the recommendation quality changes with
the number of ratings. Detailed information about the rating
data will be presented in Section VII.

Experiment results are stored in a matrix Q = [qij], where
each column represents a user, each row represents a particular
value of σR, and qij denotes the corresponding recommenda-
tion quality. Fig. 1 shows the matrix Q obtained by applying
a user-based CF algorithm, and the recommendation quality
is measured by the difference between the predicated ratings
and the user’s true preferences. Details of the recommenda-
tion algorithm and the evaluation metric of recommendation
quality will be presented in Section III. As we can see, as
more ratings are available (σR increases), the recommendation
quality improves.

To better illustrate the change of recommendation quality,
for each value of σR we compute the average of the recom-
mendation quality perceived by all users. Fig. 2 shows the
results obtained under different settings of recommendation
algorithms and evaluation metrics. It is clear that for any
given recommendation algorithm, the recommendation quality
improves with σR. Suppose that each user has an expecta-
tion for the recommendation quality, then from Fig. 2 we
can learn that, if users do not have high expectations, a rela-
tively small number of ratings (e.g., σR = 0.5) will be enough
to generate satisfying recommendations. With these prelim-
inary results, we can proceed to formal study of the user
participation problem.

III. SYSTEM MODEL

Consider a CF system where a set of users N =
{1, 2, . . . , N} interact with an RS. The RS maintains infor-
mation about a set of items S = {s1, s2, . . . , sM}. Each user
experiences a set of items and assigns ratings to some of them.
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Fig. 1. Illustration of the experiment result Q = [qij]. Each row of Q corre-
sponds to a given value of σR (σR = (70/100) · (k/100), k = 1, 2, . . . , 100).
Each column of Q corresponds to a user. The element qij represents the cor-
responding recommendation quality. Different values of qij are indicated by
different colors: blue represents low quality, red represents high quality.

(a)

(b)

Fig. 2. Recommendation quality changes with the number of ratings.
Each curve corresponds to one of the following three recommendation algo-
rithms: user-based CF [21], item-based CF [22], and non-negative matrix
factorization [23]. (a) Recommendation quality is evaluated by the differ-
ence between the predicated ratings and the user’s true preferences [see (4)].
(b) Recommendation quality is evaluated by the overlap between the recom-
mended items and the items that the user is mostly interested in [see (3)].

Let Si and S̃i denote the set of items that user i has experienced
and rated, respectively, then we have S̃i ⊆ Si ⊆ S. From the
perspective of the RS, a rating vector ri = (ri1, ri2, . . . , riM)

is provided by user i when a set S̃i is chosen. We define
rij ∈ (0, rmax] if sj ∈ S̃i, rij = 0 if sj /∈ S̃i (j = 1, . . . , M).
Usually, a high value of rij implies user i has a strong
preference for item sj.

As mentioned in Section I, the reason that the user will
not rate all the items in Si is the time consumption and the
privacy loss incurred by rating. In order to protect privacy,
the user can provide fake ratings to the RS [24], [25], so
that the true preferences of the user will not be disclosed.
However, considering that the recommendation quality will be
hurt by fake ratings, falsifying ratings can be nontrivial and

time-consuming. Also, in practical recommendation systems,
the profile of user interest is often represented by some kind
of distribution over different types of items [26], which means
the values of ratings have little influence on user profile. What
matters more is whether the user has rated an item. Hence in
this paper, we assume that as long as the user decides to rate
an item, the user will provide a rating that coincides with his
true preference.

The ratings provided by all users form a rating matrix R =
[rij]N×M . The RS applies some recommendation algorithm to
R to predict users’ preferences for those unrated items. A rec-
ommendation vector r̂i = (r̂i1, . . . , r̂iM) is computed for each
user i, where r̂ij is defined as follows:

r̂ij =
{

rij, if rij �= 0
fij(R), if rij = 0

(1)

with fij(R) being the predicted rating determined by both the
recommendation algorithm and the whole ratings. For exam-
ple, if user-oriented neighborhood-based CF [21] is applied,
then fij(R) can be defined as

fij(R) =

∑
k∈Neighbor(i)

rkjFsim(i, k)

∑
k∈Neighbor(i)

Fsim(i, k)
(2)

where Fsim(i, k) represents the similarity between user i and
user k, Neighbor(i) represents the set of users who are most
similar to user i. The similarity Fsim(i, k) can be measured by
Pearson correlation or vector cosine similarity [2].

After computing the recommendation vector, generally the
RS will select several items with high fij(R) and recommend
them to the user. Then the user can evaluate whether the rec-
ommended items match his interest. Let pi = (pi1, . . . , piM)

denote user i’s interest, where pij represents user i’s true pref-
erence for item sj (j = 1, . . . , M). We assume 0 ≤ pij ≤ rmax

and define pij = rij for sj ∈ S̃i. Let Ŝi denote the set of K

items recommended by the RS. Let
�

Si denote the set of K
items that correspond to the K highest pij in the set S\Si. That

is,
�

Si denote the set of items that user i has not experienced yet
but is interested in. Then the quality of the recommendation
result Ŝi, denoted as QoR(Ŝi), can be defined as

QoR
(

Ŝi

)
=

∣∣∣Ŝi ∩ �

Si

∣∣∣
K

(3)

where |A| denotes the cardinality of the set A.
In the study of recommendation systems, the recommenda-

tion quality is often evaluated by mean absolute error or root
mean squared error (RMSE) [2]. Based on the definition of
RMSE, we assume that the RS returns the whole vector r̂i to
the user, and the quality of r̂i is evaluated by a user-specific
function gi : R

M → R which is defined as

gi
(
r̂i

) = 1 −

√
M∑

j=1

(
r̂ij − pij

)2

rmax
√

M
. (4)

A large gi(r̂i) implies high similarity between ri and pi,
namely high recommendation quality. In the subsequent analy-
sis, we mainly use (4) as the metric of recommendation quality.
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From (1), (3), and (4), we can see that the recommendation
quality obtained by one user is affected by other users’ ratings.
In other words, users in a CF system interact with each other
via providing ratings to the RS. In the following section, we
will use satisfactory game to formulate the interaction among
users.

