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ABSTRACT

Component forensics is an emerging methodology for forensic anal-
ysis that aims at estimating the algorithms and parameters in each
component of a digital device. This paper proposes a theoreti-
cal foundation to examine the performance limits of component
forensics. Using ideas from pattern classification theory, we de-
fine formal notions of identifiability of components in the infor-
mation processing chain. We show that the parameters of certain
device components can be accurately identified only in controlled
settings through semi non-intrusive forensics, while the parame-
ters of some others can be computed directly from the available
sample data via complete non-intrusive analysis. We then extend
the proposed theoretical framework to quantify and improve the
accuracies and confidence in component parameter identification
for several forensic applications.

Index Terms – Component forensics, pattern classification, vi-
sual sensors, semi non-intrusive forensics.

1. INTRODUCTION

Digital imaging technologies have undergone tremendous growth
in recent decades. The resolution and quality of imaging devices
have been improving steadily, and at the same time, the cost of the
imaging devices have been declining, making them increasingly
popular for day-to-day use. Digital images and videos captured by
such devices have been used in a number of applications ranging
frommilitary and law enforcement to free-lance consumer photog-
raphy. On the other hand, digital imaging technologies have also
been used for illicit applications. For example, an increasing num-
ber of movies have been re-shot with camcorders directly from the
theater where they are screened, and sold in the market. This kind
of piracy incurs a significant loss to the copyright industry. Com-
plementary to watermarking and fingerprinting technologies that
help track such illegal reproduction, forensic analysis can help to
trace the origin and authenticity of digital data. This bootlegging
example raises a number of forensic questions such as what kind
of device (e.g., camera or camcorder and what brand/model) was
used to capture the data? Was the image/video recorded from a dis-
play device and if so, what kind of display device (e.g., flat-screen
or projector) was used? Further, what kinds of legitimate process-
ing and undesired alteration have been applied to the image/video
since it has left the device? Answers to such forensic questions
would facilitate tracing both the person who illegally captured the
video by tracing his/her camcorder and the theater from which the
video was captured using its display characteristics.

Our recent work [1] has introduced component forensics as a
methodology for forensic analysis. Component forensics aims at
finding the algorithms and parameters employed in each compo-
nent of the information processing chain to answer who has done
what, when, where, and how. We have shown that the intrinsic
fingerprint traces left behind in the final digital image by the dif-
ferent components of the imaging device could be used as evidence
to estimate the component parameters and provide clues to answer
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forensic questions related to origin and authenticity of digital data.
However, as the intrinsic fingerprint traces pass through the differ-
ent parts of the information processing chain, some of them may
be modified or destroyed and some others newly created. In the
bootlegging example, some traces of the projector employed in
the theater might be lost and new fingerprint traces about the cam-
corder itself might be inserted. Hence, the data obtained from the
final camcorder alone may or may not help compute the parame-
ters of the display device. This leads to further forensic questions
as to what components are identifiable and what are not.

A component estimation framework for media forensics was
introduced in [2]. Formal theoretical notions were defined to char-
acterize the accuracies in estimating the parameters of several com-
ponents in the information processing chain. However, in many
forensic scenarios, additional side information is available and can
be used to improve accuracies. For instance, in the bootlegging
example, geographic constraints can be enforced to narrow down
on a possible set of theaters (and their display parameters) from
where the movie could have been illegally recorded using a cam-
corder. In the presence of such additional information, the com-
ponent parameters could be found with a higher accuracy from
among the available sample set of algorithms by reformulating the
estimation problem as a classification problem. In this work, we
develop a theoretical framework for media forensics under the as-
sumption that the component parameters take values from a finite
set of possible algorithms, and derive conditions under which a
component is forensically classifiable. Building upon the proposed
framework, we devise methods to improve the confidence of com-
ponent parameter identification for several forensic applications.

This work complements the theoretical estimation framework
proposed in [2] to provide a generalized theoretical framework
for media forensics. Related prior work mostly aim at develop-
ing techniques for forensic analysis to estimate the parameters of
the different components in the information processing chain. In
literature, methods have been proposed to estimate in-camera pro-
cessing such as color interpolation [1,3,4] and white balancing [5],
and post-camera manipulations like resampling [6], lighting, lumi-
nance, brightness change [6], and JPEG compression [7]. These
collection of prior art provides algorithms to estimate the param-
eters of many types of in-camera and post-camera processing. To
our best knowledge, this present work along with [2] are the first
ones to provide a theoretical framework to foster systematic analy-
sis that can be applicable to many types of digital devices and their
combinations.

