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Abstract—Digital imaging has experienced tremendous growth
in recent decades, and digital camera images have been used in a
growing number of applications. With such increasing popularity
and the availability of low-cost image editing software, the integrity
of digital image content can no longer be taken for granted. This
paper introduces a new methodology for the forensic analysis of
digital camera images. The proposed method is based on the ob-
servation that many processing operations, both inside and outside
acquisition devices, leave distinct intrinsic traces on digital images,
and these intrinsic fingerprints can be identified and employed to
verify the integrity of digital data. The intrinsic fingerprints of the
various in-camera processing operations can be estimated through
a detailed imaging model and its component analysis. Further pro-
cessing applied to the camera captured image is modelled as a ma-
nipulation filter, for which a blind deconvolution technique is ap-
plied to obtain a linear time-invariant approximation and to esti-
mate the intrinsic fingerprints associated with these postcamera
operations. The absence of camera-imposed fingerprints from a
test image indicates that the test image is not a camera output and
is possibly generated by other image production processes. Any
change or inconsistencies among the estimated camera-imposed
fingerprints, or the presence of new types of fingerprints suggest
that the image has undergone some kind of processing after the
initial capture, such as tampering or steganographic embedding.
Through analysis and extensive experimental studies, this paper
demonstrates the effectiveness of the proposed framework for non-
intrusive digital image forensics.

Index Terms—Component forensics, image-acquisition foren-
sics, intrinsic fingerprints, nonintrusive image forensics, steganal-
ysis, tampering detection.

I. INTRODUCTION

RECENT decades have witnessed rapid advancements in
digital photography. Digital images have been used in a

wide variety of applications, from military and reconnaissance
to medical diagnosis and consumer photography. With such
high popularity and the advent of low-cost and sophisticated
image editing software, the integrity of image content can no
longer be taken for granted and a number of forensic-related
questions arise amidst such extensive use. For example, one
can readily as indirectly or directly question ask how an image
was acquired? Was it captured using a digital camera, an
image scanner, or was it created artificially using image editing
software? Has the image undergone any manipulation after
capture? Is it authentic or has it been tampered in any way?
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Does it contain any hidden information or steganographic data?
Many of these forensic questions are related to tracing the
origin of the digital image to its creation process. Evidence
obtained from such forensic analysis would provide useful
forensic information to law enforcement, security, and intel-
ligence agencies. Knowledge of image-acquisition techniques
can also help answer further forensic questions regarding the
nature of additional processing the image has undergone after
capture.

In this work, we develop a novel methodology for digital
image forensics of color images. We present techniques to iden-
tify the inherent traces that are left behind in a digital image
when it goes though various processing blocks in the informa-
tion processing chain. We refer to these traces as the intrinsic
fingerprints, and use them to identify the source and establish
the authenticity of the digital image. We classify intrinsic fin-
gerprints into two categories, namely in-camera and postcamera
fingerprints. Using a detailed imaging model and its component
analysis, we estimate the intrinsic fingerprints of the various
in-camera processing operations. Further processing applied to
camera outputs, if any, are modeled as a filtering operation, and
its coefficients are estimated to obtain the postcamera finger-
prints. While the absence of in-camera fingerprints suggests that
the test image is not a camera output and is possibly generated
by other image production processes, any change or inconsis-
tencies among the estimated in-camera fingerprints, or the pres-
ence of new postcamera fingerprints indicates that the image has
undergone some kind of postcamera processing.

Postcamera processing operations include such manipula-
tions as tampering and steganographic embedding. Recently,
there have been an increasing number of software tools for
manipulating multimedia data. While these programs enable
quality enhancement, they also facilitate easy editing and tam-
pering of data. Therefore, establishing the integrity of digital
content has become particularly important when images are
used as critical evidence in journalism and surveillance appli-
cations. Data authentication techniques, such as semifragile
watermarking [1], [2] and robust hashing [3], require the water-
mark/signature or more generally extrinsic fingerprints, to be
inserted at the time of creation of multimedia data. The presence
or absence of the watermark in interpolated images captured
by the camera can be employed to establish the authenticity of
digital color images [4]. However, such techniques impose sev-
eral restrictions on its applicability as many digital cameras and
video recorders in the market still do not have the capabilities to
add a watermark or a hash at the time of image creation. Hence,
there is a strong motivation as a part of the emerging field of
image forensics to devise nonintrusive methods to distinguish
authentic images from manipulated ones. As we shall show
later in this paper, the proposed techniques facilitate tampering
forensics by determining whether there has been any additional
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editing and processing applied to an image after it leaves the
camera.

Watermarking and steganographic embedding may also be
modeled as postprocessing operations applied to camera out-
puts, and the estimated postcamera fingerprints can be utilized
to identify them. Steganography is the art of secret communi-
cation where the hidden information is transmitted by embed-
ding it on to the host multimedia. Over the past few years, there
have been a number of steganographic embedding algorithms
using digital images as hosts for covert communication [5], [6],
[7]–[9]. In the same period, several steganalysis methods have
been proposed to identify the presence of hidden data in multi-
media. While embedding specific steganalysis [10] target-spe-
cific embedding algorithms, universal steganalysis [11], [12] is
designed to identify more than one type of steganography. With
an increasing number of steganographic embedding algorithms,
there is a strong need for robust universal methods for blind
steganalysis. As can been seen from our results, the proposed
intrinsic fingerprinting techniques facilitate blind steganalysis
by distinguishing authentic camera outputs from images with
hidden content.

The paper is organized as follows. After reviewing the related
works in Section II, we discuss the image-acquisition model
and present techniques to estimate the in-camera fingerprints
in Section III. In Section IV, we introduce the problem formu-
lation and propose a new forensic framework to estimate the
postcamera fingerprints. We show that the proposed method is
universal and can distinguish between genuine photographs and
its manipulated versions. Detailed simulation results and elab-
orate case studies are presented in Sections V and VI, and the
final conclusions are drawn in Section VII.

II. RELATED PRIOR WORK

Recently, there has been growing research on nonintrusive
forensics devoted to the security and protection of multimedia
information. Each technique targets addressing different aspects
related to verifying the authenticity of digital data. Related prior
work falls into three main categories. In the first category, there
have been works on source authentication. Higher order sta-
tistical models using wavelet transform coefficients [13] and
physics-motivated features based on geometry and cartoon fea-
tures [14] have been proposed for classifying photographs and
photorealistic computer graphics.

