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Abstract—Rapid technology development and the widespread
use of visual sensors have led to a number of new problems
related to protecting intellectual property rights, handling patent
infringements, authenticating acquisition sources, and identifying
content manipulations. This paper introduces nonintrusive com-
ponent forensics as a new methodology for the forensic analysis
of visual sensing information, aiming to identify the algorithms
and parameters employed inside various processing modules of
a digital device by only using the device output data without
breaking the device apart. We propose techniques to estimate
the algorithms and parameters employed by important camera
components, such as color filter array and color interpolation
modules. The estimated interpolation coefficients provide useful
features to construct an efficient camera identifier to determine the
brand and model from which an image was captured. The results
obtained from such component analysis are also useful to examine
the similarities between the technologies employed by different
camera models to identify potential infringement/licensing and to
facilitate studies on technology evolution.

Index Terms—Camera identification, component forensics,
digital forensic signal processing, evolutionary forensics, infringe-
ment/licensing forensics, nonintrusive image forensics.

I. INTRODUCTION

VISUAL sensor technologies have experienced tremendous
growth in recent decades. The resolution and quality of

electronic imaging has been steadily improving, and digital
cameras are becoming ubiquitous. The shipment of digital
cameras alone has grown from U.S.$46.4 million in 2003 to
U.S.$62 million in 2004, forming an approximately U.S.$15
billion market worldwide [1]. Digital images taken by various
imaging devices have been used in a growing number of appli-
cations, from military and reconnaissance to medical diagnosis
and consumer photography. Consequently, a series of new
forensic issues has arisen amidst such rapid advancement and
widespread adoption of imaging technologies. For example,
one can readily ask what kinds of hardware and software com-
ponents as well as their parameters have been employed inside
the devices? Given a digital image, which imaging sensor or
which brand of sensors was used to acquire the image? What
kinds of legitimate processing and undesired alteration have
been applied to an image since it leaves the device?
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There are various ways to address the questions at hand. The
most challenging, yet powerful approach is to answer them
using the clues obtained from the output images without having
access to the devices—that is, by a nonintrusive approach.
In this paper, we propose to develop a new forensic method-
ology called nonintrusive component forensics, which aims at
identifying the components inside a visual device solely from
its output data by inferring what algorithms/processing are
employed and estimating their parameter settings. Furthermore,
building upon component forensics, we extend these ideas to
address a number of larger forensic issues in discovering tech-
nology infringement, protecting intellectual property rights,
and identifying acquisition devices.

For centuries, intellectual property protection has played a
crucial role in fostering innovation, as it has been known for
“adding the fuel of interest to the fire of genius” since the time of
Abraham Lincoln. Fierce competition in the electronic imaging
industry has led to an increasing number of infringement cases
filed in U.S. courts. The remunerations awarded to successful
prosecutions have also grown tremendously, sometimes in the
range of billions of dollars. For example, the Ampex Corpora-
tion has more than 600 patents related to digital cameras; and
based on one of the patents, it has received more than U.S.$275
million compensation from lawsuits and settlements involving
patent infringement cases with many digital camera vendors [2].

According to the U.S. patent law [3], infringement of a patent
consists of the unauthorized making, using, offering for sale, or
selling any patented invention during the term of its validity.
Patent infringement is considered one of the most difficult to
detect, and even harder to prove in the court of law. The burden
of proof often lies on patent holders, who are expected to pro-
vide solid evidence to substantiate their accusations. A common
way to perform infringement analysis is to examine the design
and implementation of a product and to look for similarities
with what have been claimed in existing patents, through some
type of reverse engineering. However, this approach could be
very cumbersome and ineffective. For example, it may involve
going over VHDL design codes of an integrated-circuit (IC)
chip in charge of core information processing tasks, which is
a daunting task even to the most experienced expert in the field.
Such analysis is often limited to the implementation of an idea
rather than the idea itself and, thus, could potentially lead to
misleading conclusions [4], [5]. Component forensics is an im-
portant methodology to detect patent infringement and protect
intellectual property rights, by obtaining evidence about the al-
gorithms employed in various components of the digital device.

Component forensics also serves as a foundation to establish
the trustworthiness of imaging devices. With the fast devel-
opment of tools to manipulate multimedia data, the integrity
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of both content and acquisition device has become particu-
larly important when images are used as critical evidence in
journalism, reconnaissance, and law-enforcement applications.
For example, information about hardware/software modules
and their parameters in a camera can help to build camera
identification systems. Such systems would provide useful
acquisition forensic information to law enforcement and in-
telligence agencies about which camera or which brand of
camera is used to acquire an image. Additionally, component
forensics helps establish a solid model on the characteristics
of images obtained directly from a camera. This, in turn, will
facilitate tampering forensics to determine if there has been any
additional editing and processing applied to an image since it
leaves the camera.