The paper is organized as follows. The proposed theoretical
analysis framework is described in Section 2. In Section 3, we
illustrate this framework with a particular example from digital
cameras and present methods to improve the confidence scores in
parameter classification. Final conclusions are drawn in Section 4.

2. PROPOSED THEORETICAL FRAMEWORK

In this section, we introduce a theoretical framework for compo-
nent forensics and examine the conditions under which the param-
eters of a component can be identified accurately. We define a
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component as a basic unit in the information processing chain. For
instance, the color filter array, color interpolation algorithms, and
white balancing operations can be considered as different compo-
nents in a digital camera. Each of these components may employ
different kinds of algorithms and/or parameters in each instantia-
tion of the device. Such differences can be employed for forensic
analysis, for instance, to build robust camera identifiers to deter-
mine the brand/make of the camera used to capture the digital im-
age [1].

Consider a system with Nc components {C1, C2, . . . , CNc
}.

Let �x denote a set of all possible inputs that can be given to the
kth component Ck, and let �y contain the corresponding outputs.
Let Θk = {θk

1 , θk
2 , . . . , θk

Na
} denote the set of all possible algo-

rithms/ techniques that could be employed in kth component Ck of
the system. In this work, we formulate the problem of component
forensics as identifying the exact algorithm θk ∈ Θk used by each
of the processing blocks Ck.

Estimating the value of the component parameter, θk, can be
done in three different ways depending on the nature of the avail-
able inputs [1], namely, by intrusive, semi non-intrusive, and com-
pletely non-intrusive forensic analysis. In intrusive component
forensics, the analysts have the device or system in hand and can
break it apart. They can then study each component of the system
separately, design appropriate inputs, examine the corresponding
outputs, and make a decision as to which set of parameters was
used in the component via classification approaches. That is,

Definition 1: A component Ck is said to be intrusively classifi-
able or i-classifiable if for each possible algorithm θk

i used by the
component, and ∀x ∈ �x,

p(θk
i |y, x) ≥ p(θk

j |y, x) ∀j ∈ {1, 2, . . . , Nk
a }, and j �= i,

and there exists at least one input x∗ ∈ �x and its corresponding
output y∗ for which

p(θk
i |y

∗, x∗) > p(θk
j |y

∗, x∗) ∀j ∈ {1, 2, . . . , Nk
a }, and j �= i.

Here, Nk
a is the total number of possible algorithms for the com-

ponent Ck; x and y denote the corresponding input and output
of the component, respectively, and are vectors of appropriate di-
mensions; and p denotes the probability distribution function. The
forensic analyst can then employ maximum a posteriori estimation
techniques [8] to identify the component parameters θ̂k.

In addition to computing the parameters of the internal build-
ing blocks of the components, it is also important to know the con-
fidence level on the parameter estimation result. A higher con-
fidence value would increase the trustworthiness of the decision
made by the forensic analyst in applications involving infringe-
ment/licensing to determine potential technology breach [1]; and
also in cases involving tampering detection.

Definition 2: For an i-classifiable component, Ck, with component
parameters, θk

i , the confidence score γk
i (x) for correct classifica-

tion under the input x is defined by the difference between the
likelihood of the correct decision and the maximum of the corre-
sponding likelihoods of the making a wrong decision. Expressed
mathematically,

γ
k
i (x) = p(θk

i |y, x)− max
j=1,2,...,Nk

a
,j �=i

p(θk
j |y, x). (1)

As can be seen from the equation, the confidence score γk
i (x) is a

function of the input x and can be improved by selecting proper in-
puts. To facilitate discussions, let us define qk(x) = [p(θk