IV. SATISFACTORY GAME FORMULATION

A. Players and Actions

We consider all the users in N as players and the set S̃i as
user i’s action, i.e., ai = S̃i. Let Ai denote the action space
of user i. All users share the same action space, i.e., for any
i ∈ N , there is Ai = (A(1), . . . , A(K)), where K = 2|S| − 1,
A(k) ⊆ S (k = 1, . . . , K) and A(k) �= ∅. When choosing an
action, each user follows his own probability distribution over
the action space. We use π i = (π

(1)
i , . . . , π

(K)
i ) to denote

the distribution, where π
(k)
i � Pr(ai = A(k)) represents the

probability that user i chooses the action A(k).
Given an action profile a = (a1, . . . , aN) ∈ A (A =

A1 × · · · × AN), the rating matrix R obtained by the RS is
determined. Considering that the recommendation r̂i is fully
determined by R when the recommendation algorithm is speci-
fied, we introduce a mapping hi : A → R to show the influence
of users’ actions on recommendation quality

gi
(
r̂i

) = hi(a) = hi(ai, a−i) (5)

where a−i = (a1, . . . , ai−1, ai+1, . . . , aN) ∈ A−i, A−i = A1×
· · ·Ai−1 × Ai+1 · · · × AN .

Intuitively, either the user i himself or other users rate more
items, the rating matrix will become less sparse, and user i can
get better recommendations. We introduce the notion of rating
completeness to measure the relative amount of ratings pro-
vided by the user. Given the set Si, user i’s rating completeness
σi is defined as

σi = |ai|
|Si| . (6)

Notice that ai ⊆ Si and ai �= ∅, hence 0 < σi ≤ 1. A large σi

means user i actively participates in the rating activity. We use
σ−i to denote the average of other users’ rating completeness

σ−i = 1

N − 1

∑
j∈N , j �=i

σj. (7)

By introducing σi and σ−i, we can rewrite hi(ai, a−i) as

hi(ai, a−i) = h(σi, σ−i; pi) (8)

where the function h(·; pi) with parameter pi takes σi and σ−i

as input.
As mentioned in Section I, rating items incurs some cost.

The more items the user rates, the higher cost he has to pay.
Let ci(ai) denote the cost paid by user i when he chooses the
action ai, then for any a′

i ∈ Ai, a′′
i ∈ Ai, if a′

i ⊂ a′′
i, there

is ci(a′
i) < ci(a′′

i).

B. Satisfaction Form

Due to the rating cost, usually the user will not rate all the
items he has experienced. As we have discussed in Section II,
given the recommendation algorithm, the evaluation metric of
recommendation quality, and the items that users have expe-
rienced, the recommendation quality perceived by every user
increases with the number of ratings provided by users. This
means that when every user has rated all the items he has expe-
rienced, i.e., each user i chooses the action a∗

i � Si, every user
can receive the best recommendation that he can get. In such
a case, the rating completeness of every user is 1. If we use
�max

i to denote the best recommendation quality then there is

�max
i = h(1, 1; pi). (9)

In most cases, the rating completeness of a user is less than
1, hence the best result �max

i can hardly be realized. Suppose
that each user i has a relatively low expectation �i (�i < �max

i )
for the recommendation quality. Given an action profile a, as
long as hi(a) ≥ �i, user i will be satisfied.

From (5) we know that, given the actions of other users,
certain actions should be chosen by user i so that user i can
get satisfying recommendations. We use fi(a−i) to denote the
set of such actions

fi(a−i) = {ai ∈ Ai : hi(ai, a−i) ≥ �i}. (10)

For any a−i ∈ A−i, the mapping fi : A−i → 2Ai determines
the actions available for user i to satisfy his expectation. It
should be noted that, for some a−i, fi(a−i) may be empty.
For example, suppose that each user in N , expect user i,
rates only one item. Then even if user i rates all the items
he has experienced, the ratings are not enough to reflect the
real similarities between users. Consequently, user i cannot get
satisfying recommendations.

Based on the above discussions, we can describe the
proposed game by the following triplet:

ĜCF = (N , {Ai}i∈N , {fi}i∈N
)
. (11)

This formulation of game is called satisfaction form, which
was first introduced by Perlaza et al. [18] to model the
problem of quality-of-service provisioning in decentralized
self-configuring networks.

C. Satisfaction Equilibrium

An important outcome of a game in satisfaction form is the
one where all players are satisfied. This outcome is referred
to as SE [18]

Definition 1 (Satisfaction Equilibrium): An action profile a+
is an equilibrium for the game ĜCF = (N , {Ai}i∈N , {fi}i∈N ),
if ∀i ∈ N , there is a+

i ∈ fi(a
+
−i).

We have assumed that for all i ∈ N , there is �i < �max
i ,

hence the action profile a∗ � (S1, S2, . . . , SN) is an SE of
the proposed game. However, a∗ requires every user to pay
the highest cost ci(Si), which may exceed the necessary cost
for achieving user’s expectation. It is more practical to find a
lower-cost SE a+ = (a+

1 , . . . , a+
N ) which satisfies:

1) ∀i ∈ N , there is a+
i ∈ fi(a

+
−i) and ci(a

+
i ) ≤ ci(Si);



XU et al.: USER PARTICIPATION IN CF-BASED RECOMMENDATION SYSTEMS: GAME THEORETIC APPROACH 1343

2) there is at least one user who does not have to provide
his complete ratings, that is, ∃i ∈ N , ci(a

+
i ) < ci(Si).

V. LEARNING SATISFACTION EQUILIBRIUM

The game described above is a game with incomplete infor-
mation, since each user has no knowledge of other users’
actions. Different from general equilibrium concepts of games
with complete information, the SE is obtained as the result of
a learning process, rather than the result of rational thinking
on players’ beliefs and observations [19]. In this section, we
study the behavior rule that allows users to learn a SE. The
equilibrium learning is essentially an iterative process of infor-
mation exchange between users and the RS. For the RS, the
iterative process provides a way to acquire a certain amount
of information to build a profile for a user [27], [28]. During
the learning process, each user chooses his actions as follows.

