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ABSTRACT as the intrinsic fingerprint traces pass through the different parts
of the information processing chain, some of them may be mod-

W'th a rapid growth of imaging technologl_es and an increasingly ified or destroyed and some others newly created. Therefore, the
widespread usage of digital images and videos for a large number

of high security and forensic applications, there is a strong need forgoodness of th'.s forensic evidence _depend 10 a great extent on the
technigues to verify the source and integrity of digital data. Com- accuracy at which they can be obtained and this limits their usage.

S . ' . ___In this paper, we propose a novel theoretical framework for com-
ponent forensics is new approach for forensic analysis that aims

. . - onent forensics to quantify the accuracies at which the intrinsic
to estimate the algorithms and parameters in each component ot . .

- - . . ingerprints and the component parameters can be estimated. We
the digital device. In this paper, we develop a novel theoretical

foundation to understand the fundamental performance limits of develop formal notions of identifiability of components and inves-

component forensics. We define formal notions of identifiability tlggte fundamental performance bounds: Building upon this t.heo-
. . . - . retical framework, we devise methods to improve the accuracies of
of components in the information processing chain, and present

. . . component parameters for a wide range of forensic applications.
methods to quantify the accuracies at which the component pa- Whil . t of ¢ h has b devoted
rameters can be estimated. Building upon the proposed theoretical ie a growing amount of recent research has been devote

framework, we devise methods to improve the accuracies of com-to the s_ecurity ar_ld protection of mul_timedia infqrmation (e.g. V“T"
ponent parameter estimation for a wide range of forensic applica-?ncrypt'on’ hQSh'“g' and V\_/atermarkl_ng),_fo_re_ng_c research on dig-
tions. ital visual devices and their outputs is still in its infancy. Related

Index Terms— Component forensics, Fisher information, vi- to th.e émerging image forens[cs, there is or_1|y a hand_ful amount
sual sensors. of prior art, which mostly falls in two categories. The first group
of prior art on image forensics concerns image acquisition foren-
1. INTRODUCTION sics to identify the source of the image to identify if the image is

Digital imaging technologies have witnessed tremendous growth Produced via a digital camera, scanner, or generated using com-
in recent decades. The resolution and quality of imaging devicesPuter graphics [1, 2, 3]; and going one step further to identify the
have been steadily improving and such imaging devices as digitalc@mera brand/model/set [1, 4, 5] or the scanner brand/model [6]
still cameras, scanners, video cameras, and camcorders have bedRat was used to capture the picture. In the second group of prior
used for a large number of day-to-day activities. Digital images art, there are a few recent works targeted at finding some specific
and videos captured using such devices have been used in a nunfyP€ of post-processing operations that occurs after an image has
ber of applications from miliary, reconnaissance, and surveillance been captured by a camera and employ such analysis to detect
to free-lance consumer photography. With such rapid growth and tampering. Different kinds of post-camera processing operations
widespread usage arises a number of forensic questions relate§uch as resampling [7], lighting, luminance, brightness change [7],
to the origin and the authenticity of digital data. For example, and JPEG compression [8] have been _modelled_ and th_e estimated
one can readily ask what kinds of hardware and software Compo_parameter§ have bgen used for forensic analysis. While all these
nents as well as their parameters have been employed inside th#/0rks provide techniques to estimate the parameters of many types
devices? Given a digital image/video, which imaging sensor or Of in-camera and post-camera processing, they do not provide a
which brand of sensors was used to acquire it? What kinds of le- theoretical framework to study forensics; and to our best knowl-
gitimate processing and undesired alteration have been applied tdge, this work is the first one to provide a generalized theoretical
the image/video since it leaves the deviee. fram_ewo_rk for |nfqrmat|on forensics to foster s_ys_tematlc_: analysis
In our recent work [1], we proposeomponent forensicas a that is widely applicable to a large number of digital devices.
new methodology for forensic analysis. Component forensics aims ~ The paper is organized as follows. The proposed theoretical
at finding the algorithms and parameters employed in each com-analysis framework is described in Section 2. In Section 3, we
ponent of the digital device. We show that evidence obtained from illustrate this framework with a particular example from digital
such component forensic analysis can be used in a number of apcameras and present methods to improve component estimation
plications including discovering patent infringement, authenticat- accuracies. Final conclusions are drawn in Section 4.
ing image acquisition source, detecting tampering, and in foster-
ing evolutionary studies. When security is compromised, intellec- 2. PROPOSED THEORETICAL ANALYSIS
tual rights is violated, or authenticity is forged, component foren- FRAMEWORK
sic methodologies can be employed to reconstruct what have hap-
pened to the content to answer who has done what, when, where|n this section, we introduce a theoretical framework for compo-
and how. In [1], we use th&trinsic fingerprinttraces left be- nent forensics and examine the conditions under which the param-
hind in the final digital image by the different components of the eters of a component can be estimated accurately. We quantify
imaging device as evidence to estimate the component paramethe accuracy of estimation in terms bifas and variance of the
ters and give clues to answer such forensic questions. Howevergestimator and derive performance bounds based on Fisher Infor-
mation. We first review Fisher information in Section 2.1 and then
introduce the theoretical formulation in Section 2.2.
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2.1. Fisher Information and Cramer-Rao Lower Bound of the parameter gives, (z) = Ee, (01 (y, x) — 0x)?, where