In the second group, there have been works in the tampering
detection literature trying to define the properties of a manipu-
lated image in terms of the distortions it goes through, and using
such analysis to present methods for detecting manipulated im-
ages. In doing so, some works assume that creating a tampered
image involves a series of processing operations, which might
include resampling [15]; JPEG compression [16], [17]; Gamma
correction [18]; and chromatic aberration [19]. Based on this
observation, they propose identifying such manipulations by ex-
tracting certain salient features that would help distinguish such
tampering from authentic data. For instance, when the image is
upsampled, some of the pixel values are directly obtained from
the smaller version of the image, and the remaining pixels are in-
terpolated and, thus, highly correlated with its neighbors. Thus,

postprocessing operations, such as resampling, can be identi-
fied by studying the induced correlations [15]. JPEG compres-
sion has been considered as quantization in the discrete cosine
transform (DCT) domain and statistical analysis based on bin-
ning techniques has been used to estimate the quantization ma-
trices [16], [20]. Image manipulations, such as contrast changes,
Gamma correction, and other image nonlinearities have been
modelled and higher order statistics, such as the bispectrum,
have been used to identify them [21], [22]. Inconsistencies in
noise patterns [21], JPEG compression [23], or lighting [24],
and alternations in correlations induced by color interpolation
[25] caused while creating a tampered picture have been used
to identify inauthentic images.

Although these methods can be employed to identify the type
and the parameters of the postprocessing operation, it would
require an exhaustive search over all kinds of postprocessing
operations to detect tampering. The presence of pattern noise
in camera-captured images and its absence in tampered im-
ages have been used to detect forgeries [26]. Classifier-based
approaches to detect image tampering were proposed in [27]
and [28], where features based on the analysis of variance
approaches [27] and higher order wavelet statistics [28] have
been used to detect image manipulations. However, these
methods require samples of tampered images for classification
to distinguish manipulated images from genuine ones. Further,
these methods may not be able to efficiently identify other kinds
of manipulations that are not modelled or considered directly.
By defining the properties of an authentic image via intrinsic
fingerprints, our proposed methods provide better scalability
and can help identify previously unseen distortions.

In the third group of prior art, there have been works on
steganalysis to identify the presence of hidden information in
multimedia data. These works can be broadly classified into two
classes, namely: 1) embedding specific and 2) universal. In the
class of embedding-specific steganalysis, there have been algo-
rithms to identify different types of least-significant bit (LSB)
embedding [10], [29], [30]. Statistics-based approaches for uni-
versal blind staganalysis have been introduced in [11] and [12],
where features from wavelet statistics [11] or image-quality
measures [12] are used to build a classifier to distinguish ste-
godata from cover data. As shall be seen from our results later
in this paper, our proposed forensic methodology provides a
combined framework for authenticating digital camera outputs
and distinguishing them from scanned, computer-generated,
tampered, and stegodata.

III. ESTIMATING INTRINSIC FINGERPRINTS

OF IN-CAMERA PROCESSING

When a real-world scene is captured using a digital camera,
the information about the scene passes through the various
camera components before the final digital image is produced.
Each component in the information processing chain modi-
fies the input via a particular algorithm using a specific set
of parameters, and leaves some intrinsic fingerprint traces
on the output. In this section, we begin reviewing imaging
models of digital cameras to examine various components in
its information processing chain. We then discuss techniques
to nonintrusively estimate the component parameters to obtain
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Fig. 1. System model.

the intrinsic fingerprints of the in-camera processing. Later in
Section IV, we use these intrinsic in-camera fingerprints to look
for any new fingerprints left behind on the final digital image
through additional postcamera processing operations.

A. Image-Acquisition Model

Fig. 1 shows the image-acquisition model in digital cameras.
The light from the scene passes through the lens and the optical
filters and is finally recorded by the color sensors. Most digital
cameras use a color filter array (CFA) to sample the real-world
scene. The CFA consists of an array of color sensors, each of
which captures the corresponding color of the real-world scene
at an appropriate pixel location. To facilitate discussions, let
be the real-world scene to be captured by the camera and let be
the CFA matrix. is a 3-D array of pixel values of size

, where and denote the height and the width of the image,
and is the number of color components (red, green, and
blue). The CFA sampling converts the real-world scene into

satisfying

if
otherwise.

(1)

After the data obtained from the CFA are recorded, the in-
termediate pixel values [corresponding to the points where

in (1)] are interpolated using the neighboring
pixel values to obtain . After interpolation, the three im-
ages corresponding to the red, green, and blue components go
though a postprocessing stage. In this stage, depending on the
camera make and model, the images may undergo different
processing operations [31], [32], which might include white
balancing, color correction, gamma correction, lens vignetting
correction, lens distortion removal, denoising, etc. Finally, the
image may be JPEG compressed to reduce storage space to
produce the output image . For our work, we model all such
postinterpolation processing as a combined postprocessing
block as shown in Fig. 1.

B. Estimating Camera Component Parameters

As can be seen from Fig. 1, the data about the real-world
scene pass through the various components of the information
processing chain before the final digital image is created in point
A. Each camera component, such as a CFA and color interpola-
tion, employs a particular set of algorithms with an appropriate
set of parameters to modify the input scene. In these processing
stages, each camera uses a different algorithm (that may be pro-
prietary to the camera manufacturer, brand, or model) and leaves
intrinsic fingerprint traces on the output data. In our recent work
[33], we presented methods to estimate these in-camera finger-
prints from outputs corresponding to point A in the information

processing chain shown in Fig. 1. We provide a brief overview of
these techniques below, and later in Section IV, we build upon
these methods and introduce a novel approach to estimate the
postcamera fingerprints of manipulated camera outputs corre-
sponding to point B in the processing chain.

The CFA pattern and the color interpolation coefficients can
be jointly estimated from the output image [33]. A search space

for the CFA patterns is first established based on common
practice in digital camera design. For every CFA pattern in
the search space , the interpolation coefficients are computed
separately in different types of texture regions by fitting linear
models. Specifically, the image is divided into three types of
regions based on the gradient features in a local neighborhood.
Denoting , the horizontal and vertical
gradients at the location are found by using

(2)

(3)

The image pixel at location is classified into one
of the three categories: Region contains those parts of
the image with a significant horizontal gradient for which

, where is a suitably chosen threshold;
region contains those parts of the image with a significant
vertical gradient ; and region includes
the remaining parts of the image which primarily contains the
smooth regions. Using the final camera output , a set of
linear equations for all the pixels in each region
is obtained and solved to obtain the interpolation coefficients

. Once these coefficients are estimated, they are used to
reinterpolate the image and find the interpolation error. The
CFA pattern that gives the lowest error gives the estimate of
the CFA pattern. Further, the estimates are shown to be robust
to moderate levels of postprocessing operations, such as JPEG
compression, and white balancing done inside the cameras [33].