Initially, user i chooses an action ai(0) based on the prob-
ability distribution π i(0) = (π

(1)
i (0), . . . , π

(K)
i (0)), where for

any k ∈ {1, . . . , K}, π
(k)
i (0) is defined as follows:

π
(k)
i (0) =

{
βi(0)/αci

(
A(k)

)
, if A(k) ⊆ Si

0, otherwise
(12)

where parameter α > 1 shows how much users care about
the cost. A large α means it is more likely that the user will
rate a small number of new items (i.e., unrated items) in one
iteration. On the other hand, if α is small, users may provide
sufficient ratings in a few iterations, which means an SE can be
quickly achieved. The normalization factor βi(0) is defined as

βi(0) = 1∑
k : A(k)⊆Si

α−ci(A(k))
. (13)

After every user has chosen his action, the RS computes the
recommendations based on the initial rating matrix R(0) and
returns r̂i(0) to user i.

At the beginning of iteration n (n = 1, 2, . . .), user i evalu-
ates r̂i(n−1) to see whether it is satisfactory. We use a binary
variable vi(n − 1) to indicate the evaluation result

vi(n − 1) =
{

1, if gi
(
r̂i(n − 1)

) ≥ �i

0, otherwise.
(14)

According to vi(n − 1), user i updates the probability distri-
bution π i(n) = (π

(1)
i (n), . . . , π

(K)
i (n)) and then chooses an

action ai(n). Notice that the RS utilizes all the historical rat-
ings of a user to compute recommendations. Even if the user
does not rate any item in this iteration, the RS can still com-
pute recommendations for him based on the ratings that the
user has provided in previous iterations. Therefore, we use
ai(n) to denote all the items that user i has rated by the end
of iteration n, and naturally we have ai(n) ⊇ ai(n − 1).

If vi(n − 1) = 0, then user i may: 1) choose more items
to rate, if he believes it is because he did not provide enough
ratings that the recommendation result is unsatisfactory and
2) keep previous action, i.e., rate no more items, if he blames
the unsatisfying result on other users. For any k ∈ {1, . . . , K},

π
(k)
i (n) � Pr(ai(n) = A(k)) is computed as follows:

π
(k)
i (n) =

⎧⎨
⎩

σi(n − 1), if A(k) = ai(n − 1)

βi(n)/αci
(
A(k)

)
, if ai(n − 1) ⊂ A(k) ⊆ Si

0, otherwise
(15)

where σi(n − 1) is the rating completeness of user i

σi(n − 1) = |ai(n − 1)|
|Si| . (16)

A large σi(n − 1) means user i has already rated many items
in Si, thus the user possibly rates no more items even if he is
not satisfied with current recommendation. The normalization
factor βi(n) is defined as follows:

βi(n) = 1 − σi(n − 1)∑
k:ai(n−1)⊂A(k)⊆Si

α−ci(A(k))
. (17)

If vi(n − 1) = 1, then it is very likely that user i no longer
rates the rest items in Si. For any k ∈ {1, . . . , K}, π

(k)
i (n) is

now defined as follows:

π
(k)
i (n) =

⎧⎨
⎩

μ, if A(k) = ai(n − 1)

βi(n)/αci
(
A(k)

)
, if ai(n − 1) ⊂ A(k) ⊆ Si

0, otherwise
(18)

where the parameter μ denotes to what extent a satisfied user
would keep the previous action, and usually there is 0.5 <

μ ≤ 1. The normalization factor βi(n) is defined as follows:

βi(n) = 1 − μ∑
k:ai(n−1)⊂A(k)⊆Si

α−ci(A(k))
. (19)

After every user has chosen his action, the RS computes the
recommendations based on the rating matrix R(n) and returns
r̂i(n) to user i. The learning process goes to the next iteration.
If after a finite number of iterations, say ns, all users have
been satisfied, then the process stops. We say the behavior rule
converges to an SE a+ = (a1(ns), . . . , aN(ns)). A summary of
the learning process is shown in Algorithm 1.

VI. CONVERGENCE OF THE LEARNING ALGORITHM

In this section, we study the convergence of learning algo-
rithm proposed in the previous section. First, we introduce
the basic assumption for the convergence analysis and the
notion of user state. Then we present a simple analysis
of the convergence. After that, we make some simplifica-
tions of the learning algorithm and present a quantitative
analysis of the convergence.

A. Basic Assumption

The learning algorithm proposed above implies the follow-
ing assumption we make about the relationship between the
rating completeness and the recommendation quality.

Assumption 1: ∀i ∈ N , the following two conditions hold
for all σi ∈ (0, 1] and σ−i ∈ (0, 1].

1) ([∂h(σi, σ−i; pi)]/[∂σi]) > 0.
2) ([∂h(σi, σ−i; pi)]/[∂σ−i]) ≥ 0.
This assumption indicates that the recommendation qual-

ity perceived by one user can be improved by either the user
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Algorithm 1 Learning the SE of the Game ĜCF =(N , {Ai}i∈N , {fi}i∈N
)

1: n = 0;
2: ∀k ∈ {1, · · · , K},

π
(k)
i (0) =

{
βi(0)/αci

(
A(k)

)
, if A(k) ⊆ Si

0, otherwise
,

where βi(0) = 1∑
k: A(k)⊆Si

α
−ci

(
A(k)

) .

3: ai(0) ∼ π i(0);
4: for all n > 0 do
5: update π i(n): ∀k ∈ {1, · · · , K},

π
(k)
i (n) =

⎧⎨
⎩

γi(n), if A(k) = ai(n − 1)

βi(n)/αci
(
A(k)

)
, if ai(n − 1) ⊂ A(k) ⊆ Si

0, otherwise
,

where

γi(n) =
{

σi(n − 1), if vi(n − 1) = 0
μ , if vi(n − 1) = 1 ,

βi(n) = 1−γi(n)∑
k: ai(n−1)⊂A(k)⊆Si

α
−ci

(
A(k)

) .

6: ai(n) ∼ π i(n);
7: end for

himself or other users. During the learning process, unsatisfied
users continually provide more ratings. For an unsatisfied user
i, even if σ−i no longer increases, so long as σi increases with
iterations, the recommendation quality gradually improves,
and the user may get a satisfying result after a few itera-
tions. If the assumption does not hold, then it is impossible for
the learning algorithm to achieve an SE if someone is unsat-
isfied with the initial recommendation. And in such a case,
rating more items only increases the user’s cost, and the user
will lose his motivation to participate. Notice that the function
h(·, ·; pi) is actually determined by the recommendation algo-
rithm and the evaluation metric of recommendation quality.
Hence we assume that given the evaluation metric of recom-
mendation quality, the recommendation algorithm adopted by
the RS should satisfy the above assumption. We have demon-
strated the rationality of the assumption via simulation results
on real data set (see Section VII-C).

