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ABSTRACT

With a rapid growth of imaging technologies and an increasingly
widespread usage of digital images and videos for a large number
of high security and forensic applications, there is a strong need for
techniques to verify the source and integrity of digital data. Com-
ponent forensics is new approach for forensic analysis that aims
to estimate the algorithms and parameters in each component of
the digital device. In this paper, we develop a novel theoretical
foundation to understand the fundamental performance limits of
component forensics. We define formal notions of identifiability
of components in the information processing chain, and present
methods to quantify the accuracies at which the component pa-
rameters can be estimated. Building upon the proposed theoretical
framework, we devise methods to improve the accuracies of com-
ponent parameter estimation for a wide range of forensic applica-
tions.

Index Terms– Component forensics, Fisher information, vi-
sual sensors.

1. INTRODUCTION

Digital imaging technologies have witnessed tremendous growth
in recent decades. The resolution and quality of imaging devices
have been steadily improving and such imaging devices as digital
still cameras, scanners, video cameras, and camcorders have been
used for a large number of day-to-day activities. Digital images
and videos captured using such devices have been used in a num-
ber of applications from miliary, reconnaissance, and surveillance
to free-lance consumer photography. With such rapid growth and
widespread usage arises a number of forensic questions related
to the origin and the authenticity of digital data. For example,
one can readily ask what kinds of hardware and software compo-
nents as well as their parameters have been employed inside the
devices? Given a digital image/video, which imaging sensor or
which brand of sensors was used to acquire it? What kinds of le-
gitimate processing and undesired alteration have been applied to
the image/video since it leaves the device?etc.

In our recent work [1], we proposecomponent forensicsas a
new methodology for forensic analysis. Component forensics aims
at finding the algorithms and parameters employed in each com-
ponent of the digital device. We show that evidence obtained from
such component forensic analysis can be used in a number of ap-
plications including discovering patent infringement, authenticat-
ing image acquisition source, detecting tampering, and in foster-
ing evolutionary studies. When security is compromised, intellec-
tual rights is violated, or authenticity is forged, component foren-
sic methodologies can be employed to reconstruct what have hap-
pened to the content to answer who has done what, when, where,
and how. In [1], we use theintrinsic fingerprint traces left be-
hind in the final digital image by the different components of the
imaging device as evidence to estimate the component parame-
ters and give clues to answer such forensic questions. However,
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as the intrinsic fingerprint traces pass through the different parts
of the information processing chain, some of them may be mod-
ified or destroyed and some others newly created. Therefore, the
goodness of this forensic evidence depend to a great extent on the
accuracy at which they can be obtained and this limits their usage.
In this paper, we propose a novel theoretical framework for com-
ponent forensics to quantify the accuracies at which the intrinsic
fingerprints and the component parameters can be estimated. We
develop formal notions of identifiability of components and inves-
tigate fundamental performance bounds. Building upon this theo-
retical framework, we devise methods to improve the accuracies of
component parameters for a wide range of forensic applications.

While a growing amount of recent research has been devoted
to the security and protection of multimedia information (e.g. via
encryption, hashing, and watermarking), forensic research on dig-
ital visual devices and their outputs is still in its infancy. Related
to the emerging image forensics, there is only a handful amount
of prior art, which mostly falls in two categories. The first group
of prior art on image forensics concerns image acquisition foren-
sics to identify the source of the image to identify if the image is
produced via a digital camera, scanner, or generated using com-
puter graphics [1, 2, 3]; and going one step further to identify the
camera brand/model/set [1, 4, 5] or the scanner brand/model [6]
that was used to capture the picture. In the second group of prior
art, there are a few recent works targeted at finding some specific
type of post-processing operations that occurs after an image has
been captured by a camera and employ such analysis to detect
tampering. Different kinds of post-camera processing operations
such as resampling [7], lighting, luminance, brightness change [7],
and JPEG compression [8] have been modelled and the estimated
parameters have been used for forensic analysis. While all these
works provide techniques to estimate the parameters of many types
of in-camera and post-camera processing, they do not provide a
theoretical framework to study forensics; and to our best knowl-
edge, this work is the first one to provide a generalized theoretical
framework for information forensics to foster systematic analysis
that is widely applicable to a large number of digital devices.

The paper is organized as follows. The proposed theoretical
analysis framework is described in Section 2. In Section 3, we
illustrate this framework with a particular example from digital
cameras and present methods to improve component estimation
accuracies. Final conclusions are drawn in Section 4.