1 |y, x),
p(θk

2 |y, x), . . . , p(θNk
a
|y, x)]. If for an input, x′, qk(x′) = [0,

. . . , 1, 0, . . . , 0] with 1 at the ith location, the decision of choos-
ing the ith class is made with a very high confidence and γk

i (x′)
equal to 1. On the other hand, if qk(x′′) = [ 1

Nk
a

− ε, . . . , 1
Nk

a

+

Nk

a
−1

Nk
a

ε, 1
Nk

a

− ε, . . . , 1
Nk

a

− ε] where ε is a small positive real
number, there is an almost equal probability that the given data
sample comes from any of the Nk

a classes. In this case, the de-
cision is made with a very low confidence with γk

i (x′′) ≈ 0. In
this example, x′ and x′′ represent the best and the worst possible
inputs for identifying the component parameters. For other inputs,
x, the value of γk

i (x) would lie in the interval [0, 1], with a higher
value indicating more confidence in the decision made. Motivated
by this discussion, we define a notion of an optimal input:
Definition 3: An optimal input x̂k

i to the kth component of the
system that employs the algorithm θk

i is defined as the one that
maximizes the confidence score, i.e., x̂k

i = arg maxx∈�x
γk

i (x).
The corresponding confidence score, η

k(i−int)
i = γk

i (x̂k
i ), then

represents the overall maximum confidence in intrusively classify-
ing the parameters of Ck.

In semi non-intrusive and completely non-intrusive forensics,
analysts are not allowed to break open the device or system. In the
scenario of semi non-intrusive forensics, the analysts have access
to the system as a black box, and can design appropriate inputs
to the system and collect the corresponding output data in order
to analyze the processing techniques and compute the parameters
of the individual components. To examine this scenario, we de-
fine φj = [θ1

j1
, θ2

j2
, . . . , θNc

jNc

] to represent the set of algorithms
(and parameters) employed by the entire system. Assuming that
the component parameters in the kth component can takeNk

a pos-
sibilities, we have a total of Na =

�Nc

k=1 Nk
a possible algorithm

choices for the system. The task for the forensic analyst is now
reduced to finding which of these Na algorithms is used by the
system in question.
Definition 4: A system is said to be semi non-intrusively classifi-
able or s-classifiable if for each possible algorithm φi used by the
component,
p(φi|y, x) ≥ p(φj |y, x) ∀j ∈ {1, 2, . . . , Na}, and j �= i,
and there exists at least one input x∗ ∈ �x and its corresponding
output y∗ such that

p(φi|y
∗, x∗) > p(φj |y

∗, x∗) ∀j ∈ {1, 2, . . . , Na}, and j �= i.
Here, x and y denote the inputs and its corresponding outputs,
respectively, of the overall system. The confidence in correct iden-
tification for this scenario can be defined similar to (1).

In the completely non-intrusive forensics scenario, the forensic
analyst is provided only with some sample data produced by the
device or system and does not have access to nor other knowledge
about its inputs. In this case, we can define:
Definition 5: A system is said to be non-intrusively classifiable or
n-classifiable if for each possible algorithm φi used by the compo-
nent, and all possible outputs y ∈ �y ,

p(φi|y) ≥ p(φj |y) ∀j ∈ {1, 2, . . . , Na}, and j �= i,
and there exists at least one input x∗ ∈ �x, such that the corre-
sponding output, y∗, satisfies

p(φi|y
∗) > p(φj |y

∗) ∀j ∈ {1, 2, . . . , Na}, and j �= i.
The corresponding confidence score for a system to be non-

intrusively classifiable given the output y∗ when the actual algo-
rithm employed is φi is given by

η
(n−int)
i = p(φi|y

∗)−maxj=1,2,...,Nk
a

,j �=i p(φj |y
∗).
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We now establish the following results. Due to space con-
straints, the proofs have been omitted from this paper.
Lemma 1: If a system is n-classifiable, then it is s-classifiable.

This lemma suggests that if a component is non-intrusively
classifiable, then its parameters can also be identified semi non-
intrusively. Further, we can show that the average confidence val-
ues obtained using semi non-intrusive analysis is greater than or
equal to the ones obtained via completely non-intrusive analysis,
i.e., for all possible algorithms φi, η(s−int)

i = maxx∈�x
γi(x) ≥

η
(n−int)
i . This result follows from the fact that semi non-intrusive
forensics provides more control to the forensic analyst who can de-
sign better inputs to improve the overall performance. Similarly,
Lemma 2: If a system is s-classifiable, then each of its compo-
nents are i-classifiable.

