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ABSTRACT

This paper considers the problem of semi non-intrusive component
forensics and proposes a methodology to identify the algorithms and
parameters employed by various processing modules inside a digital
camera. The proposed analysis techniques assume the availability
of the camera; and introduce a forensic methodology to estimate the
parameters of the color interpolation and white balancing algorithms
employed in cameras. We devise testing conditions, and design good
input patterns to improve the overall accuracy in parameter estima-
tion. As demonstrated by the results in the paper, the proposed tech-
niques provide a much lower estimation bias and variance compared
to non-intrusive analysis. The features obtained from component
forensic analysis provide useful evidence for such applications as
analyzing technology evolution trend, detecting technology infringe-
ment/licensing, protecting intellectual property rights, and determin-
ing camera source.

Index Terms – Component forensics, semi non-intrusive foren-
sics, visual sensors.

1. INTRODUCTION

Digital cameras have experienced a tremendous growth over the past
decade. The resolution and quality of digital images have been steadily
increasing, and digital cameras have become ubiquitous. Such wide-
spread popularity has led to a growing concern about establishing
the authenticity of digital photographs; and has raised a number of
forensic questions related to digital camera images. For example,
one can ask what kind of camera has been used to capture the image?
What kinds of technology have been employed? What processing
operations has the image gone through? In our recent work [1], we
introduced component forensics as a new methodology for forensic
analysis. Component forensics aims to identify the algorithms and
parameters employed in various components of a digital camera. It
was shown that these estimated parameters can be utilized to answer
a number of questions related to the origin and authenticity of the im-
age [2]; and to provide evidence to identify infringement/licensing
and facilitate tampering detection [1].

Legal means, such as patents, for intellectual property protection
has played a crucial role in fostering innovation. However, with the
growing availability of sophisticated hardware and software tools,
patent infringement is not uncommon. Moreover, patent infringe-
ment is typically hard to detect and there are a lack of technologies
to identify substantial similarity or differences in the implementa-
tions. Often, identifying infringement becomes a laborious task, and
expert witnesses may be asked to go over and compare the thousands
of lines of the product’s source codes. By determining the algo-
rithms and parameters employed in different processing modules in-
side a digital device solely using the device’s output data, component
forensics provides a framework for infringement/licensing forensics
and intellectual property protection. Component forensic analysis
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can also be extended to determine the type, brand, and model of the
imaging device that was used to capture an image; and to identify po-
tential tampering or to detect the presence of hidden data in digital
photographs [1, 2].

Component forensics can be classi ed into three main categories
based on the amount of available evidences:
(1) Intrusive forensics, wherein the forensic analysts can break the
device apart and analyze the intermediate signals and states for esti-
mating the component parameters;
(2) Completely non-intrusive forensics: In this case, the forensic an-
alysts do not have access to the device in hand, and only have some
sample output data provided to them. The task of the forensic ana-
lysts is to then devise methods to identify the algorithms and param-
eters employed in the internal components of the device solely based
on output data. These were studied in [1, 3];
(3) Semi non-intrusive forensics: This scenario is in between the
completely intrusive and the completely non-intrusive cases, whereby
the analysts have access to the device, and can design experiments
and choose appropriate inputs to the device to increase the accuracy
and overall con dence in parameter estimation without breaking the
device apart.

In this work, we consider the problem of semi non-intrusive
component forensics. Based on a detailed modeling of the imag-
ing process and knowledge of the possible algorithms employed in
such components as color interpolation and white balancing, we de-
velop a set of desirable conditions for a good input pattern and use
these guidelines to optimize the design of input pattern for semi non-
intrusive forensic analysis of these components. Our simulation re-
sults show that the overall accuracy in parameter estimations can
be improved signi cantly by this approach compared to completely
non-intrusive forensics.

To our best knowledge, this is the rst work to address the prob-
lem of semi non-intrusive component forensics. Related works fall
into two basic categories. In the forensics literature, there have
been works that aim to nd the parameters of post-camera process-
ing operations [4, 5] such as JPEG compression, resampling, and
brightness change; and to non-intrusively estimate the parameters of
camera components such as lens distortions, color lter array [1],
and color interpolation [1, 3]. However, the accuracy of these non-
intrusive techniques is limited by the nature of the available data. A
second group of prior art concerns television and camera manufac-
turing technologies. Among these works, there have been studies
that focus on designing test patterns to tune the parameter settings of
television sets by analyzing its response to speci c inputs [6]. How-
ever, these works are not intended for estimating the parameters of
internal device components.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we discuss the image capturing model for digital cam-
eras and present our problem formulation. Fig. 1 shows an image