IV. ESTIMATING INTRINSIC FINGERPRINTS

OF POSTCAMERA MANIPULATIONS

In this section, we build upon component forensic analysis
presented in the previous section, and propose techniques to es-
timate the intrinsic fingerprints of postcamera manipulations.
Given a test image , we introduce a nonintrusive forensic
methodology to identify if it has undergone any further pro-
cessing after it has been captured using a digital camera. In this
work, we mainly focus on digital color images that constitute a
bulk of camera-captured images. We first assume that is a ma-
nipulated camera output corresponding to the point B in Fig. 1,
and is obtained by processing the actual camera output (point
A in Fig. 1) using the manipulation block. We then represent the
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postcamera processing applied on as a combination of linear
and nonlinear operations, and approximate them with a linear
shift-invariant filter. The coefficients of this manipulation filter,
estimated using blind deconvolution, serve as our postcamera
fingerprints to answer a number of forensic questions related to
the origin and the authenticity of digital images. In the following
subsections, we describe the estimation algorithm in detail.

A. Computing Inverse Manipulation Filter Coefficients by
Constrained Optimization

Let denote the test image, and let represent the estimate
of the camera output obtained by passing the given test image
through the inverse manipulation filter , i.e.,

for (4)

Here, we assume that is of dimension
, and operates independently on each color component. The

coefficients of the inverse manipulation filter are estimated
by solving an optimization problem that minimizes the camera
model fitting error given by

(5)

where denotes the image formed from by imposing the
constraints that pixels from a camera output image should sat-
isfy due to CFA-based color interpolation

otherwise
(6)

In these camera constraints, denotes the estimates of
the color interpolation coefficients and are derived from
the image using the component forensics techniques
presented in Section III-B. In our work, we assume that

for to ensure that the original
image and its manipulated version have similar brightness
levels. Incorporating this gain constraint into the minimization
problem, we solve for by minimizing a modified cost function

, given by

(7)

Fig. 2. Recursive algorithm to estimate the coefficients of the manipulation
filter.

where the value of is chosen to adjust the weights of the rel-
ative individual costs.

The filter coefficients can be directly estimated in the pixel
domain through a recursive procedure illustrated in Fig. 2. We
start the iteration by setting to be a delta function; this cor-
responds to direct camera outputs. In the th iteration, we obtain
an estimate of the camera output by passing the test image

through the estimate of the inverse blurring filter .
We then impose camera constraints given by (6) to obtain
and find the camera model fitting error. The inverse filter coef-
ficients are then updated [34] by

(8)

where

(9)

(10)

and the step sizes are chosen as the one that minimizes
for all . The recursive

procedure is repeated for a finite number of iterations or until
convergence. In the Appendix, we show that the optimization
problem is convex and converges to a unique solution for all
images whose interpolation parameters can be estimated
accurately.

We test the blind deconvolution method for a sample direct
camera output along with its filtered versions. Fig. 3(a) and (b)
shows the variation of the modified cost function given by (7)
as a function of the number of iterations for a sample unmanip-
ulated image and an image filtered with a 5 5 averaging filter,
respectively. We observe that the cost function converges in ten
iterations in both cases. The final estimated inverse filter coeffi-
cients for the green color channel for the two cases are
shown in Fig. 4(a) and (b), respectively. While the estimated co-
efficients from the unmanipulated camera output in Fig. 4(a) are
very close to an identity transform (corresponding to no post-
camera manipulations), the corresponding manipulation coeffi-
cients derived from the average filtered image, as presented in
Fig. 4(b), are similar to the 5 5 kernel approximation of the
inverse of the 5 5 averaging filter.

The performance of the blind deconvolution algorithm for
tampering detection is, to a great extent, tied with the choice of
the kernel size. In an ideal scenario, a finite-size averaging filter
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Fig. 3. Convergence of the cost function for an (a) unmanipulated image and (b) a manipulated image filtered with a 5� 5 averaging filter.

Fig. 4. Estimated inverse manipulation filter coefficients for an (a) unmanipulated image and (b) a manipulated image filtered with a 5� 5 averaging filter. The
inverse filter kernel size is set to 5� 5.

in the pixel domain would require an infinite length kernel for its
inverse. Although a larger kernel gives enhanced performance
improvements, it requires more iterations for convergence. In
the next subsection, we present a solution to directly estimate
the filter coefficients in the frequency domain.

B. Estimating Manipulation Filter Coefficients by Iterative
Constraint Enforcement

The recursive algorithm described in Fig. 2 can be solved
in the frequency domain to directly obtain the manipulation
filter coefficients by iteratively applying known constraints to
the input image [36]. A schematic diagram of the iterative con-
straint enforcement algorithm is shown in Fig. 5. The test image

is used to initialize the iterative process. In each iteration, the
estimated camera output and the estimated filter coefficients

are updated by repeatedly applying known constraints on the
image and the filter in the pixel domain and the Fourier domain.
In the th iteration, the pixel domain constraints on the image

consist of
1) Real-valued constraints that enforce the image pixel values

to be real.
2) Boundedness constraints restricting the image pixel values

to the range .
3) Camera constraints of the CFA-based color interpolation

given by

otherwise
(11)

where denotes the estimates of the color interpolation coef-
ficients derived from the image using the component foren-
sics techniques presented in Section III-B. After the image
is obtained, it is transformed by the discrete Fourier transform
(DFT) to give . The frequency response of the estimated
manipulation filter in the th iteration is obtained by using the
technique described in [35] with

(12)

where is an appropriately chosen constant, denotes
the Fourier transform of the test image , and represents the
complex conjugate of . The value of for the first iteration
is initialized as . The estimated filter response

is then inverse Fourier transformed to give . We further
impose filter constraints on and obtain to be the real part
of . The value of for the iteration is obtained as
a function of its two available estimates: 1) previous value
and 2) the estimate obtained by enforcing the Fourier domain
constraint , where and .
Both of these estimates have unique properties: has a non-
negative inverse transform that satisfies the image domain con-
straints, and satisfies the Fourier domain constraints.
In our work, we average these two estimates separately in every
iteration for each spatial frequency value and color to obtain the
new estimate for as described in (13), shown at the bottom
of the next page, where and are appropriately chosen con-
stants [36]. The value of represents the noise resilience of the
system, and is chosen to lie in the range to indicate the
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Fig. 5. Schematic diagram of the iterative constraint enforcement algorithm.