B. User State

Based on Assumption 1, given a user’s expectation �i, the
relationship between σi and σ−i can be depicted by a curved
section in the σi − σ−i plane. As shown in Fig. 3, only when
both σi and σ−i exceed the corresponding thresholds, it is pos-
sible that user i will be satisfied. The two thresholds σi,min
and σ−i,min are determined by the following two equations,
respectively:

h
(
σi,min, 1; pi

) = �i (20)

h
(
1, σ−i,min; pi

) = �i. (21)

According to Assumption 1, if σi < σi,min, then for any σ−i ∈
(0, 1], there is

h(σi, σ−i; pi) < h
(
σi,min, σ−i; pi

) ≤ h
(
σi,min, 1; pi

)
. (22)

Similarly, if σ−i < σ−i,min, then for any σi ∈ (0, 1], there is

h(σi, σ−i; pi) < h
(
σi, σ−i,min; pi

) ≤ h
(
1, σ−i,min; pi

)
. (23)

Therefore, given �i, σi,min represents the minimum require-
ment for user i and σ−i,min represents the minimum require-
ment for other users.

During the learning process, each user’s rating completeness
increases with iterations. We define σi(n − 1) and σ−i(n − 1)

as follows:

σi(n − 1) = |ai(n − 1)|
|Si| (24)

σ−i(n − 1) = 1

N − 1

∑
j∈N , j �=i

∣∣aj(n − 1)
∣∣∣∣Sj

∣∣ . (25)

For any n ≥ 1, there is σi(n) ≥ σi(n − 1) and σ−i(n) ≥
σ−i(n − 1). We assume that there exists some n0 (n0 ≥ 1) that
σi(n0) ≥ σi,min holds for all i. From iteration n0 +1, each user
i is in one of the following three states.

1) Satisfied: As depicted by the green area in Fig. 3, user
i has already got satisfying recommendations, namely
h(σi(n − 1), σ−i(n − 1); pi) ≥ �i. Once the user is
satisfied, he will always in the Satisfied state. The rea-
son is that with the increase of iterations, σi and σ−i

either increase or remain the same, and according to
Assumption 1, h(σi, σ−i; pi) will not decrease.

2) Proximity to Satisfied: As depicted by the cyan area in
Fig. 3, user i has not been satisfied, namely h(σi(n −
1), σ−i(n − 1); pi) < �i, and user i has not rated all the
items in Si, namely σi(n−1) < 1, while other users have
rated enough items, namely σ−i(n−1) ≥ σ−i,min. In this
case, even if other users no longer rate more items, user
i is able to enter the Satisfied state by rating more items.

3) Far From Satisfied: As depicted by the yellow area in
Fig. 3, user i has not been satisfied, and the amount
of ratings provided by other users has not achieved the
minimum requirement of user i, namely σ−i(n − 1) <

σ−i,min. In this case, if other users provide enough
ratings in subsequent iterations, user i can enter the
Proximity to satisfied state. Otherwise, the user will
stuck in this state and never be satisfied.

We use ZS, ZP, and ZF to denote the three states, respectively,
and we use zi(n) to denote user i’s state at the beginning of
iteration n (n ≥ n0), then zi(n) ∈ {ZS, ZP, ZF}.

C. Simple Analysis of the Convergence

At the beginning of iteration n (n ≥ n0), users can be
grouped into two sets: 1) the set of satisfied users NS(n) �
{i|i ∈ N , zi(n) = ZS} and 2) the set of unsatisfied users
NUS(n) � {i|i ∈ N , zi(n) = ZP ∨zi(n) = ZF}. As the learning
process continues, the number of unsatisfied users decreases.
For any user i ∈ NUS(n):

1) if zi(n) = ZP, then according to the definition of the
state ZP, the user will eventually become satisfied;

2) if zi(n) = ZF , there is σ−i(n − 1) < σ−i,min.
When users continue to provide more ratings after they are
satisfied, namely μ < 1, both σ−i(n − 1) and σi(n − 1) keep
increasing with n, hence at some iteration n′ (n′ > n), there
will be zi(n′) = ZP. However, when users in NS(n) make no
contributions to the increase of σ−i(n − 1), namely μ = 1, it
is possible that the user will stay in the state ZF permanently.
Consider the case that the satisfied users have provided few
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Fig. 3. Illustration of user state: satisfied (cyan area), proximity to satisfied
(blue area), and far from satisfied (yellow area).

ratings that σ−i cannot reach σ−i,min even when all the unsat-
isfied users provide their complete ratings. In such a case, user
i will never be satisfied.

To sum up, given μ = 1, if the following inequality holds
for some i ∈ N and some n ∈ {1, 2, . . .}, then the learning
algorithm cannot converge:

1

N − 1

⎡
⎣ ∑

j∈NS(n)

σj(n − 1) +
∑

j∈NUS(n), j �=i

1

⎤
⎦ < σ−i,min. (26)

Notice that σ−i,min is determined by user i’s expectation �i.
According to (26), we can conclude that if a small portion of
users have relatively high expectations for the recommendation
quality, then the proposed learning algorithm cannot converge
to an SE. Next we will present an elaborate analysis of this
conclusion.

D. Quantitative Analysis of the Convergence

From above discussion we can see that, to judge the con-
vergence of the learning algorithm, the key is to analyze how
each user’s rating completeness changes over time. Let 
σi(n)

denote the increment of user i’s rating completeness in iter-
ation n, namely 
σi(n) = σi(n) − σi(n − 1). According to
Algorithm 1, the value of 
σi(n) is random. Hence it is diffi-
cult to quantitatively analyze the transition of user state. In
this section, we simplify the learning process described in
Algorithm 1 and discuss the convergence of the simplified
version.

1) Simplified Learning Algorithm: The simplified learning
process can be described as follows. Initially, each user i
randomly chooses one item from Si, thus for any i ∈ N ,
σi(0) = (1/|Si|). At the beginning of iteration n (n > 0),
each user i judges whether the recommendation quality is sat-
isfactory. If the user is satisfied, then he does not change the
action, namely ai(n) = ai(n − 1); if the user is unsatisfied,
then he randomly chooses one item from Si\ai(n − 1).