II ­ 2251­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



Fig. 1. Image Capturing Model in Digital Cameras showing its
individual components

acquisition model of digital cameras. The light rays from a scene
pass through lens and optical lters, and are nally recorded by the
charge coupled device (CCD) detectors. Most digital cameras use
a color lter array (CFA) to sample the real-world scene. The CFA
consists of an array of color sensors, each of which captures the cor-
responding color of the real-world scene at sub-sampled sets of pixel
locations. To facilitate discussions, let S(., ., .) be the real-world
scene to be captured by the camera and let p(., .) be the CFA pattern
matrix. The CFA sampling converts the scene S into Sp satisfying

Sp(x, y, c) =

{
S(x, y, c), if p(x, y) = c,

0, otherwise.
(1)

After the data obtained from the CFA is recorded, the pixel val-
ues corresponding to the points where Sp(x, y, c) = 0 in (1) are
interpolated using its neighboring pixel values to obtain S(I)

p . The
speci c color interpolation algorithm is typically kept proprietary by
a camera manufacturer, and companies often employ different algo-
rithms. In our recent work [1], we showed that parameters of color
interpolation can be robustly estimated by approximating them by
linear models in different regions of the image. More speci cally,
we divide the image regions into three classes �m, (m = 1, 2, 3),
based on the gradient features in a local neighborhood, and model
interpolation in each region to be linear with coef cients α�m so
that

S(I)
p (x, y, c) =

∑
k,l

α�m(k, l, c)Sp(x− k, y − l, c) + n1(x, y, c),

(2)
Here, the summations over variables k and l are done in the regions
where the lterα�m(k, l, c) has support, and n1 represents the over-
all model- tting error.

Such processing operations as white balancing and color cor-
rection are performed by the camera after color interpolation to en-
sure that a white object in the scene appears white in a photograph.
White balancing operations are typically multiplicative [7, 8], and
each color in the photograph is multiplied by an appropriately cho-
sen constant in the camera color space. Using U to represent the
transformation matrix that is used to convert the RGB color coef -
cients to camera color space, the white balancing operation can be
modelled as

⎡
⎣ S

(wb)
p (x, y, 1)

S
(wb)
p (x, y, 2)

S(wb)(x, y, 3)

⎤
⎦ = U−1ΛU

⎡
⎢⎣
S

(I)
p (x, y, 1)

S
(I)
p (x, y, 2)

S
(I)
p (x, y, 3)

⎤
⎥⎦ , (3)

where S(wb)
p represents the white-balanced pixels, and the 3 × 3

diagonal matrix Λ denotes the white-balancing coef cients that are
chosen based on the lighting conditions of the scene1. In most com-
mercial cameras, white balancing is done in the XY Z color space

1Diagonal transformation matrix is preferred for Λ as it follows the Von-
Kries hypothesis[8], and has only 3 parameters to be estimated from the
scene.

Fig. 2. Sample pattern to identify interpolation type (from left to
right) (a) input image, (b) image obtained after non-adaptive inter-
polation; (c) image obtained after adaptive interpolation.

[7], and U in this case would correspond to the color transformation
from RGB to XY Z space. Some modern digital cameras may per-
form sensor sharpening, and appropriate modi cations are done to
the matrix U to include these effects. Note that U is tied to a cam-
era, while the value of Λ varies for each picture taken by the device.
Finally, the image may be JPEG compressed to reduce storage space.

For the problem of semi non-intrusive component forensics, we
assume that a forensic analyst has access to the camera and can per-
form testing in controlled conditions to determine the algorithms
and parameters of the imaging components, such as color interpo-
lation coef cients, {α�m}, and the white balancing parameters, U
and Λ. More speci cally, forensic analysts can design experiments
and choose the best input pattern that would enable them to esti-
mate the component parameters. We shall show through simulations
that with well-designed inputs, the overall estimation accuracy (in
terms of bias and variance of the estimator) can be improved, and
the amount of improvement depends on the nature of each process-
ing component.

3. CONSTRUCTING GOOD INPUT PATTERNS

In general, choosing the best input pattern depends on the nature of
the algorithms that we wish to identify. For digital cameras, there are
two main classes of color interpolation algorithms depending on the
handling of edge regions, namely, adaptive and non-adaptive meth-
ods [9]. Therefore, a pattern with sharp edges as shown in Fig. 2(a)
would be a good input to identify the interpolation category. The
corresponding images interpolated with non-adaptive and adaptive
methods are shown in Fig. 2(b) and (c), respectively. The gure
shows that there are signi cant artifacts for images interpolated us-
ing non-adaptive methods, while no such distortions are observed in
the images interpolated using edge adaptive techniques. This result
suggests that the input pattern in Fig. 2(a) would be a good choice
to distinguish between the two categories of interpolation. However,
this simple pattern may not be able to distinguish between different
adaptive methods that use different ltering coef cients for interpo-
lation.