Fig. 6. Frequency response of the manipulation filter for (a) a simulated unmanipulated camera output and (b) an image lowpass filtered with a 5� 5 averaging
filter. (c) Actual manipulation filter coefficients of the 5� 5 averaging filter shown alongside for comparison. The magnitude of the frequency response is shown
in the log scale.

relative significance of the two terms in update equation [36]. In
our experiments, we set and . Finally,

is inverse Fourier transform to give , the pixel domain
estimate of the camera output image, and the system proceeds
to the next iteration. This process is repeated for a finite number
of iterations and the frequency response of the estimated ma-
nipulation filter parameters is found to obtain the intrinsic
fingerprints of postcamera manipulations. The deviation of the
estimated manipulation filter parameters from an identity trans-
form indicates that the test image has been manipulated after
capture by the camera.

C. Performance Studies on Detecting Manipulations With
Synthetic Data

We use synthetic data constructed from 100 representative
images to study the performance of the blind deconvolution
techniques for tampering detection [37]. These 100 images are
first downscaled by a factor of 2 2 to remove the effects of pre-
viously applied filtering and interpolation operations, sampled
on the Bayer filter [31], [32] array and then interpolated using
six different interpolation algorithms to reproduce the scene
capture process in cameras. For our simulations, we consider six
different color interpolation methods: 1) bilinear, 2) bicubic, 3)
smooth hue, 4) median filter, 5) gradient based, and 6) adaptive
color plane. Details about these interpolation algorithms can be
found in [31]. These 600 images that satisfy the camera model

form our unmanipulated set. Processed versions are then ob-
tained by applying average filtering to these 600 images with
different filter orders from 3 to 11.

We run the proposed blind deconvolution methods on all of
the images and compute the coefficients of the manipulation
filter in each case using the iterative constraint enforcement al-
gorithm. In Fig. 6(a), we show the estimated Fourier transform
for a simulated unmanipulated camera output. We notice that
it is almost a constant flat spectrum, representing an identity
transform. The corresponding estimated frequency response for
a 5 5 average filtered image is shown in Fig. 6(b), and the
actual coefficients are shown in Fig. 6(c) for comparison. The
similarity among the estimated and the actual coefficients justi-
fies the performance of the blind deconvolution algorithms.

A closer look at the frequency response of the manip-
ulation filter for an unmanipulated camera output, shown in
Fig. 6(a), suggests minor deviations from an ideal flat spectrum.
These deviations are attributed to the various postinterpolation
processing that takes place inside the cameras, such as compres-
sion, denoising, and white balancing. To compensate for these
minor deviations, we use the spectral response , obtained
using the blind deconvolution algorithm, from an authentic
camera output as reference. Given the test input , we find
the frequency-domain coefficients of the manipulation filter
and compare it with to measure the similarity among the
coefficients. More specifically, we first find

if
if and

if and

(13)
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Fig. 7. Receiver operating characteristics for distinguishing between simulated
camera outputs and their filtered versions.

to obtain the logarithm of the magnitude of the frequency
response, and compute the similarity between the coefficients
of the test input and the reference image using the similarity
score defined as

(14)

where denotes the mean of the , and represents the
mean of the . The test input is then classified as unmanip-
ulated if the similarity to the reference pattern is greater than a
suitably chosen threshold. On the other hand, if the input image
has undergone tampering or steganographic embedding oper-
ations, the estimated manipulation filter coefficients would in-
clude the effects of both the postcamera manipulation operations
along with postinterpolation processing inside the camera. In
this case, the manipulation filter coefficients would be less sim-
ilar to the reference pattern, and the similarity score would be
lower than the chosen threshold.

We examine the performance of the threshold based classifier
in terms of the receiver operating characteristics (ROC) [37].
For each original image, we compute the frequency response of
the equivalent manipulation filter and measure its similarity with
the reference filter pattern. The fraction of original images with
a similarity score lower than a threshold is found to give the
false alarm probability . Similarly, we record the fraction of
manipulated images (filtered in this case) with a similarity score
that is less than to give the probability of correct decision .
We repeat this process for different decision thresholds , and
arrive at the ROC as shown in Fig. 7. We observe from the figure
that the proposed scheme attains a for . This
suggests that the proposed scheme can effectively distinguish
between direct camera outputs and its filtered versions.

TABLE I
CAMERA MODELS USED IN EXPERIMENTS

V. DETECTING TAMPERING ON CAMERA-CAPTURED IMAGES

Forensic evidence obtained by analyzing the coefficients of
the manipulation filter provides clues about possible image tam-
pering. Most often, creating a realistic tampered image involves
a series of postcamera processing operations, such as filtering,
compression, resampling, contrast change, and others, that may
be applied globally to the entire image or locally to different
regions of the image. These processing operations leave dis-
tinct traces in the final picture and can be detected using the
threshold-based classifier by comparing the estimated manipu-
lation filter coefficients with the reference pattern. In this sec-
tion, we study the performance of the proposed techniques for
detecting different types of global image manipulations with
real camera data. The forensic methodologies discussed in this
section can be extended to detect local tampering by applying
the techniques on a block-by-block basis.

A. Simulation Setup

A total of nine camera models as shown in Table I is used in
our experiments. For each of the nine camera models, we have
collected about 100 images. The images from different camera
models are captured under uncontrolled conditions—different
sceneries, different lighting situations, and compressed under
different JPEG quality factors as specified by the default values
in each camera. The default camera settings (including image
size, color correction, auto white balancing, and JPEG compres-
sion) are used in image acquisition. From each image, we ran-
domly crop a 512 512 portion and use it for subsequent anal-
ysis. Thus, our camera image database consists of a total of 900
different 512 512 pictures. These images were then processed
to generate 21 tampered versions per image to obtain 18 900 ma-
nipulated images, and the 21 manipulation settings are listed in
Table II.

B. Classification Methodology and Simulation Results

We study the discriminative capabilities of our proposed
schemes in terms of the ROC of the hypothesis testing problem
with the following two hypotheses:

1) : image is a direct camera output;
2) : image is not a direct camera output and is possibly

manipulated in some way.
For each image, we compute the frequency-domain coefficients
of the estimated manipulation filter and determine its similarity
with the chosen reference pattern. Images with a similarity score
that are greater than a threshold are classified as authentic.