Based on above simplification, we can easily determine the
value of 
σi(n): if i ∈ NS(n), then 
σi(n) = 0; if i ∈ NUS(n),
then 
σi(n) = (1/|Si|).

2) Two Types of Users: In addition to simplifying the
learning process, we also make some assumptions about users.

Fig. 4. Illustration of how user state changes with the rating completeness.

Assumption 2: Users in N can be divided into two groups
NA and NB.

1) For all i ∈ NA, �i = ηA�max
i , where 0 < ηA < 1.

2) For all i ∈ NB, �i = ηB�max
i , where ηA < ηB < 1.

3) For all i ∈ N , |Si| = M0, where M0 is constant and
1 ≤ M0 < |S|.

3) Quantify the Change of Rating Completeness: With
above simplifications, we can now quantitatively analyze when
the transition of user state happens and explain why users in
NB may stay unsatisfied. Consider a user i ∈ NB. As shown in
Fig. 4, with the increase of iterations, the user “moves” upward
and/or rightward in the square [0, 1]2. To judge whether the
user can enter the Satisfied area which is determined by ηB, we
need to analyze how the user moves from (σi(n−1), σ−i(n−1))

to (σi(n), σ−i(n)) in each iteration n.
According to the simplified algorithm, at the beginning of

iteration 1, user i is at the point ([1/M0], [1/M0]). Then, the
user moves along the line σ−i = σi (the blue dotted line in
Fig. 4) until users in NA are satisfied. This is because before
anyone is satisfied, for all i ∈ N , both 
σi(n) and 
σ−i(n)

equal to (1/M0). Users in NA have relatively low expectations,
thus they become satisfied earlier than users in NB. There
exists some nA ∈ {1, 2, . . . , M0 − 1} that at the beginning of
iteration nA, all the users in NA are satisfied, while all the
users in NB are unsatisfied.

At the beginning of iteration nA, user i is at the point
([nA/M0], [nA/M0]). As we have discussed in Section VI-C, if
user i is in the state ZP, then he can be satisfied by rating more
items. Here we focus on the other case, namely zi(nA) = ZP.
During iteration nA, each user in NB rates one more item,
while users in NA no longer rate more items, hence user i
moves along a line whose slope kB is less than 1

kB = 
σ−i(nA)


σi(nA)

=
1

N−1

∑
j∈NB,j �=i

[
σj(nA) − σj(nA − 1)

]
1

M0

= |NB| − 1

N − 1
. (27)
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In subsequent iterations, user i moves along the same direction
until one of the following two situations happens: 1) user i
becomes satisfied and 2) user i has not been satisfied but has
rated all the items in Si, namely σi = 1. If the second situation
happens, user i can never be satisfied. This is because that
users in NB are assumed to have same expectations, which
implies all the other users in NB also have provided their
complete ratings. As a result, no user can make contributions
to the increase of σ−i. As depicted by the green dotted line in
Fig. 4, the second situation will happen if kB is smaller than
some threshold kmin (see the red dotted line in Fig. 4)

kmin = σ−i,min − σ−i(nA − 1)

1 − σi(nA − 1)
= σ−i,min − nA

M0

1 − nA
M0

. (28)

Plugging (27) and (28) into kB < kmin we can get

σ−i,min >
|NB| − 1

N − 1
+ N − |NB|

N − 1
· nA

M0
. (29)

The right part of above inequality is exactly the formula for
calculating σ−i when users in NB provide their complete rat-
ings and users in NA provide the necessary amount of ratings
to make themselves satisfied. Similar with the conclusion we
have drawn in Section VI-C, the inequality implies that if a
user has very high expectation which requires too much effort
of other users, then the user cannot get satisfying recommen-
dations. If the relationship between σi, σ−i, ηA, and ηB can be
explicitly expressed, then we can rewrite σ−i,min in a specific
form, and the influence of users’ expectations on the conver-
gence of the learning algorithm can be shown more clearly.
Please see the Appendix for more details.

VII. SIMULATION

To verify the feasibility of the proposed SE learning algo-
rithm, we have conducted a series of simulations by using real
rating data. In this section, we first describe the preparation of
data and experiment setup, then we present a comparison of
the learning results which are obtained under different settings
of users’ expectations. After that, we provide some experi-
mental proofs for the assumptions we have made and for the
theoretical analysis presented in Section VI. In addition, to
demonstrate the satisfactory game analysis can help to design
incentive mechanisms for user participation, we conduct exper-
iments to investigate how monetary rewards affect the result
of equilibrium learning.

A. Data Set and Parameter Setting

Two data sets, namely Jester [20] and MovieLens,2 are cho-
sen for simulation. These two data sets are commonly used in
the study of CF. Details of the data sets and corresponding
parameter settings are given below.

1) Jester: The Jester data set contains about 4.1 million
ratings of 100 jokes from 73 421 users. Considering that the
“ground truth” of a user’s preference for each item is required
for the evaluation of recommendation quality, we only keep
720 000 ratings from the 7200 users who have rated all the 100

2http://grouplens.org/datasets/movielens/1m/

jokes. Ratings are real values ranging from −10.00 to +10.00
(the value “99” corresponds to “unrated”). As described in
Section III, we have defined 0 ≤ rij ≤ rmax, so we adjust the
ratings to the range [10.00, 30.00] and use 0 to represent “not
rated.” Finally, we get a user-item matrix R = [rij]7200×100
which contains no zero elements.

Parameters of the SE learning algorithm are set as follows.
1) pi: Each row of R is treated as the corresponding user’s

interest vector.
2) Si: For each user i, we set |Si| = 70 and randomly

set 30% of the user’s ratings to 0. The resulting rating
matrix is denoted by R′.

3) gi(r̂i): The quality of the recommendation r̂i is evaluated
according to (4).

4) ci(ai): The rating cost is defined as the number of rated
items, that is, ci(ai) = |ai|.

5) α: This parameter affects the convergence speed.
Considering the shape of the function f (x) = 1/αx on
the interval [0, |Si|], we set α = 1.2.

6) μ: We set μ = 0.9 and μ = 1 to simulate the situation
that satisfied users continue to provide ratings and the
situation that satisfied users no longer rate more items,
respectively.