Fisher information is the amount of information that an observable
random variableZ carries about an unobservable paraméteit
is mathematically given by

[1 T %b(e}g,ek)r
o, { [ 1 Sz, 00)] )

9 2
1(%,0) = Eg { [% lnf(Z|0)] } J @) From the CRLB, it can be shown that any other estim&t¢y, x)
of the parametef;, cannot provide error values lower thap(x),
i.e., By (T (y,z) — 0k)|z)* > ex(x).

If the forensic analyst is not allowed to break open the device,
then he/she can either do semi non-intrusive or completely non-
- PR intrusive analysis depending on the availability of the device. In
ditioned on the value of the parametér The significance of s case, we may extend the definition to study multi-component
the Fisher information is given by th@ramer-Raolower bound devices. Let a devic® with N. components be represented as
(CRLB). According to the CRLB, the average estimation error , _ {C1,Ca,...,Cx.}, and letp = [01,62,...,0x.]7 denote
given an estimatof (%) is lower bounded by set of the parameters of all té. components in the device. We

may now define the following:

ex(z) = +b(0k, 0x)%. (3)

where f(Z|9) denotes the probability density function (pdf) &f
conditioned on the value of the parameter to be estiméteahd
the notationEy denotes that the expectation is performed con-

1+ -26(6,6) ’
+ 34 ) .. . .
Eo(6(2) — 0)* > [ 99 } +56(0,0)%, (2 Definition The parameter set of the deviceD can be estimated
Ey { [% In f(Z|9)]2} semi non-intrusivelyvith an average errat, (x) if the best esti-
mator,¢(y, z) = [61(y, x),0a2(y, x), ..., 0n, (y, )], of the pa-

~ N H _ 2
whereb(d, 8) = Eq(0(Z)) — 0 denotes théiasof the estimator, ~ "ameter seb givese, (x) = Ey(¢(y, x) — ¢)” where

If the estimatorf(Z), is unbiased(d, §) = 0 and (2) reduces to 5 X 5 N\T
Ey(6(2) — 0)* > I(Z,0)"*, suggesting that the variance of the ,J@Z(Wbs(@ ¢)> To(x, )" (Wbs(¢7 ¢)>
estimator is lower bounded by the inverse of Fisher information. R -

+ b, ¢)bs(e,9)" . (4)
2.2. Theoretical Analysis using Fisher Information Here,b (¢, ¢) = E4(d(y,z)) — ¢ represents the bias term, and

. . . . . . . th _
We define &omponenas the basic unit of information processing Zs (@, ¢) denotes the Fisher information matrix with {t5j) ™ el

to facilitate theoretical analysis. For instance, the color filter array, ementgiven by’ (z, ¢) = Eq [d% In f(y|z, ¢J)£ In f(ylz, 625)]-
color interpolation algorithms, and white balancing operations can
be considered as different components in a digital camera. Each of ~ As can be seen from (4), the accuracy of parameter estima-
these components can employ different kinds of algorithms (and/ortion depends on the choice of the input to the system and can
parameters) in each instantiation of the device, and such differ- be improved by designing better inputs. Motivated by this obser-
ences can be employed for forensic analysis; for instance, to buildvation, we define a notion of aideal input, Z, as the one that
robust camera identifiers to determine the brand/make of the cam-minimizes the average error in parameter estimatien, &z =
era used to capture the digital image [1]. arg mingew, €, (), and therefore the lowest error that can achieved