To choose the reference pattern, we randomly select a set of
training images along with its manipulated versions in the

training stage. Using each image, we compute the inclass and
outclass similarity scores. More specifically, given the th image

, we calculate the inclass similarity scores by com-
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TABLE II
TAMPERING OPERATIONS INCLUDED IN THE EXPERIMENTS

paring the manipulation filter estimated from the th image and
the estimates obtained from the remaining images using
(14). The outclass scores are then found by quantifying the sim-
ilarity among the manipulation filter of the th image and the
filter coefficients derived from the remaining tampered images.
Using a threshold , the fraction of direct camera outputs with a
similarity score lower than is computed to give the false alarm
probability , and the fraction of manipulated
images with a similarity score of less than is found to give
the probability of correct decision . We re-
peat this process for different decision thresholds to arrive at
the ROC, and compute the area under the curve. These steps
are performed separately with each image in the training
stage, and the manipulation filter coefficients that give the max-
imum area under the ROC curve are chosen as the reference pat-
tern. After choosing the reference pattern in the training stage,
we compute the inclass and outclass similarity scores by com-
paring the chosen reference pattern with the filter coefficients
obtained from the remaining camera outputs and their corre-
sponding tampered versions, respectively, in our database in
the testing stage. The corresponding ROC curves are obtained
through this process.

1) Testing With Images From Canon Powershot A75: We test
the performance of the proposed techniques using the 100 im-
ages from Canon Powershot A75. We choose this camera for
two reasons: 1) based on our experimental studies, we observe
that linear shift-invariant model for the color interpolation coef-
ficients fits well with the cameras’ interpolation in each type of
region and gives a very low fitting error and 2) we observe that
this Canon camera uses the same JPEG quantization table for all
images that it captures, invariant of the input scene. Therefore,
all images from the camera undergo the same kind of postpro-
cessing operations after color interpolation (refer to Fig. 1).

For our analysis with images from Canon Powershot A75,
we use a randomly chosen set of 50 images for training, and
test on the remaining 50 images along with the corresponding
50 21 tampered images. Fig. 8 shows the performance of the
threshold-based detector averaged over 100 iterations. At a rel-
atively low around 10%, the probability of correct detec-
tion is about 80%–95% for most types of manipulations tested.
Here, the results are based on a two-class classification problem,
wherein the first class includes the direct camera outputs and the
second class consists of camera outputs that have undergone a
specific type of manipulation.

2) Testing With Diverse Inputs From Multiple Cameras: We
now examine the performance of the proposed techniques under
diverse input conditions. More specifically, we use all 900 direct
camera output images for the untampered dataset. These images
were captured under the default camera settings and may have

Fig. 8. Receiver operating characteristics for tampering detection for images
from Canon Powershot A75 when 50 images are used in training and the re-
maining 50 images are used in testing.

Fig. 9. Receiver operating characteristics for tampering detection when tested
with all images in the database with 200 images being used in training.

undergone different kinds of in-camera postprocessing opera-
tions, such as JPEG compression after color interpolation.

Fig. 9 shows the ROC curve for detecting each manipulation.
Here, we use a randomly chosen set of 200 images to train the
classifier and test with the remaining 700 images; the experi-
ments are repeated more than 100 times to obtain an average
ROC curve. In this case, we observe that for close to 10%,
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Fig. 10. Receiver operating characteristics for tampering detection when im-
ages from the Canon Powershot A75 are used in training and images from Sony
Cybershot DSC P72 are used in testing.

the probability of correct detection is close to 100% for such ma-
nipulations as spatial averaging and additive noise, and around
70%–80% for median filtering, histogram equalization, and ro-
tation. These results are better than other works in the literature
that are applicable to blind tampering detection [25], [28].

Comparing the results in Fig. 9 with the results of the Canon
Powershot A75 in Fig. 8, we notice around a 5%–10% perfor-
mance drop in detection accuracy for the same false positive
rate. This reduction in performance can be attributed to the dif-
ferent types of postprocessing operations performed after color
interpolation in various camera brands and models. In our future
work, we plan to estimate the parameters of such postinterpola-
tion operations as JPEG compression [16] and white balancing,
and include them in the system model to bridge the performance
gap.

3) Training and Testing Using Inputs From Different Cam-
eras: The proposed techniques are nonintrusive and do not re-
quire that the actual camera make/model be used in the training
set. To demonstrate this aspect, we test the performance of the
proposed techniques using 100 images from Canon Powershot
A75 and 100 images from Sony Cybershot DSC P72. We ran-
domly choose 50 out of 100 Canon Powershot A75 images and
use them for training to identify the reference pattern; the 100
images from Sony Cybershot DSC P72 are used in testing. The
performance results, averaged over 100 iterations, are shown in
Fig. 10. The figure shows that the performance is good for most
manipulations and for around 10%, the probability of cor-
rect detection is close to 80%–90%. This result is comparable
to the plots in Figs. 8 and 9. The drop in performance for some
manipulations, such as resampling, can be attributed to the ab-
sence of the original camera make/model in training.

C. Tampering Forensics Using the Estimated Manipulation
Filter Coefficients

The estimated filter coefficients can also be employed to
quantify the likelihood and degree of tampering, and to identify

the type and parameters of the tampering operation. In this
subsection, we show that the similarity score can be used to
define a camera-model fitting score to evaluate the amount of
tampering that the test image has undergone. For our exper-
iments, we first choose six good reference patterns that give
the highest area under the ROC curve. The camera-model
fitting score for the test image is then defined as the median
of the similarity scores obtained by comparing the estimated
coefficients of the test image with the ones obtained from each
of the six reference patterns. The higher the fitting score is, the
greater the likelihood that the test image is for a direct camera
output without further processing.

We examine the variation of the camera-model fitting score as
a function of the degree of tampering for all the manipulations
listed in Table II. Fig. 11(a) and (b) shows the camera-model fit-
ting score as a function of the filter order for spatial averaging
and median filtering, respectively. In both cases, we observe that
the fitting score reduces as the filter order increases and as the
degree of tampering increases. Further, the score is less than

for all average filtered images. This low value is because
of the distinct nulls in the frequency spectrum of the manipu-
lated filter, estimated from filtered images, making it very dif-
ferent from the flat reference pattern.

Fig. 12(a) and (b) shows the camera-model fitting score as
a function of the angle of rotation and the resampling rate, re-
spectively. For manipulations, such as rotations, the average fit-
ting scores for manipulated images are less than zero as can be
seen in Fig. 12(a) and, therefore, the detection algorithm can
efficiently identify rotations by setting an appropriate threshold
close to zero. For image resampling, the results from 12(b) indi-
cate that the average camera-model fitting score reduces as the
resampling rate deviates from 100% and, therefore, these ma-
nipulations can be detected with the threshold-based classifier.
A similar trend is also observed for additive noise and the fitting
score reduces as the strength of additive noise increases.