This result follows intuitively from the fact that in intrusive
forensics, the analyst can isolate each component separately and
compute its parameters with a higher control over the experimen-
tal setup. The converse of Lemma 2 is not generally true. To
examine the conditions under which an i-classifiable component
is s-classifiable, we introduce the notion of an ε-consistent compo-
nent. A component is said to be ε-consistent if the following two
conditions are satisfied:
• for all outputs y1 and y2 with dY (y1, y2) ≤ ε, the estimates of
the corresponding inputs x1 and x2 satisfy dX(x1, x2) ≤ ε, where
dX and dY are appropriately chosen distance metrics in the input
and the output space, respectively; and
• for all inputs x1 and x2 with dX(x1, x2) ≤ ε, the estimates of
the corresponding outputs y1 and y2 satisfy dY (y1, y2) ≤ ε.
We now have the following theorem:
Theorem 1: If all the components in a system are ε-consistent and
the kth component with parameter θk

i is i-classifiable with a con-
fidence score η

k(i−int)
i , then the kth component is s-classifiable

with confidence score η
k(s−int)
i approximately given by

η
k(s−int)
i ≈ η

k(i−int)
i − 2(Nc − 1)ε

����
∂γk

i (x)

∂x

����
x=x̂k

i

. (2)

The above expression is obtained by considering the first-order
approximation of the confidence score and dropping the higher-
order terms. Theorem 1 gives the conditions under which the
knowledge about the intrusive forensics can be extended to semi
non-intrusive forensics. The theorem also suggests that ηk(i−int)

i ≥

η
k(s−int)
i , and therefore the confidence score for parameter iden-
tification from semi non-intrusive forensics is lower than (or at
most equal to) the ones that can be attained from intrusive foren-
sics. It can be further shown that the equality is attained only
when all the components are 0-consistent. This result is expected
because intrusive forensic methodology gives more control than
semi non-intrusive forensics, as the forensic analyst can break the
device or system open to examine each of its individual compo-
nents in greater detail. On the other hand, in the case of semi
non-intrusive forensic analysis, the analyst would need to come
up with good inputs to be given to the overall system and study
the interactions between various system components based on the
overall input/output response.

3. CASE STUDIES WITH DIGITAL CAMERAS

In this section, we illustrate the proposed theoretical framework
using illustrative examples from digital cameras and the proposed
techniques can be extended to other kinds of digital devices and
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Fig. 1. Information processing chain in digital cameras showing
its individual components

combinations of digital devices such as in the scenario of the boot-
legging example.
Mathematical Model of Camera Components: Fig. 1 shows
the information processing chain in digital cameras. Rays of light
from the scene pass through the lens and the optical filter and are
finally recorded by the sensors. Most cameras employ a color fil-
ter array (CFA) to sample the data from the real world scene [1,3].
The CFA is a thin film on the sensors and selectively allows a cer-
tain component of light to pass through them to the sensors. Due
to this selective sampling, some pixels values in the image are di-
rectly obtained from the sensor and the remaining pixels are inter-
polated using the values captured from the surrounding neighbor-
hood [3]. In our recent work [1], we show that the camera’s color
interpolation module can be approximated to be linear in three dif-
ferent regions of the image, divided based on the local gradient
values. Let x be the input to the camera’s color interpolation mod-
ule. The corresponding output r after color interpolation satisfies
r(m, n, c) = x(m, n, c), for the pixels that are directly obtained
from the sensor, and r(m, n, c) =

�
k,l

α(k, l, c)x(m − k, n −

l, c) for the interpolated pixels in each texture region with α(., ., .)
denoting the corresponding filter coefficients.

After color interpolation, the image r goes through a post-
processing stage where white balancing and color correction are
performed to give z(m, n, c) =

�3
j=1 β(c, j)r(m, n, j), for c =

1, 2, 3. Finally, the image z may be JPEG compressed to reduce
storage space. Compression can be modelled as quantization in
the DCT domain, and can be represented as additive noise ζ in the
pixel domain. The final camera output image is y = z + ζ.
Camera Component Analysis using the Proposed Framework:
Here, we examine the conditions under which the different camera
components are identifiable under the three forensic analysis sce-
narios. Such camera components as color interpolation, white bal-
ancing, and JPEG compression are separately i-classifiable. More
specifically, given the input and the output to each of these com-
ponents, the interpolation parameters α in each texture region, and
the white balancing parameters β can be obtained by solving a
set of linear equations. Such approaches have been employed to
estimate the interpolation coefficients [1] and the white balancing
parameters [5]. To obtain the parameters of JPEG compression,
statistical analysis based on binning techniques on the DCT coef-
ficients have been employed [7].