We have implemented a user-based CF algorithm with
MATLAB. Unknown ratings are predicted according to (2)
where |Neighbor(i)| is set to 36. The quality of recommenda-
tions is evaluated according to (4). Based on R and R′, we
calculate the best result �max

i , then we set �i = ηi�
max
i , where

0 < ηi < 1. Settings of {ηi}N
i=1 will be described later.

2) MovieLens: The MovieLens data set contains about 1
million ratings from 6040 users on 3900 movies. To conduct
simulations, we set |Si| = 70 and discard users who rated
less than 70 movies. The resulting data set consists of rat-
ings from 3631 users on 3675 movies. Let R′ = [rij]3631×3675
denote the rating matrix, where rij ∈ {0, 1, . . . , 5} and
rij = 0 means unrated. This rating matrix is quite sparse:
the proportion of nonzero elements is only 6.78%. To deter-
mine the interest vector pi of each user, we first apply the
CF algorithm to predict the unknown ratings in R′. Let
R denote the matrix which consists of original ratings and
predicted ratings. Then each row of R is treated as the corre-
sponding user’s interest vector. Other parameters of the SE
learning algorithm are set in the same way as the Jester
data.

B. Simulation Results of SE Learning

To verify the convergence of Algorithm 1, we test multiple
groups of {ηi}N

i=1. For a given μ, we run simulations with the
following four settings: 1) ηi = 0.5 for all i ∈ N ; 2) ηi = 0.85
for all i ∈ N ; 3) ηi = 0.85 for 1% of the users, ηi = 0.5 for
the rest; and 4) ηi = 0.85 for 20% of the users, ηi = 0.5 for
the rest. To reduce the influence of randomness, we run the
algorithm five times for each setting. In each run, the iterative
process stops when all users are satisfied or the number of iter-
ations reaches 10 000. After each run, we record the number
of iterations nstop, the number of satisfied users NS, and the
average rating completeness σ̄i � (1/N)

∑N
i=1 |ai(nstop)|/|Si|.
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TABLE I
SIMULATION RESULTS OF SE LEARNING ON JESTER DATA SET

TABLE II
SIMULATION RESULTS OF SE LEARNING ON MOVIELENS DATA SET

Simulation results are shown in Tables I and II, from which
we can make the following observations:

When users have similar expectations for the recommenda-
tion quality, even if the expectation is high (ηi = 0.85) and
user becomes inactive after he is satisfied (μ = 1), an SE
can be reached. For a given μ, as users’ expectations become
higher, the convergence time becomes longer, and σ̄i becomes
higher, which means users need to rate more items. Given the
setting of ηi, by comparing the results of different μ we can
see that, when satisfied users no longer rate more items, the
convergence time becomes longer, while the average rating
completeness decreases. For example, as shown in Table I,
given ηi = 0.5 for all i ∈ N , when μ = 0.9, an SE can be
reached in 30 iterations, and averagely a user needs to rate
50%∼60% of the items that he has experienced; when μ = 1,
usually more than 100 iterations are required to reach an SE,
while the user only needs to rate less than 30% of the items.
During the learning process, due to the randomness of users’
actions, different users become satisfied at different time. If
μ = 0.9, satisfied users continue to make contributions to the
improvement of recommendation quality, hence those unsat-
isfied users can be satisfied in a short time. While if μ = 1,
unsatisfied users can only rely on themselves to improve the
recommendation quality, hence more time is needed. As for
the rating completeness, μ = 0.9 means the user may pro-
vide more ratings after he is satisfied, thus by the time an SE
is reached, the user may have rated much more items than
he needs to. While μ = 1 means the user prefers to rate the
minimum number of items necessary to get satisfactory recom-
mendations, thus when an SE is achieved, the average rating
completeness is lower than that of μ = 0.9.

When most users have moderate expectations for the rec-
ommendation quality (ηi = 0.5) and a small portion of users
have much higher expectations (ηi = 0.85), an SE can still be
reached when μ = 0.9, although the convergence time is much
longer than that when all users have moderate expectations,
and the average rating completeness is close to that when all
users have high expectations. This result implies that in order
to meet the high expectations of a few users, users with mod-
erate expectations have to rate much more items after they are
satisfied. When μ = 1, satisfied users no longer rate more
items. Hence, after the majority of users have been satisfied,
those unsatisfied users can hardly improve the recommenda-
tion quality. For example, as shown in Table I, under the third
setting of ηi, the 1% of users who have high expectations are
still unsatisfied after 10 000 iterations. From the corresponding
σ̄i we can learn that most users just rate “enough” number of
items to meet their moderate expectations, while the amount
of their ratings is far from enough to achieve the expectations
of the rest 72 users.

To better understand the influence of the minority high
expectations on the learning results, we take a detailed look at
the results on Jester data set and draw the sets of |NS(n)| corre-
sponding to different settings in Fig. 5. As shown in Fig. 5(a),
in a setting where ηi = 0.85 for 20% of the users (depicted by
magenta circles), after 15 iterations, nearly 80% of the users
are already satisfied. During the first 15 iterations, |NS(n)|
grows at almost the same rate with that of the setting where
ηi = 0.5 for all users (depicted by red circles). After most
users are satisfied, the growth rate of |NS(n)| decreases. This
is because the satisfied users prefer rating no more items, and
for those unsatisfied users the recommendation results only
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(a) (b)

Fig. 5. Change of the number of satisfied users. Simulations are conducted on Jester data set. (a) μ = 0.9. (b) μ = 1.

improve a little after one iteration. Consequently, many more
iterations are required to achieve the expectations of the rest
users. Similar results can be observed in Fig. 5(b).

The simulation results coincide with our intuition about the
SE in a CF system: when all users have moderate expecta-
tions for recommendation quality, an SE can be realized in
low cost, that is, every user can get satisfactory recommen-
dations without rating many items. From the results shown in
Tables I and II, we can get some general insight about the con-
vergence conditions of the learning algorithm. Next we will
conduct another group of simulations to verify the analysis
presented in Section VI.