The estimated manipulation filter coefficients can also be em-
ployed to identify the type and parameters of postcamera pro-
cessing operations. In Fig. 13, we show the frequency response
of the estimated manipulation filter coefficients for the different
types of manipulations listed in Table II. A closer look at the
manipulation filter coefficients in the frequency domain sug-
gests noticeable differences for the different kinds of tampering
operations. For such manipulations as average filtering, we ob-
serve distinct nulls in the frequency spectrum and the gap be-
tween the nulls can be employed to estimate the order of the
averaging filter and its parameters. Image manipulations, such
as additive noise, result in a white noisy spectrum as shown in
Fig. 13(g), and the strength of the noise can be computed from
the manipulation filter coefficients. Rotation and downsampling
can be identified from the smaller values in the low–high and the
high–low bands of the frequency spectrum of the manipulation
filter. In our future work, we plan to further investigate on em-
ploying the estimated intrinsic fingerprints of postcamera pro-
cessing operations to provide forensic evidence about the nature
and parameters of the tampering that the image has undergone.
Such analysis may help recreate the original image from its cor-
responding tampered versions.
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Fig. 11. Variation of the camera-model fitting score as a function of the filter order for (a) average filtering and (b) median filtering.

Fig. 12. Variation of the camera-model fitting score as a function of the degree of tampering for (a) image rotations and (b) resampling.

D. Attacking the Proposed Tampering Detection Algorithm

So far in this paper, we have considered direct camera out-
puts as authentic images and presented methods to distinguish
them from other images that have undergone postcamera ma-
nipulations. In this subsection, we examine the other side of the
problem from the attackers’ viewpoint. Given the knowledge of
the proposed tampering detection algorithm, the attacker could
potentially come up with better tampering operations to foil the
detector. We illustrate it with a particular attack as follows.

In Step 1 of the tampering process, the attackers estimate
the color interpolation coefficients using component forensics
methodologies described in Section III-B. After estimating the
color interpolation coefficients, the attacker proceeds to Step 2
to tamper the image by applying such postcamera operations,
such as filtering and resampling; then in Step 3, the attacker

reenforces the camera constraints with (6) using the estimated
camera component parameters obtained earlier in Step 1.

Fig. 14(a) shows the inclass and the outclass similarity scores
obtained by comparing the reference patterns with the direct
camera outputs and the tampered versions by the aforemen-
tioned three-step process, respectively, for the scenario when the
camera input is tampered by downsampling to half of its orig-
inal size in Step 2, before enforcing the camera constraints in
Step 3. We notice from the figure that the inclass and the out-
class distances are well separated, and an appropriate threshold
value can be used to distinguish the two classes.
The ROC curve computed using the threshold-based classifier
is shown alongside in Fig. 14(b). The figure suggests that the
classifier still performs well and gives a close to 100% even
for low values of close to 1%. The reason behind the supe-
rior performance is due to the tampered images that have under-
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Fig. 13. Frequency response of the manipulation filter for camera outputs that are manipulated by (a) 7� 7 averaging filter, (b) 11� 11 averaging filter, (c) 7� 7
median filter, (d) 20 rotation, (e) 70% resampling, (f) 130% resampling, (g) noise addition with PSNR 20 dB, and (h) histogram equalization. The frequency
response is shown in the log scale and shifted so that the dc components are in the center.

Fig. 14. Performance results for attack I: downsampling by 50% followed by camera-constraint reenforcement. (a) Inclass and outclass similarity scores. (b)
Receiver operating characteristics for the tampering detection problem.

gone several manipulations, each of which introduces some in-
herent traces in the final output image, and the Step 3 restoration
process is not able to completely disguise the attacks from the
iterative forensic analysis algorithm. Thus, the proposed tech-
niques can efficiently resist such attacks.

VI. FURTHER DISCUSSIONS AND APPLICATIONS

The results in the previous section demonstrate that the in-
trinsic fingerprint traces left behind in the final digital image
by the postcamera processing operations can provide a tell-tale
mark to robustly detect global manipulations. In this section, we
show that the estimated filter coefficients can also be employed
to detect other kinds of postcamera processing operations, such
as steganographic embedding and watermarking. Further, any
change or inconsistencies in the estimated in-camera finger-
prints, or the presence of new postcamera fingerprints provides
clues to detect cut–paste tampering and to determine whether

the given image was produced using a camera, a scanner, or
computer graphics software.

A. Applications to Universal Steganalysis

A common challenge of steganalysis is how to model the
ground truth original nonstego image data. In our work, we
consider direct camera outputs as nonstego data and apply the
camera model to characterize its properties; image manipula-
tions, such as watermarking and steganography, are then mod-
elled as postprocessing operations applied to camera outputs. In
this subsection, we show that these embedding algorithms leave
behind statistical traces on the digital image that can be detected
by analyzing the coefficients of the manipulation filter, and ex-
amine the performance of our proposed techniques for identi-
fying the presence of hidden messages in multimedia data.

We test the performance of the threshold-based detector in
distinguishing authentic camera outputs from stegodata. In
our experiments, we use the same camera data set with 100
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Fig. 15. Performance results at different embedding rates for the (a) F5 algorithm and (b) Steghide.

images of size 512 512 from Canon Powershot A75 camera
[38]. Stego images are then generated by embedding random
messages of different sizes into the cover images. Generally
speaking, the maximum embedding payload depends on the
nature of the cover image and the data-hiding algorithm. For
our simulations, we first find the average of the maximum
embedding payload across 100 images and then embed mes-
sages at 100%, 75%, and 50% of this value. For our study,
we consider three popular steganographic embedding methods
that employ different approaches to hide information—F5 [6],
steghide [5], and spread-spectrum steganography [7].

LSB embedding methods have been widely used for data
hiding. Many algorithms such as Jsteg, JPEG hide-and-seek
[39], Outguess [40], and F5 [6] embed a secret message into the
LSB of the DCT coefficients of the cover image. For a survey
of LSB methods, see [41] and the references therein. Most LSB
embedding methods, such as JPEG hide-and-seek [39] and
Outguess [40], replace the LSB of the DCT coefficients with
the secret message, and statistical steganalysis using the -test
can be used to detect them [29]. In our work, we focus on the
embedding methods of F5 and steghide.