Component forensics refers to a set of techniques to estimatevia semi non-intrusive analysis is given by= ¢_(&).
the parameters of the components in various parts of the informa-  Similarly, we may also define the best estimator for non-intrusive
tion processing chain. Component forensic analysis can be classiforensics as in (4). However, in this scenario, the Fisher Informa-
fied into three main categories, based on the nature of the availabldion and the bias terms would not depend on the inpditrectly
evidence. lrintrusive forensicsa forensic analyst has accesstothe as the analyst does not have access to the input. If the estima-
device in question and can disassemble it and carefully examinetor is unbiased as is often the case for such camera components
every part. Insemi non-intrusive forensicthe analyst has access as color interpolation and white balancing, the bias terms become
to the device as a black box and can design appropriate inputs tozero and therefore the error tereigz) ande,, (corresponding to
the device and collect the corresponding output data for analyzingnon-intrusive analysis) depend only on the Fisher information as
the processing techniques and parameters of the individual com- 1 .
ponents. In theeompletely non-intrusive forensissenario, the e(x) =ZLs(x,0) ", €, =Tn(9) " )
forensic analyst is provided only with some sample data produced
by the device and does not have access to or other knowledge abou]t.h
the device.

To facilitate theoretical analysis, 18, denote a super-set of
all possible inputs that can be given to #f& component, and
let 2, contain the corresponding outputs. Without loss of general-
ity, let z € R, be the input ang € R, denote the corresponding
output. Now, we have the following definitions:

We may now establish the following results:
eorem 1: For an unbiased estimator, the component parameter
estimation errors obtained via intrusive analysjs,is lower than
that obtained via semi non-intrusive analysig, and furthere,
is lower than the average estimation errors achieved using com-
pletely non-intrusive studies,,. Thus, we have, < e, < ¢,
where¢ represents the device parameter set.

Proof: Here, we show the proof ef < ¢, for a single compo-
nent system (whergé = ¢) and the analysis can be extended to de-
Definition The parametefl; of a component;. can be estimated  vices with multiple components and further to show that e, .
intrusivelywith an average errey, () if the best estimatof), (y, z),  Let us define
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wherep(z) represents the pdf of the inputover the spacér,.
We now defineéR and R, as the set of points if®, such that
s fyle,¢) > 0 and 2 f(yle, ¢) < 0, respectively, and let
Pmaz = MaXzeR, P(T). Then we have

fylz, ¢) 0 ..
D) /+a¢(' ¢)

X(pmax - (x))dx] .

o (

1 0 .
Q> m %f(ym»ﬁf’)"'

(6)

The second term in (6) is non-negative for allsincep(z) <
Pmaz, @nd by choosing: € R, the first term also becomes non-
negative. Thus, there exists and ingiguch that) > 0. Squaring
and taking expectations, we g&i(#, ¢) > Z,,(¢) which gives the
desired result.

Corollary: The proof ofTheorem Jlalso implies the existence
of an ideal input for semi non-intrusive forensics; and further the
ideal input,Z, is an element of the subspa®e .

Theorem 2: The equalities in Fisher informatidh (z, ¢) = Z.(¢)
for a given inpute is attained only wherf (z|y, ¢) is independent

of ¢.
Proof: The proof follows from the definitions of Fisher infor-
mation and it can be shown that

To(2,6) = Tu(d) + Eo { (a%lnwwy, ¢))>

+ (s mistien) (55 mGelnon) }.

with the equality is attained only wheg; In(f

@)

$‘y7 ) - 0

which gives the desired result and completes the proof. This the-
orem provides a scenario when the best estimation accuracy ob-
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Fig. 1. Image Capturing Model in Digital Cameras showing its
individual components

balancing are done in this stage, and the image or the image se-
quence may be lossily compressed (e.g. via JPEG or MPEG) to
reduce storage space.

To cope with the dependency among multiple interconnected
components inside a camera, in our recent work [1], we have de-
veloped a robust and non-intrusive algorithm that makes inference
from output images to jointly estimate suchcameraprocessing
operations as the color filter array and color interpolation parame-
ters. In [10], we show that most post-camera processing operations
can be modelled as a separate component and its parameters can
be estimated to identify different types of tampering and stegano-
graphic embedding operations.