C. Relationship Between Recommendation Quality and
Rating Completeness

The theoretical analysis we presented in Section VI is
based on some assumptions (see Assumptions 1 and 2).
Before we verify the convergence conditions, we first con-
duct some experiments on Jester data set to validate the
rationality of the assumptions. For each user i, we uti-
lize R′ to construct a group of rating matrices {Ri,k}.
Each matrix Ri,k corresponds to a certain pair of σi and
σ−i, where σi ∈ {(1/70), (2/70), . . . , (70/70)} and σ−i ∈
{(1/100), (2/100), . . . , (100/100)}. For example, given σi =
(5/70) and σ−i = (10/100), we randomly choose five nonzero
ratings from the ith row of R′ and set them to 0, then we ran-
domly set (1−[10/100])×100% of the nonzero ratings in other
rows to 0. We apply the user-based CF algorithm [see (2)] to
Ri,k, and evaluate the recommendation results based on (4)
to get h(σi, σ−i; pi). By drawing {(σi, σ−i, h(σi, σ−i; pi))} in a
3-D space, we can get a plot of h(σi, σ−i; pi) corresponding
to the user i. Fig. 6 shows an example. From Fig. 6(a), we can
see that the recommendation quality improves when σi or σ−i

increases. This result confirms Assumption 1. From the con-
tour plot shown in Fig. 6(b) we can observe that, given a proper
value of h(σi, σ−i; pi), there is an approximate quadratic rela-
tionship between σi and σ−i. Assumption 2 is proposed based
on the this observation. Experiment results of other users can
also support the two assumptions.

D. Convergence Test

We implement the simplified learning algorithm described
in Section VI and conduct simulations on Jester data set to
verify the convergence conditions proposed in the Appendix.

(a)

(b)

Fig. 6. Illustration of the relationship between recommendation quality and
rating completeness. (a) Fitted surface is obtained by interpolating the experi-
ment results {(σi, σ−i, h(σi, σ−i; pi))} corresponding to one user. (b) Contour
plot of (a).

As described in Assumption 2, we randomly divide users
into two groups NA and NA, and we set ηA to 0.5. The
two parameters ρN and ηB are set in a following way: given
ρN ∈ {0.01, 0.10, 0.20}, we calculate the corresponding θB

according to (41), then we set ηB = θB − 0.05, ηB = θB,
and ηB = θB + 0.05, respectively. To prove that the algo-
rithm can converge when all users have high expectations, we
also test the setting ηA = ηB = θB + 0.05. Given a group
of (ρN, ηA, ηB), we run the simplified learning algorithm ten
times. The iterative process stops at iteration nstop when one
of the following conditions is met: 1) |NS(nstop)| = N and
2) ∀i ∈ NUS(nstop), σi(nstop) = 1.

Let NS denote the number of satisfied users at the end of
the learning process, namely NS = |NS(nstop)|. Table III shows
the simulation results. As we can see, given ηA and ρN , an SE
can always be reached when ηB = θB − 0.05. When ηB = θB,
some users in NB can be satisfied and some cannot. This result
is slightly different from the theoretical analysis presented in
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TABLE III
SIMULATIONS RESULTS OF THE SIMPLIFIED LEARNING ALGORITHM

Section VI, where (38) implies that an SE can be achieved
when ηB ≤ θB. We think the reason for the inconsistence
between theoretical analysis and simulation results is that the
relationship between users’ rating completeness and recom-
mendation quality does not exactly accord with assumption
we have made in (30). When ηB = θB + 0.05, most of the
users in NB cannot be satisfied. From Table III we can also
see that when users have similar high expectations, the sim-
plified learning algorithm can converge to an SE before users
have rated all the item they have experienced (nstop < |Si|).
These results demonstrate that in a CF system, whether an
equilibrium can be achieved via users’ spontaneous participa-
tion depends on whether the users are homogeneous in the
sense that they expect same recommendation quality.

E. Incentive Mechanism

From the SE learning results presented in Section VII-B we
can see that, when different users have similar expectations,
the recommendation quality solely can motivate users to pro-
vide enough ratings to the RS, so that the server can generate
satisfying recommendations for all users. In this case, external
incentive for user participation is not necessary. However, if
there are significant differences among users’ expectations and
users no longer rate more items after they are satisfied, then
the SE cannot be achieved via the proposed learning algo-
rithm. In such a case, some kind of external incentive (e.g.,
monetary rewards) is required to encourage users to provide
more ratings.

As described in Section VII-A1, the cost of choosing action
A(k) is defined as ci(A(k)) � |A(k)|. Suppose that the RS pays
b(A(k)) � κ|A(k)| to the user as a reward, where the parameter
κ ∈ (0, 1) denotes the monetary reward that the user can get
by rating one item. Paying rewards to users can be seen as
a way to reduce the rating costs of users. More specifically,
when user i gets a reward b(A(k)), the actual rating cost he
pays is ci(A(k)) − b(A(k)). According to Algorithm 1, actions
with low cost are preferred by users, hence users may rate

Fig. 7. Relationship between σi and σ−i with respect to a given �i.

more items if they are rewarded. Besides, motivated by the
monetary rewards, users will continue to rate items even if
they are satisfied with current recommendations. To formulate
this intuition, we make a small modification to Algorithm 1:
at each iteration, if the user is satisfied, i.e., vi(n − 1) = 1,
the probability that the user keeps previous action is defined
as μ � 1 − κ . Since 0 < κ < 1, there is μ < 1. As we have
verified in Section VII-B, an SE can always be achieved when
μ < 1.

To evaluate the performance of the modified learning algo-
rithm, we conduct simulations on Jester data set. Parameters
of the algorithm are set in the same way as we’ve done before,
and the reward parameter κ is set to 0.01, 0.1, 0.5, and 0.9,
respectively. Again, to reduce the influence of randomness,
we run the algorithm five times for each setting. Simulation
results are shown in Table IV. By comparing Tables I and IV
we can see that, when the RS pays rewards to users, the learn-
ing algorithm converges to the equilibrium at a fast speed. The
higher the rewards are, the faster the algorithm converges.
For example, when there are only 1% of users who have
high expectations for recommendation quality, if no reward
is offered and μ = 0.9, at least 400 iterations are required to
reach an SE; if the RS adopts a reward mechanism and sets
κ = 0.1, the value of μ is still 0.9, but this time an SE can
be achieved after about 200 iterations.