2. PROPOSED THEORETICAL ANALYSIS
FRAMEWORK

In this section, we introduce a theoretical framework for compo-
nent forensics and examine the conditions under which the param-
eters of a component can be estimated accurately. We quantify
the accuracy of estimation in terms ofbias and varianceof the
estimator and derive performance bounds based on Fisher Infor-
mation. We first review Fisher information in Section 2.1 and then
introduce the theoretical formulation in Section 2.2.



2.1. Fisher Information and Cramer-Rao Lower Bound

Fisher information is the amount of information that an observable
random variableZ carries about an unobservable parameterθ. It
is mathematically given by

I(Z, θ) = Eθ
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∂θ
ln f(Z|θ)
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wheref(Z|θ) denotes the probability density function (pdf) ofZ
conditioned on the value of the parameter to be estimatedθ, and
the notationEθ denotes that the expectation is performed con-
ditioned on the value of the parameterθ. The significance of
the Fisher information is given by theCramer-Raolower bound
(CRLB). According to the CRLB, the average estimation error
given an estimator̂θ(Z) is lower bounded by

Eθ(θ̂(Z)− θ)2 ≥
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whereb(θ̂, θ) = Eθ(θ̂(Z)) − θ denotes thebiasof the estimator.
If the estimator,̂θ(Z), is unbiased,b(θ̂, θ) = 0 and (2) reduces to
Eθ(θ̂(Z) − θ)2 ≥ I(Z, θ)−1, suggesting that the variance of the
estimator is lower bounded by the inverse of Fisher information.

2.2. Theoretical Analysis using Fisher Information

We define acomponentas the basic unit of information processing
to facilitate theoretical analysis. For instance, the color filter array,
color interpolation algorithms, and white balancing operations can
be considered as different components in a digital camera. Each of
these components can employ different kinds of algorithms (and/or
parameters) in each instantiation of the device, and such differ-
ences can be employed for forensic analysis; for instance, to build
robust camera identifiers to determine the brand/make of the cam-
era used to capture the digital image [1].

Component forensics refers to a set of techniques to estimate
the parameters of the components in various parts of the informa-
tion processing chain. Component forensic analysis can be classi-
fied into three main categories, based on the nature of the available
evidence. Inintrusive forensics, a forensic analyst has access to the
device in question and can disassemble it and carefully examine
every part. Insemi non-intrusive forensics, the analyst has access
to the device as a black box and can design appropriate inputs to
the device and collect the corresponding output data for analyzing
the processing techniques and parameters of the individual com-
ponents. In thecompletely non-intrusive forensicsscenario, the
forensic analyst is provided only with some sample data produced
by the device and does not have access to or other knowledge about
the device.

To facilitate theoretical analysis, let<x denote a super-set of
all possible inputs that can be given to thekth componentCk, and
let<y contain the corresponding outputs. Without loss of general-
ity, let x ∈ <x be the input andy ∈ <y denote the corresponding
output. Now, we have the following definitions:

Definition The parameterθk of a componentCk can be estimated
intrusivelywith an average errorεk(x) if the best estimator,̂θk(y, x),

of the parameter givesεk(x) = Eθk (θ̂k(y, x)− θk)2, where

εk(x) =
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From the CRLB, it can be shown that any other estimatorT (y, x)
of the parameterθk cannot provide error values lower thanεk(x),
i.e., Eθ ((T (y, x)− θk)|x)2 ≥ εk(x).

If the forensic analyst is not allowed to break open the device,
then he/she can either do semi non-intrusive or completely non-
intrusive analysis depending on the availability of the device. In
this case, we may extend the definition to study multi-component
devices. Let a deviceD with Nc components be represented as
D = {C1, C2, . . . , CNc}, and letφ = [θ1, θ2, . . . , θNc ]

T denote
set of the parameters of all theNc components in the device. We
may now define the following:

Definition The parameter setφ of the deviceD can be estimated
semi non-intrusivelywith an average errorεs(x) if the best esti-
mator,φ̂(y, x) = [θ̂1(y, x), θ̂2(y, x), . . . , ˆθNc(y, x)]T , of the pa-
rameter setφ givesεs(x) = Eφ(φ̂(y, x)− φ)2 where

εs(x)=
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+ bs(φ̂, φ)bs(φ̂, φ)T . (4)

Here,bs(φ̂, φ) = Eφ(φ̂(y, x)) − φ represents the bias term, and
Is(x, φ) denotes the Fisher information matrix with its(i, j)th el-

ement given byIij
s (x, φ) = Eφ

h
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i
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As can be seen from (4), the accuracy of parameter estima-
tion depends on the choice of the input to the system and can
be improved by designing better inputs. Motivated by this obser-
vation, we define a notion of anideal input, x̂, as the one that
minimizes the average error in parameter estimation,i.e., x̂ =
arg minx∈<x εs(x), and therefore the lowest error that can achieved
via semi non-intrusive analysis is given byεs = εs(x̂).