3.2. Mathematical Model for In-Camera Processing

In this subsection, we present a mathematical model for in-camera
processing to demonstrate the applicability of the proposed theo-
retical analysis framework to study camera components. \We con-
sider color interpolation as a specific example and the techniques
developed can be extended to other components. Most cameras
of different brands/models employ a different algorithms for color
interpolation and therefore estimating the interpolation parameters
provides very useful information to build a robust camera identi-
fier [1, 4]. In our recent work [1], we show that color interpolation
can be well approximated by fitting linear models in three differ-
ent regions of the image corresponding to smooth and edge regions
(with significant horizontal and vertical gradients). Thus, color in-
terpolation in each region and color can be approximated as

[Np/2] [Np/2]

>

m=—|Np /2] n=—|Np/2]

y(k,1) = h(m,n)z(k —m,l —n), (8)

tained via completely non-intrusive analysis equals the accuracies

attained via semi non-intrusive studies.

3. CASE STUDIES WITH DIGITAL CAMERAS

In this section, we illustrate the proposed theoretical framework
using illustrative examples from digital cameras and the proposed

technigues can be extended to other kinds of digital devices.

3.1. Image Capture Process in Digital Cameras

The dashed box in Fig. 1 shows the image capture process in digital
cameras. The input light from a real-world scene passes through
lens and optical filters, and is finally recorded by sensor arrays.
Most commercial digital cameras and camcorders employ a color

filter array (CFA) to sample the real-world scene [9]. The CFA
consists of an array of color filters, typically a pattern tiled with

wherexz andy represent the pixel values in the input and output
images in the chosen region of the image, ardknote the corre-
sponding filter coefficients of siZgVy x N3).

The color interpolation parametekscan be estimated given
the CFA sampling pattern. To estimdtewe obtain the locations
of the set of pixels that are interpolated and those that are directly
obtained from the sensor and construct a set of linear equations

y(1,1) 1 0 0 0 z(1,1)
y(1.2) h(0,1) 0 h(0,—1) 0 2(1.2)
y(1,3) 0 0 1 0 z(1,3)
g4 | =| no0,3 0 nO1) o0 2(1.4) |,
y(W, H) 0o 0 0 0 (W, H)

(

2 x 2 cells of R/G/B filters. These filters allow the sensors to bet- wherelW andH denote the width and the height of the image. We
ter capture the corresponding color of the real-world scene at its note that the valuegy(1, 1), y(1, 3),y(1,5), ...} are obtained di-
pixel location. The remaining color values of the pixel are inter- rectly from the camera input and the remaining intermediate pixel
polated from the neighborhood [9]. After interpolation, the three values{y(1,2),y(1,4),y(1,6),...} are interpolated using the fil-
images each corresponding to the red, green and blue componenter. As can be seen from the set of linear equations, with the
go though a post-processing stage. Color corrections such as whit&knowledge of the CFA, the output gives complete information



Fig. 2. Digitally zoomed versions of 32 x 32 part in the original
and optimized input patterns
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Fig. 3. Average Estimation Error for Semi Non-Intrusive Forensics
as a function of JPEG quality factor

aboutthe inputagz(1,1) = y(1,1),z(1,3) = y(1,3),...};and
thereforef (z|y, #) is independent of satisfying the conditions in
Theorem 2o suggest that, (x) = ¢,. This set of equations can

be solved non-intrusively or semi non-intrusively by an unbiased

least squares method to estimate the component parameters.

3.3. Optimal Pattern Design for Semi Non-Intrusive Forensics

In our recent work on semi non-intrusive forensics [11], we present

estimate the interpolation coefficients from the compressed ver-
sions. Fig. 3 shows the estimation error as a function of the JPEG
quality factor for both the heuristically designed input and the op-

timized input image. The figure shows the average error is signif-
icantly lower for the case of the optimized pattern compared with

the original pattern. This illustration suggests that the theoretical
framework can be employed to design ideal input patterns to esti-
mate the color interpolation parameters with improved robustness
to post-interpolation operations such as JPEG compression.

4. CONCLUSIONS

In this paper, we develop a novel theoretical model for informa-
tion forensics to answer what components and processing opera-
tions are identifiable and what are not. The proposed theoretical
foundations provide a basis to analyze different parts of the infor-
mation processing chain in a systematic way. We define formal
notions of identifiability of components under different scenarios;
and quantify the accuracies at which the component parameters
can be estimated in each case using Fisher information as a cri-
terion. We show that intrusive forensics gives superior estimation
accuracies over semi non-intrusive forensics and this is better than
completely non-intrusive scenario. We then employ the theoreti-
cal foundation to design ideal inputs; and show that the estimation
accuracies can be improved via such an approach. The proposed
theoretical model can also be extended to study post-camera pro-
cessing operations such as tampering and steganographic embed-
ding as a separate component; and provide a solid foundation for
information forensics to answer a number of forensic questions re-
lated to who has done what to the content, when and how.
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