The simulation results indicate that the recommendation
sever can push the interactions among users toward SE by
offering rewards to users. The reward mechanism proposed
above is quite simple. A more elaborate incentive mechanism,
where the differences in rating cost and expectation for rec-
ommendation quality among users are considered, should be
developed. We will investigate this problem in future work.

VIII. CONCLUSION

In this papers’, we formulated the interaction among users
in a CF system as a game in satisfaction form. To learn
the SE of the game, we proposed a behavior rule that a
user iteratively updates the probability distribution over the
action space and gradually rate more items. We have analyzed
the convergence of the proposed rule under some simplifying
assumptions. By conducting simulations on real data sets, we
have demonstrated that when users have similar expectations
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TABLE IV
SIMULATION RESULTS OF SE LEARNING WITH REWARDS

for the recommendation quality, an SE can be achieved via
users’ spontaneous rating behaviors.

The game-theoretic analysis we presented in this paper
may provide some implications to the study of user behaviors
in collaborative systems. The derived convergence conditions
may also be helpful to the design of incentive mechanisms. In
future work, we would like to investigate how to utilize both
the intrinsic motivation and external incentives to encourage
user participation.

APPENDIX

CONVERGENCE CONDITIONS OF THE SIMPLIFIED

LEARNING ALGORITHM

To derive specific convergence conditions from (29), we
make the following assumption as a complementary to
Assumption 2: for all i ∈ N , given ηi ∈ {ηA, ηB}, the
relationship between σi and σ−i can be formulated as

σ 2
i + σ 2−i = 2η2

i (30)

where (1/M0) ≤ σi ≤ 1, (1/M0) ≤ σ−i ≤ 1.
In above assumption, the quadratic relationship between σi

and σ−i is proposed based on simulation results on real data
set (see Section VII-C). As shown in Fig. 7, the threshold
σ−i,min is now defined in the following way.

1) If ηA < ηB ≤ (1/
√

2), then for all i ∈ NB, σ−i,min =
(1/M0). Considering that nA ≥ 1, (29) implies that

1

M0
>

|NB| − 1

N − 1
+ N − |NB|

N − 1
· 1

M0
. (31)

Then we can get

(M0 − 1)(|NB| − 1) < 0. (32)

Because M0 ≥ 1 and |NB| ≥ 1, above inequality does not
hold. Therefore, when ηA < ηB ≤ (1/

√
2), it is impossible

that kB < kmin, which means the algorithm must converge.
2) If (1/

√
2) < ηB < 1, then for all i ∈ NB, there is

σ−i,min =
√

2η2
B − 1. (33)

From zi(nA) = ZF we can get

nA

M0
<

√
2η2

B − 1. (34)

On the other hand, for any user i ∈ NA, the following
inequality holds:

[σi(nA − 1)]2 + [
σ−i(nA − 1)

]2 ≥ 2η2
A (35)

where σi(nA − 1) = σ−i(nA − 1) = (nA/M0), then we get

nA

M0
≥ ηA. (36)

From (29), (33), (34), and (36) we can get

√
2η2

B − 1 >
|NB| − 1

N − 1
+ N − |NB|

N − 1
ηA. (37)

Based on the above discussions, we can provide the follow-
ing proposition.

Proposition 1: The simplified learning algorithm can con-
verge to an SE of the game ĜCF = (N , {Ai}i∈N , {fi}i∈N ) if
Assumption 2 holds and one of the following two conditions
holds.

1) ηA < ηB ≤ (1/
√

2).

2) (1/
√

2) < ηB < 1 and
√

2η2
B − 1 ≤ [(|NB| − 1)/(N −

1)] + [(N − |NB|)/[N − 1]]ηA.
To better understand the influence of ηA, ηB, and |NB| on

the convergence of the learning algorithm, we make following
discussions.

1) Given ρN � (|NB|/N), according to (37), the simplified
algorithm cannot converge if the following condition holds:

ηB >

√
1

2

[
ρNN − 1

N − 1
+ (1 − ρN)N

N − 1
ηA

]2

+ 1

2
. (38)

We use θB to denote the right side of (38). Fig. 8 illustrates
how θB changes with ηA under different settings of ρN . As
we can see, given ρN , θB grows with ηA, but the growth rate
of θB is lower than that of ηA. This means as expectations
of most users become higher (larger ηA), even if users do not
make significant difference on their expectations, there may be
some users who can never be satisfied. From Fig. 8, we can
also observe that for a given ηA, θB increases with ρN . This
implies that as more users have high expectations (larger ρN),
users can expect higher recommendation quality (larger ηB).



XU et al.: USER PARTICIPATION IN CF-BASED RECOMMENDATION SYSTEMS: GAME THEORETIC APPROACH 1351

Fig. 8. Illustration of the relationship between θB and ηA. Given ρN and
ηA, the simplified learning algorithm cannot converge to an SE if ηB > θB.
We set 0.3 ≤ ηA ≤ 0.9 and N = 10 000 to compute θB.

Fig. 9. Illustration of the relationship between θN and ηB. Dotted line
marks ηB,min corresponding to a given ρη . Given ρη , the simplified learning
algorithm cannot converge to an SE if ηB > ηB,min and ρN < θN . We set
(1/

√
2) < ηB ≤ 0.9 and N = 10 000 to compute θN .

2) Given ρη � (ηB/ηA), the simplified algorithm cannot
converge if (1/

√
2) < ηB < 1 and

|NB|
N

<
(N − 1)

√
2η2

B − 1 + 1 − N ηB
ρη

N
(

1 − ηB
ρη

) . (39)

We use θN to denote the right side of above inequality. The
inequality implies θN > 0 from which the following two
conditions can be derived:

N >

√
2√

2 − 1
ρη

(40)

ηB >
− 2N

ρη
+ √


f

2

[
2(N − 1)2 − N2

ρ2
η

] (41)

where 
f = (2N/ρη)
2+4[2(N − 1)2−(N2/ρ2

η)](N2−2N+2).
We use ηB,min to denote the right side of (41). Fig. 9 illus-
trates how θN changes with ηB. As we can see, given ρη, θN

increases with ηB, which implies when users with high expec-
tation expect higher recommendation quality, there should be
more such users so that an SE can be achieved. Given ηB,
θN increases with ρη, which implies that as the difference on
expected recommendation quality between two types of users
becomes wider, more users can have high expectations. These
implications are consistent with those we get from Fig. 8.
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