We can classify component forensics into three main cate-
gories based on the nature of the available evidence:

1) Intrusive Forensics: A forensic analyst has access to the
device in question and can disassemble it to carefully ex-
amine every part, including analyzing any available inter-
mediate signals and states to identify the algorithms em-
ployed in its processing blocks.

2) Semi Nonintrusive Forensics: An analyst has access to
the device as a black box. He or she can design appropriate
inputs to be fed into the device so as to collect forensic
evidence about the processing techniques and parameters
of the individual components inside.

3) Nonintrusive Forensics: An analyst does not have access
to the device in question. He or she is provided with some
sample data produced by the device, and studies them to
gather forensic evidence.

In this paper, we illustrate the proposed nonintrusive com-
ponent forensic methodology on visual sensors, while the sug-
gested techniques can be appropriately modified and extended
to other types of acquisition models, and sensing technologies.1

We focus on important camera components, such as the color
filter array (CFA) and the color interpolation algorithms. Our
proposed techniques aim to determine the parameters of CFA
and the interpolation algorithms using only sample output im-
ages obtained over diverse and uncontrolled input conditions.
The features and acquisition models that we develop can be
used to construct an efficient camera identifier that determines
the brand/type of camera used to take the image. Further, our
forensic algorithms can quantitatively help ascertain the similar-
ities and differences among the corresponding camera compo-
nents of different cameras. For devices from different vendors,
the digital forensic knowledge obtained from such analysis can
provide clues and evidence on technology infringement or li-
censing, which we shall refer to as infringement/licensing foren-
sics and will assist the enforcement of intellectual rights protec-
tion and foster technology innovation. For devices of the same
brand but of different models released at different years and/or
at various price tiers, our analysis forms a basis of evolutionary
forensics, as it can provide clues on technology evolution.

This paper is organized as follows. After reviewing related
works in Section II, we present the image capturing process in

1For example, our recent work examined a modified image acquisition model
that is tailored to digital scanners and has obtained good forensics results for
scanners [41].

digital cameras and our problem formulation in Section III. In
Section IV, we present methods to identify the CFA pattern and
the color interpolation algorithm. We then illustrate proofs of
concept with synthetic data in Section V-A and present results
with a real data set of 19 cameras in Section V-B. The esti-
mated model parameters are used to construct a camera iden-
tifier and to study the similarities and differences among the
cameras in Section VI. Section VII generalizes the proposed
methods to extend to other devices. Final conclusions are drawn
in Section VIII.

II. RELATED PRIOR WORKS ON FORENSIC ANALYSIS

While a growing amount of signal processing research in re-
cent years has been devoted to the security and protection of
multimedia information (e.g., through encryption, hashing, and
data embedding), forensic research on digital visual devices is
still in its infancy. Related prior art on nonintrusive image foren-
sics falls into the following two main categories.

In the forgery detection literature, there have been works that
consider a tampered picture as an image that has undergone a
series of processing operations. Based on this observation, sev-
eral methods were proposed to explore the salient features asso-
ciated with each of these tampering operations, such as resam-
pling [6], luminance, or lighting inconsistencies [7], copy-paste
operations [8], irregular noise patterns [9], and alterations in the
correlation introduced by color interpolation [10]. For image
compression, such as JPEG that involves quantization in the
discrete cosine transform (DCT) domain, the statistical analysis
based on binning techniques has been used to estimate the quan-
tization matrices [11], [12]. Higher order statistics, such as the
bispectrum, have been proposed to identify contrast changes,
gamma correction [13], and other nonlinear point operations on
images [14]; wavelet-based features have been used to detect
image tampering [15] and identify photorealistic images [16],
and physics-motivated features have been introduced to distin-
guish photographic images and computer graphics [17]. Most of
these techniques mentioned before primarily target finding the
processing steps that occur after the image has been captured by
the camera, and are not for finding the algorithms and parame-
ters used in various components inside the digital camera.