Similarly, we may also define the best estimator for non-intrusive
forensics as in (4). However, in this scenario, the Fisher Informa-
tion and the bias terms would not depend on the inputx directly
as the analyst does not have access to the input. If the estima-
tor is unbiased as is often the case for such camera components
as color interpolation and white balancing, the bias terms become
zero and therefore the error termsεs(x) andεn (corresponding to
non-intrusive analysis) depend only on the Fisher information as

εs(x) = Is(x, φ)−1, εn = In(φ)−1. (5)

We may now establish the following results:
Theorem 1: For an unbiased estimator, the component parameter
estimation errors obtained via intrusive analysis,εi, is lower than
that obtained via semi non-intrusive analysis,εs; and furtherεs

is lower than the average estimation errors achieved using com-
pletely non-intrusive studies,εn. Thus, we haveεi ≤ εs ≤ εn

whereφ represents the device parameter set.
Proof: Here, we show the proof ofεs ≤ εn for a single compo-

nent system (whereφ = θ) and the analysis can be extended to de-
vices with multiple components and further to show thatεi ≤ εs.
Let us define
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The second term in (6) is non-negative for allx sincep(x) ≤
pmax, and by choosinĝx ∈ <+

x , the first term also becomes non-
negative. Thus, there exists and inputx̂ such thatQ ≥ 0. Squaring
and taking expectations, we getIs(x̂, φ) ≥ In(φ) which gives the
desired result.

Corollary: The proof ofTheorem 1also implies the existence
of an ideal input for semi non-intrusive forensics; and further the
ideal input,x̂, is an element of the subspace<+

x .

Theorem 2: The equalities in Fisher informationIs(x, φ) = In(φ)
for a given inputx is attained only whenf(x|y, φ) is independent
of φ.

Proof: The proof follows from the definitions of Fisher infor-
mation and it can be shown that

Is(x, φ) = In(φ) + Eφ
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with the equality is attained only when∂
∂φ

ln(f(x|y, φ)) = 0,
which gives the desired result and completes the proof. This the-
orem provides a scenario when the best estimation accuracy ob-
tained via completely non-intrusive analysis equals the accuracies
attained via semi non-intrusive studies.

3. CASE STUDIES WITH DIGITAL CAMERAS

In this section, we illustrate the proposed theoretical framework
using illustrative examples from digital cameras and the proposed
techniques can be extended to other kinds of digital devices.

3.1. Image Capture Process in Digital Cameras

The dashed box in Fig. 1 shows the image capture process in digital
cameras. The input light from a real-world scene passes through
lens and optical filters, and is finally recorded by sensor arrays.
Most commercial digital cameras and camcorders employ a color
filter array (CFA) to sample the real-world scene [9]. The CFA
consists of an array of color filters, typically a pattern tiled with
2× 2 cells of R/G/B filters. These filters allow the sensors to bet-
ter capture the corresponding color of the real-world scene at its
pixel location. The remaining color values of the pixel are inter-
polated from the neighborhood [9]. After interpolation, the three
images each corresponding to the red, green and blue components
go though a post-processing stage. Color corrections such as white
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Fig. 1. Image Capturing Model in Digital Cameras showing its
individual components

balancing are done in this stage, and the image or the image se-
quence may be lossily compressed (e.g. via JPEG or MPEG) to
reduce storage space.

To cope with the dependency among multiple interconnected
components inside a camera, in our recent work [1], we have de-
veloped a robust and non-intrusive algorithm that makes inference
from output images to jointly estimate suchin-cameraprocessing
operations as the color filter array and color interpolation parame-
ters. In [10], we show that most post-camera processing operations
can be modelled as a separate component and its parameters can
be estimated to identify different types of tampering and stegano-
graphic embedding operations.

3.2. Mathematical Model for In-Camera Processing

In this subsection, we present a mathematical model for in-camera
processing to demonstrate the applicability of the proposed theo-
retical analysis framework to study camera components. We con-
sider color interpolation as a specific example and the techniques
developed can be extended to other components. Most cameras
of different brands/models employ a different algorithms for color
interpolation and therefore estimating the interpolation parameters
provides very useful information to build a robust camera identi-
fier [1, 4]. In our recent work [1], we show that color interpolation
can be well approximated by fitting linear models in three differ-
ent regions of the image corresponding to smooth and edge regions
(with significant horizontal and vertical gradients). Thus, color in-
terpolation in each region and color can be approximated as

y(k, l) =

bNh/2cX
m=−bNh/2c

bNh/2cX
n=−bNh/2c

h(m, n)x(k −m, l − n), (8)

wherex andy represent the pixel values in the input and output
images in the chosen region of the image, andh denote the corre-
sponding filter coefficients of size(Nh ×Nh).