Generalizing on this observation, we de ne a set of desired prop-
erties for an input pattern based on a detailed study of the imag-
ing process and knowledge of possible algorithms employed in each
processing component. We rst extend the pattern in Fig. 2(a) to
incorporate different types of directional edges (such as a converg-
ing edge pattern) to identify the color interpolation coef cients for
these types of regions. Chirp signals are included in the input pat-
tern to capture variations of the interpolation algorithms in frequency
domain. A chirp signal s(x, y) can be generated by s(x, y) =
Kcos(ax2 + by2), where K, a, and b are appropriate constants.
These signals provide a systematic methodology to construct sym-
metric circular patterns with gradually decreasing widths, and there-
fore help study the nature of interpolation methods in various fre-
quency bands.

Many cameras in the current market use the white-patch algo-
rithm or the grey-world methods for automatic white balancing. In

II ­ 226



Fig. 3. Proposed Input Pattern (best viewed on a color display)

the white patch algorithm, the white balancing (WB) parameters are
chosen to normalize the image pixels so that a white image appears
white in a digital photograph. On the other hand, the parameters
in grey-world methods are chosen to make the average pixel value
close to 128 in a 8-bit image. Based on this observation, we intro-
duce large sections of all-black and all-white regions with constant
intensity, and gradually varying grey-scale regions to enable nding
the parameters of WB algorithm. Finally, a gradually changing grey-
scale region and long straight lines are added to facilitate estimating
the parameters of gamma correction and lens distortion, respectively,
and to help align the image captured by the camera with the original
input pattern in the experiment.

A possible input pattern constructed based on the requirements
mentioned above is shown in Fig. 3. As can be seen from the g-
ure, it has chirp patterns at the center, and the wedge patterns have
been repeated twice to help provide more information about the vari-
ability in handling gradients along different directions. Gradually
changing smooth regions border the chirp patterns to help identify
the interpolation methods used in smooth regions. The image has
been post-processed by smoothening the hue.

4. SIMULATION RESULTS AND DISCUSSIONS

In this section, we examine the effectiveness of the proposed pat-
tern by analyzing the parameter estimation error, and compare the
results obtained with natural images under completely non-intrusive
forensics scenario. For our study, we consider color interpolation
and white balancing as examples for illustration.

Estimating Color Interpolation Coef cients: In the case of com-
pletely non-intrusive forensics, the analysts do not have access to the
cameras, and therefore do not have control over the nature of inputs.
Their forensic results are constrained by the image content provided
to them. In order to simulate the non-intrusive forensic scenario for
comparison studies, we select 20 representative images correspond-
ing to different natural scenes. These images are rst down-sampled
to remove the effects of previously applied ltering and interpolation
operations, sampled on the Bayer lter array, and then interpolated
using six different interpolation algorithms to reproduce the scene
capture process in cameras. The interpolation methods that we con-
sider are: (a) Linear types of interpolation, including Bilinear and
Bicubic, and (b) Non-linear interpolation methods including Smooth
Hue, Median Filter based approach, Gradient based, and Adaptive
Color Plane [9]. These 120 images obtained using these six differ-
ent interpolation techniques form the non-intrusive forensic dataset.

For each image in the dataset, we estimate the interpolation co-
ef cients from each type of region �m by solving the least squares
problem [1], re-interpolate the image using the estimated coef cients,
and nd the estimation error. We compare the estimation results ob-
tained semi non-intrusively using the proposed pattern with the ones
got by employing natural images under non-intrusive scenarios. Fig.
4(a) and (b) compare the results in terms of the mean and variance
of the estimation error, respectively, for the two linear and four non-
linear interpolation algorithms. As can be seen in the gure, the pro-
posed pattern gives an average estimation error close to 0.007 that
is much lower compared to natural images for which the values are
around 0.015−0.03. This suggests the effectiveness of the proposed
pattern for improving the estimation of the color interpolation coef -
cients and demonstrates the performance gains of semi non-intrusive
forensics over the completely non-intrusive scenario.