The F5 technique that has been shown to be resilient to such
statistical attacks based on the -test [6], although it was sub-
sequently broken in [10] by the histogram analysis of DCT coef-
ficients. The F5 embeds data through matrix encoding by decre-
menting the absolute value of the DCT coefficients. In our ex-
periments with F5, we estimate the average maximum payload
across 100 color images to be around 12 kB. The stegoimages
are then generated by embedding secret messages of size 12, 9,
and 6 kB using the software [42], respectively. The detection re-
sults are shown in Fig. 15(a) for different embedding rates. We
notice that the proposed algorithms perform with reasonable ac-
curacy giving an average detection accuracy close to 62% and
50%, respectively, at 100% and 75% average embedding rates
for false alarm probabilities around 1%. These results are com-

parable to the wavelet statistics-based steganalysis technique
[11], which reports average accuracies of 62% and 52% at the
embedding rates of 100% and 78%, respectively.

Steghide preserves the first-order statistics of the image
and can provide high message capacity. Steghide employs a
graph-theoretic approach to embed the secret messages on
multimedia data. The message is hidden by exchanging rather
than overwriting pixels [5]. A graph is first constructed from the
cover data to the secret message. The pixels to be modified are
represented as vertices and are connected to possible partners
by edges. A combinatorial problem is then solved to embed
the secret message by exchanging samples. In our studies with
steghide, we estimate the average maximum payload across
100 color images to be around 32 kB for a 512 512 color
image. The stegoimages are then generated by embedding
secret messages of size 32, 24, and 16 kB using the software
[43], respectively. The detection results are shown in Fig. 15(b)
for different embedding rates. We notice that the proposed
algorithms can efficiently identify steghide at 100% and 75%
embedding rates with the probability of identifying stegodata
close to 100% for a false alarm probability of 1%. However,
the performance reduces significantly when the secret message
length is reduced to 50% capacity at 16 kB. These results are
better than the wavelet statistics-based steganalysis technique
[11], which reports average accuracies of 77% and 60% at
100% and 78% embedding rates, respectively.

Next, we study the performance of spread-spectrum embed-
ding methods. Block-DCT-based spread-spectrum embedding
has been widely used in literature for data hiding, watermarking,
and steganography [1] for a wide variety of applications. De-
tecting spread-spectrum steganography has been a challenging
problem over the last decade, and statistics-based schemes typ-
ically do not perform well in distinguishing original cover data
and stegopictures. To our best knowledge, the only work that ad-
dresses spread-spectrum steganalysis is by Avcibas et al. [12],
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Fig. 16. Performance results for spread-spectrum embedding at different
PSNRs.

where it was shown that image-quality metrics may be used as
features to identify such embedding. In their work, the authors
show that they can attain an average probability of correct deci-
sion of 80% with 40% false alarm probability when tested with
ten images. We test the performance of the proposed intrinsic
fingerprint system for spread-spectrum embedding. In our ex-
periments, we use the same camera data set with 100 Canon
Powershot A75 images of size 512 512 as our authentic set.
Stegoimages are then generated by adding pseudorandom wa-
termarks at different peak signal-to-noise ratios (PSNRs) of 38,
40, and 42 dB. The manipulation filter coefficients are esti-
mated for the cover and the stegodata, and classified with the
threshold-based classifier. Fig. 16 shows the performance re-
sults for different PSNRs. We note that the average identifica-
tion accuracy is close to 100% for PSNRs of 38 and 40 dB, and
reduces to 91% for 42-dB PSNR. These results demonstrate the
superior performance of the proposed techniques.

In addition to the three steganographic schemes mentioned
before, we also test the performance of our algorithms for such
embedding techniques as stochastic modulation [8] and per-
turbed-quantization (PQ) steganography [9], [44]. In stochastic
modulation steganography [8], a weak noise signal with a noise
distribution chosen to mimic the noise produced by the image-
acquisition device is added to the cover image to embed the mes-
sage bits. In the case of digital cameras, it has been shown that
the sensor and hardware noise are best modelled to be Gaussian
distributed [8], [45] and, therefore, detecting stochastic modu-
lation steganography can be considered equivalent to detecting
the presence of additive Gaussian noise in an image captured by
a digital camera. Our results suggest that such embedding can be
detected with very high accuracy with a that is close to 100%
for low values of about 1% using the proposed forensic anal-
ysis techniques. Perturbed quantization steganography embeds
information in the DCT coefficients by quantizing the values
either up or down depending upon the message to embed. The

set of changeable coefficients is first found by identifying those
coefficients whose fractional part (i.e., the difference between
the actual value and the quantized value) is lower than a pre-
chosen threshold [9]. For our experiment with PQ steganog-
raphy, we use the 100 Canon Powershot A75 images of size
512 512, JPEG compressed in the camera with the default
quality factor close to 97%, as our authentic set. Stegoimages
are created by randomly embedding messages into these images
and quantizing them to a quality factor of 70%. Steganalysis for
this scheme is more challenging and the proposed techniques are
able to identify such manipulations with close to 70–80%
under a %.

B. Distinguishing Camera Capture From Other
Image-Acquisition Processes

The proposed forensics methodology can be used to authen-
ticate the source of the digital color image. Evidence obtained
from such forensic analysis would provide useful forensic infor-
mation to law enforcement and intelligence agencies as to when
a given image was actually captured with a camera or scanner,
or generated using computer graphics software. We demonstrate
this application with two case studies.

1) Photographs versus Scanned Images: Digital cameras and
image scanners are two main categories of image-acquisition
devices. While a large amount of natural scene pictures are taken
with digital cameras, scanners have been increasingly used for
digitizing documents. Rapid technology development and the
availability of high-quality scanners has, in part, led to more
sophisticated digital forgeries. In this case study, we are inter-
ested in determining whether a digital image is produced by a
camera or a scanner. The motivation behind employing the pro-
posed techniques for device identification is based on the obser-
vation that the manipulation filter coefficients for an authentic
camera output would be close to a delta function, and the corre-
sponding coefficients for a scanned image would represent the
scan process.

For our study, we choose 25 different images from four
camera models to give a total of 100 images for the camera
image data set. We then collect another set of 25 different
photographic images from several cameras with diverse image
content. These photographs are printed and then scanned back
using four different scanner models: 1) Canon CanoScan
D1250U2F, 2) Epson Perfection 2450 photo, 3) Microtek
ScanMaker 3600, and 4) Visioneer OneTouch 5800USB.
These images form our scanned image data
set. We test our proposed methods for these 200 images. The
frequency response of the manipulation filter is estimated
and compared with a reference pattern. The ROC obtained
using the threshold-based classifier is shown in Fig. 17. Here,

denotes the fraction of scanned images that are correctly
classified as scanned, and represents the fraction of camera
outputs misclassified as scanned. We observe from the figure
that the probability of correct decision is around 92% for
a 1% false probability rate. These results indicate that our
proposed methods can effectively distinguish between the
camera-captured and scanned images.