Next, we consider the camera components together and ex-
amine the conditions under which they are s-classifiable and n-
classifiable, respectively. Combining the equations for r and z,
the input-output relationship for the interpolated pixels satisfying
the camera model can be written as

y(m, n, c) =

3�

j=1

�

k,l

α(k, l, j)β(c, j)x(m−k, n−l, j)+ζ(m, n, c),

(3)
Concatenating all the elements of y(m, n, c) to form a vector y and
representing (3) in matrix form, we obtain y = Aαβx + n. Here,
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Fig. 2. Heuristic input pattern for semi non-intrusive forensics

Aαβ denotes a matrix of appropriate dimension formed using the
component parameters α and β, and n represents the compression
noise satisfyingN (0, Σn). The probability distribution of y given
the component parameters Aαβ and x is then Gaussian distributed
with mean μy = Aαβx and covariance matrix Σy = Σn.

Estimating the camera parameters φ = Aαβ and/or its individ-
ual component parameters (α and β) provide valuable evidence for
forensic analysis [1]. In the absence of compression noise,Σn = 0
and the set of equations in (3) can be solved to obtain Aαβ , and
the results classified to belong to one of the possible algorithms
in the algorithm space. Therefore, color interpolation and white
balancing are s-classifiable in the absence of noise. Further, in the
absence of noise, both components are 0-consistent and from The-
orem 1, ηk(s−int) = ηk(i−int). This suggests that breaking the
device open to estimate the color interpolation or white balancing
parameters does not give better results. In the presence of addi-
tive noise or compression, Σn �= 0, and hence semi non-intrusive
analysis does not provide the same confidence as intrusive foren-
sics. Further, the confidence in parameter identification via semi
non-intrusive forensics depends on the choice of the input.
Applications to Input Pattern Design for Semi Non-Intrusive
Forensics: In this part, we show that with appropriate design, the
confidence score for semi non-intrusively estimating the color in-
terpolation and the white balancing coefficients can be increased.
As shown earlier, the camera output y followsN (Aαβx, Σn). Sub-
stituting for the probability distribution of y and computing the
confidence score, we can show that the optimal input for cam-
era component forensics is the one that maximizes the distance,
||(Aαβ(i)−Aαβ(j))x||. Here, Aαβ(i) andAαβ(j) correspond to
two different possible values for theAαβ from the algorithm space.
It can be shown that the solution for this maximization problem,
x̂, is along the direction of the eigenvector corresponding to the
largest eigenvalue of the matrix (Aαβ(i)−Aαβ(j)).

Based on the above theory, we design a possible candidate in-
put image heuristically [5] to compute the parameters of camera
components as shown in Fig. 2. To simulate the camera capture
process, the input image is interpolated using two different inter-
polation techniques: bicubic that does not adapt to image content,
and the adaptive color plane interpolation method [3] that adapts to
image gradient values. The interpolation coefficients are estimated
and used as an input to a two-class support vector machine (SVM)
classifier for identification. This SVM has been trained with the
coefficients obtained from natural images correspondingly inter-
polated with each of the same two different techniques. We study
the robustness in parameter estimation under JPEG compression.
In Fig. 3, we plot the confidence values obtained on classification
under different quality levels of JPEG compression both for the
designed pattern and for natural images. We notice from the fig-
ure that as the JPEG quality factor reduces and compression noise
becomes stronger, the confidence of correctly identifying the in-
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Fig. 3. Confidence score as a function of JPEG quality factor for
(a) natural images (b) designed pattern
terpolation coefficients reduces. Additionally, we observe that the
confidence score obtained with the designed pattern is higher than
the average scores obtained with natural images; demonstrating
the superiority of designed pattern for semi non-intrusive analysis.

4. CONCLUSIONS
In this paper, we have developed a theoretical framework for me-
dia forensics for components with a finite number of possibili-
ties in the parameter space. The proposed framework employs
ideas from pattern classification theory to answer forensic ques-
tions about what components and processing operations are clas-
sifiable and what are not. We have define formal notions of identi-
fiability of components under different scenarios, and have quan-
tified the confidence in which the component parameters can be
computed in each case. We have shown that the confidence in
identifying the component parameters depends on the nature of
available inputs and testing conditions, and that intrusive foren-
sics gives higher confidence than semi non-intrusive forensics and
semi non-intrusive analysis is better than completely non-intrusive
scenario. We then apply the theoretical framework to design good
inputs for semi non-intrusive forensics; and show that the confi-
dence in parameter identification can be improved via such an ap-
proach. The proposed theoretical model can also be extended to
study post-device processing operations such as tampering, and to
provide a theoretical foundation for media forensics.
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