Estimating White Balancing Parameters: It is dif cult to non-
intrusively estimate the white balancing parameters U and Λ accu-
rately from the output images without the knowledge of the actual
raw values captured by the sensor. However, they can be semi non-
intrusively estimated. If the digital camera can produce raw images,
the pixel values as captured by the CCD sensors can be read out
from the captured image. These values can be used alongwith the
actual white balanced output to estimate U and Λ by solving (3).
For digital cameras that do not produce the raw format, the values
of U can be estimated by a two-step process. The rst step ob-
tains two images with approximately the same raw data but differ-
ent white balanced processed versions. This can be done by manu-
ally choosing different built-in white balancing options while taking
the pictures, for example, one image with white balancing setting
xed to “tube light” and another with “tungsten light.” Let the white

balanced RGB pixel values in the rst image be denoted as R(1)
wb ,

G
(1)
wb , and B

(1)
wb and let R(2)

wb , G
(2)
wb , and B

(2)
wb represent the corre-

sponding values in the second image. Denoting the corresponding
white balancing constants employed in generating the two images
by Λ(1) and Λ(2), respectively, we can show that [R(2)

wb G
(2)
wb B

(2)
wb ]

T

= A1→2[R
(1)
wb G

(1)
wb B

(1)
wb ]

T , where A1→2 = U−1(Λ(2)/Λ(1))U .
Here, the notation Λ(2)/Λ(1) represents a diagonal matrix with each
diagonal element obtained as an element-wise division of the corre-
sponding terms in Λ(2) and Λ(1).

We test our proposed estimation techniques for simulated data
and study its robustness to JPEG compression. To reproduce the ex-
perimental setup, we generate two images by applying two different
WB parameters Λ (corresponding to the ones used for daylight and
tungsten light settings) and with the same U used in the Canon EOS
Digital Rebel camera. The white balanced images are then JPEG
compressed with different quality factors, and the compressed im-
ages are used in estimation. The error in estimating A1→2 is com-
puted as the squared Frobenius norm between the actual and the es-
timated values, and is shown in Fig. 5(a) as a function of the JPEG
quality factor. The gure shows the error for the synthetic pattern
alongside the average error recorded from 20 natural images. The
error reduces as the quality factor increases for both natural images
and the designed pattern as expected. We also observe that the over-
all value of error for the designed pattern is an order of magnitude
lower than that obtained for natural images. This result demonstrates
the superiority of the proposed pattern for semi non-intrusive estima-
tion of white balancing parameters.

Eigen value decomposition is applied to the estimated matrix
A1→2, and the eigenvector matrix Ûnorm is computed with each of
the eigenvectors normalized to unit energy. The Frobenius norm be-
tween the actual normalized matrix Unorm and the estimated matrix
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Fig. 4. Results for Color Interpolation showing (a) mean and (b) variance of estimation error.
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Fig. 5. Results for White balancing showing the error in estimation of (a) A1→2 and (b) normalized transformation matrix Unorm.

is shown in Fig. 5(b) as a function of the JPEG quality factor. We no-
tice that error values are lower than 0.1, suggesting the effectiveness
of the proposed pattern for estimating the WB parameter Unorm.
Similar results were also obtained when tested with camera data.

Comparing Fig. 4(a) and Fig. 5(a), we also nd that while the
estimation results obtained in the semi non-intrusive scenario with
the proposed pattern are better than the ones obtained using natural
images in both cases, the performance improvement is more signif-
icant in the case of white balancing than for the case of color inter-
polation. This result can be attributed to the multiplicative nature of
the WB operation (see (3)), that requires more information to pro-
duce more accurate estimates, and such additional information may
be available in controlled test conditions in a semi non-intrusive sce-
nario. These results also suggest that the performance improvements
obtained with semi non-intrusive forensics depends on the nature of
processing that is to be identi ed.

5. CONCLUSIONS

In this paper, we consider the problem of semi non-intrusive foren-
sic analysis of digital cameras. The proposed framework assumes
the forensic analyst has access to the camera, and can therefore de-
sign controlled test conditions and better inputs to improve the over-
all estimation results. We identify the basic requirements of a good
input pattern, and construct an input pattern satisfying these condi-
tions. We present a systematic methodology to estimate the param-
eters of the cameras’ color interpolation and white balancing algo-
rithms, and show through simulations that the proposed input pat-
tern in controlled testing conditions provides an overall higher ac-
curacy in parameter estimation. Comparisons with natural images
obtained under non-intrusive forensic conditions suggest the need
for robust semi non-intrusive forensics, and the superiority of the

synthesized input pattern for parameter estimation. Simulation re-
sults also demonstrate that the performance improvements obtained
with semi non-intrusive forensics depends to a great extent on the
nature of the algorithms to be estimated. The features obtained from
such semi non-intrusive analysis provide useful evidence to analyze
infringement/licensing, to construct good training sets for camera
identi cation, and to provide ground-truth information for tamper-
ing detection.
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