The color interpolation parametersh can be estimated given
the CFA sampling pattern. To estimateh, we obtain the locations
of the set of pixels that are interpolated and those that are directly
obtained from the sensor and construct a set of linear equations266666664

y(1, 1)
y(1, 2)
y(1, 3)
y(1, 4)

...
y(W, H)

377777775 =

266666664
1 0 0 0 . . .

h(0, 1) 0 h(0,−1) 0 . . .
0 0 1 0 . . .

h(0, 3) 0 h(0, 1) 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .

377777775
266666664

x(1, 1)
x(1, 2)
x(1, 3)
x(1, 4)

...
x(W, H)

377777775 ,

(9)

whereW andH denote the width and the height of the image. We
note that the values{y(1, 1), y(1, 3), y(1, 5), . . .} are obtained di-
rectly from the camera input and the remaining intermediate pixel
values{y(1, 2), y(1, 4), y(1, 6), . . .} are interpolated using the fil-
ter. As can be seen from the set of linear equations, with the
knowledge of the CFA, the outputy gives complete information



Fig. 2. Digitally zoomed versions of a32× 32 part in the original
and optimized input patterns
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about the input as{x(1, 1) = y(1, 1), x(1, 3) = y(1, 3), . . .}; and
thereforef(x|y, θ) is independent ofθ satisfying the conditions in
Theorem 2to suggest thatεs(x) = εn. This set of equations can
be solved non-intrusively or semi non-intrusively by an unbiased
least squares method to estimate the component parameters.

3.3. Optimal Pattern Design for Semi Non-Intrusive Forensics

In our recent work on semi non-intrusive forensics [11], we present
a heuristic approach to design a good input to estimate the param-
eters of such camera components as color interpolation and white
balancing, and show that the accuracies in estimating the compo-
nent parameters can be improved via such an approach. In this
subsection, we show an application of the proposed theoretical
analysis framework to optimize this input pattern to obtainideal
inputs.

We optimize the input pattern for semi non-intrusive forensics
by solving a minimization problem that minimizes the parame-
ter estimation accuracies,εs(x). The input-output relationship of
color interpolation in (9) can be re-written to obtain equations of
the formY = Xθ+n, whereθ = [h(−Nh,−Nh), . . . , h(Nh, Nh)]T .
Further, the estimation error for an inputx can be shown to be
equal to the inverse of the SNR,i.e., εs(x) = σ2

n(XT X)−1 where
σ2

n is the variance of the additive noise. An iterative technique
based on gradient-descent algorithm can then be employed to min-
imize the cost functionεs(x) and to optimize the pixel values of
the input pattern.

In Fig. 2, we show the results of the optimization algorithm
for a32× 32 part the original input along with the optimized ver-
sion for comparison. To test the goodness of the designed pattern
and the optimized pattern for estimating the cameras’ color inter-
polation parameters, we first interpolate both the original and the
optimized images shown in Fig. 2 using different kinds of adaptive
interpolation algorithms such as gradient based and adaptive color
plane. We then post-process the interpolated images by JPEG
compressing them under different quality factors; and finally re-

estimate the interpolation coefficients from the compressed ver-
sions. Fig. 3 shows the estimation error as a function of the JPEG
quality factor for both the heuristically designed input and the op-
timized input image. The figure shows the average error is signif-
icantly lower for the case of the optimized pattern compared with
the original pattern. This illustration suggests that the theoretical
framework can be employed to design ideal input patterns to esti-
mate the color interpolation parameters with improved robustness
to post-interpolation operations such as JPEG compression.

4. CONCLUSIONS

In this paper, we develop a novel theoretical model for informa-
tion forensics to answer what components and processing opera-
tions are identifiable and what are not. The proposed theoretical
foundations provide a basis to analyze different parts of the infor-
mation processing chain in a systematic way. We define formal
notions of identifiability of components under different scenarios;
and quantify the accuracies at which the component parameters
can be estimated in each case using Fisher information as a cri-
terion. We show that intrusive forensics gives superior estimation
accuracies over semi non-intrusive forensics and this is better than
completely non-intrusive scenario. We then employ the theoreti-
cal foundation to design ideal inputs; and show that the estimation
accuracies can be improved via such an approach. The proposed
theoretical model can also be extended to study post-camera pro-
cessing operations such as tampering and steganographic embed-
ding as a separate component; and provide a solid foundation for
information forensics to answer a number of forensic questions re-
lated to who has done what to the content, when and how.
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