2) Photographs versus Photo Realistic Computer Graphics:
With an increasing number of sophisticated processing tools,
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Fig. 17. Receiver operating characteristics for classifying authentic camera
outputs from scanned images.

Fig. 18. ROCs for classifying authentic camera outputs from photorealistic
computer graphics.

creating realistic imagery has become easier. Modern graphic
synthesis and image rendering tools can be used to reproduce
photographs to a very high degree of precision and accuracy
and, therefore, the problem of distinguishing camera outputs
from photorealistic computer graphics has become important.
In this case study, we employ our proposed framework to dis-
tinguish digital photographic images and photorealistic graphics
images. For our study, we use a set of 100 images from four
camera models to create the camera image dataset. A randomly
chosen set of 100 photorealistic computer graphics images, ob-
tained from the Columbia dataset [46] constitute our photoreal-
istic computer graphics data set. We use a cropped subimage of
size 512 512 to estimate the coefficients of the manipulation
filter. The estimated frequency response is then compared with
the reference pattern and a threshold-based classifier is used to
distinguish authentic camera outputs from graphics images. The
results of our analysis, in terms of the ROC, are shown in Fig. 18.

Here, denotes the fraction of graphics images that are cor-
rectly classified as photorealistic, and represents the fraction
of photographs classified as computer generated. A large area
under the ROC curve suggests that our proposed method can dis-
tinguish between the two classes. These results are comparable
to the geometry-based features proposed in [14], and are better
than the wavelet features [28] and the cartoon features-based
classifiers tested in [14]. Different from the geometry-based fea-
tures in [14] that are motivated by the modelling, the computer
graphics creation tools, and the artifacts produced therein, our
method focuses on finding the algorithms and parameters of the
imaging process in digital cameras to distinguish digital photo-
graphic images from photorealistic computer graphics.

C. Detecting Cut-and-Paste Forgeries Based on
Inconsistencies in Component Parameters

Creating a tampered image by cut-and-paste forgery often in-
volves obtaining different parts of the image from pictures cap-
tured using different cameras that may employ a different set of
algorithms/parameters for its internal components. Inconsisten-
cies in the estimated intrinsic fingerprint traces left behind by
camera components can be used to identify such digital forg-
eries as cut-and-paste operations. Here, we illustrate this with a
case study. We create a tampered picture of size 2048 2036 by
combining parts of two images taken using two different cam-
eras. In Fig. 19(a) and (b), we show the tampered picture and its
individual parts marked with different colors. The regions dis-
played in white in Fig. 19(b) are obtained from an image taken
with the Canon Powershot S410 digital camera, and the black
parts are cropped and pasted from a picture shot using the Sony
Cybershot DSC P72 model.

To identify the intrinsic camera fingerprints in different parts
of the picture, we examine the image using a sliding window of
256 256 with step size 64 64, and estimate the color inter-
polation coefficients in each 256 256 block [49]. The -means
clustering algorithm [47] is then employed to cluster these fea-
tures into two classes. With a step size of 64, each individual
64 64 subblock would be analyzed 16 times to provide 16 dif-
ferent clustering results; the clustering results are represented as
binary values (0 or 1) as labels for the two classes. Fig. 19(c)
shows the average of the clustering labels from these 16 sub-
blocks. As shown in Fig. 19(c), our results indicate that the fea-
tures are clustered distinctly in two separate classes with the
gray area in between representing the transition from one class
to the other. In this particular case, we notice that the manipu-
lated picture has tell-tale traces from two different cameras and
has therefore been tampered with.

VII. CONCLUSION

In this paper, we propose a set of forensic signal processing tech-
niques to verify whether a given digital image is a direct camera
output. We introduce a new formulation to study the problem of
image authenticity. The proposed formulation is based on the
observation that each in-camera and postcamera processing op-
eration leaves some distinct intrinsic fingerprint traces on the
final image. We characterize the properties of a direct camera
output using a camera model, and estimate its component pa-
rameters and the intrinsic fingerprints. We consider any further
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Fig. 19. Applications to source authentication showing a (a) sample-tampered image, (b) regions obtained from the two cameras, and (c) results from clustering
the color interpolation coefficients (black: Sony Cybershot DSC P72; white: Canon Powershot S410; shades of gray: likelihood that the region is from Canon
Powershot S410 with a value close to white denoting a higher likelihood).

postcamera processing as a manipulation filter, and find the co-
efficients of its linear shift-invariant approximation using blind
deconvolution. A high similarity of the estimated coefficients
and the reference pattern that corresponds to no manipulations
certifies the integrity of the given image. We show through de-
tailed simulation results that the proposed techniques can be
used to identify different types of postcamera processing, such
as filtering, resampling, rotation, etc. Evidence obtained from
such forensic analysis is used to build a universal steganalyzer
to determine the presence of hidden messages in multimedia
data. Our results suggest that we can efficiently detect different
types of embedding methods, such as least-significant bit (LSB)
and spread-spectrum techniques with high accuracy. The esti-
mated postcamera fingerprints are also employed for image-ac-
quisition forensics to establish whether a given digital image is
from a digital camera, a scanner, or computer graphics software.
Overall, our proposed techniques provide a common framework
for a broad range of forensic analyses on digital images.

APPENDIX

CONVEXITY OF THE OPTIMIZATION PROBLEM

AND UNIQUENESS OF SOLUTION

In this Appendix, we show that the optimization formulation
in (7) is convex if the camera’s color interpolation coefficients
are known. A function is said to be convex if for any
and , we have

Since in (7) is a sum of two quadratic functions, it is
sufficient to show that these two functions are convex. Let

where

and

Here, denotes the estimate of the test image obtained by
imposing the camera constraints as shown in (15), at the bottom
of the page, where denotes the color interpolation coeffi-
cients employed in the camera to render the test image . In
the absence of additional information, the values of can be
nonintrusively estimated from the test image as long as is
a direct camera output or an image that has undergone minor
levels of postinterpolation processing. Now, defining

and
otherwise

(15)
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we get

where the last inequality follows from . This shows
that is convex. Similarly, we can show that the quadratic
function is also convex and, therefore, establishes the con-
vexity of .

To show that the solution of the optimization problem is
unique, we make use of a theorem in optimization theory
that states that the solution of a convex optimization problem
with a cost function is unique if the cost function is uni-
modal [34], [48] (i.e., for all ). Defining

we can show that

where represents a vector of length
consisting of all the elements of
for all and along with the element . Ar-
ranging the vectors column-wise, we construct
the matrix of dimension

for . We can then show
that . Thus, the cost function is
unimodal and, therefore, its solution is unique.
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