A second group of prior art on nonintrusive image forensics
concerns camera identification. Camera pixel defects [18], pat-
tern noise associated with the nonuniformity of dark currents on
camera CCDs [19], and pattern noise [20] inherent to an image
sensor have been recently used as unique camera identifiers.
While useful in some forensic tasks when a suspicious camera
is available for testing, this approach does not provide informa-
tion about the internal components and cannot be used for iden-
tifying common features tied to the same camera models and
makes. Another recent approach employs statistics from visu-
ally similar images taken with different cameras to train classi-
fiers for identifying the camera source [21], [22]. Features, such
as average pixel values, RGB pairs correlation, and neighbor
center of mass are used in [21]. In [22], the authors employ the
Expectation–Maximization algorithm from [6], [10] to extract
spectral features related to color interpolation and use these fea-
tures to build a camera-brand classifier. Although good results
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Fig. 1. (a) Image capturing model in digital cameras. (b) Sample color filter
arrays.

were reported in distinguishing pictures taken in controlled sce-
narios with three different cameras, its ability to differentiate
cameras needs to be further investigated when under nonin-
trusive testing conditions and in the presence of compression
noise. Further, the classification results do not provide knowl-
edge on the techniques employed in various processing mod-
ules inside the camera. As shall be seen from our results later
in the paper, by acquiring information about the CFA pattern
and the interpolation algorithms used in a camera, our proposed
forensic methodology can support more accurate identification
for a large number of cameras.

III. IMAGE CAPTURING MODEL AND PROBLEM FORMULATION

In this section, we discuss the image capturing model by dig-
ital cameras and present our problem formulation. As illustrated
by the image capturing model in Fig. 1(a), light from a scene
passes through a lens and optical filters, and is finally recorded
by an array of sensors. Few consumer-level color cameras di-
rectly acquire full-resolution information for all three primary
colors (usually red, green, and blue).2 This is not only because of
the high cost in producing a full-resolution sensor for each of the
three colors, but also due to the substantial difficulty involved
in perfectly matching the corresponding pixels and aligning the
three color planes together. For these reasons, most digital cam-
eras use a CFA to sample real-world scenes.

A CFA consists of an array of color sensors, each of which
captures the corresponding color of the real-world scene at an
appropriate pixel location. Some examples of CFA patterns are
shown in Fig. 1(b). The Bayer pattern, shown in the left corner
of Fig. 1(b), is one of the most popular CFA patterns. It uses
a square lattice for the red and blue components of light and a
diagonal lattice for the green color. The sensors are aligned on
a square grid with the green color repeated twice compared to
the corresponding red and blue sensors. The higher rate of sam-
pling for the green color component enables to better capture
the luminance component of light and, thus, provides better pic-
ture quality [23]. After CFA sampling, the remaining pixels are
interpolated using the sampled data. Color interpolation (also
known as demosaicking) is an important step to produce an
output image with full resolution for all three color components
[10], [24]. After interpolation, the three images corresponding
to the red, green, and the blue components go though a post-
processing stage. In this stage, various types of operations, such
as white balancing, color correction, color matrixing, gamma

2New digital cameras employing the Foveon X3 sensor, such as Sigma SD9
and Polaroid x530, capture all three colors at each pixel location [42].

correction, bit-depth reduction, and compression may be per-
formed to enhance the overall picture quality and to reduce
storage space.

To facilitate discussions, let be the real-world scene to be
captured by the camera and let be the CFA pattern matrix.

can be represented as a 3-D array of pixel values of
size , where and represent the height and the
width of the image, respectively, and denotes the number
of color components (red, green, and blue). The CFA sampling
converts the real-world scene into a 3-D matrix of the form

if ,
otherwise.

(1)

After the data obtained from the CFA is recorded, the interme-
diate pixel values correspond to the points where

in (1) are interpolated using its neighboring pixel values to ob-
tain .

The performance of color interpolation directly affects the
quality of the image captured by a camera [23]–[25]. There have
been several commonly used algorithms for color interpolation.
These algorithms can be broadly classified into two categories,
namely, nonadaptive and adaptive algorithms. Nonadaptive al-
gorithms apply the same type for interpolation for all pixels in
a group. Some typical examples of nonadaptive algorithms in-
clude the nearest neighbor, bilinear, bicubic, and smooth hue
interpolations [24]. Traditionally, the bilinear and bicubic in-
terpolation algorithms are popular due to their simplicity and
ease in hardware implementation. However, these methods are
known to have significant blurring along edge regions due to av-
eraging across edges. More computationally intensive adaptive
algorithms employing edge directed interpolation, such as the
gradient based [26] and the adaptive color plane interpolation
[27], have been proposed to reduce the blurring artifacts. The
details of several popular interpolation methods are reviewed in
Appendix A. The CFA interpolated image undergoes postpro-
cessing to produce the final output image.

The problem of component forensics deals with a method-
ology and a systematic procedure to find the algorithms and pa-
rameters employed in the various components inside the device.
In this work, we consider the problem of nonintrusive forensic
analysis where we use sample images obtained from a digital
camera under diverse and uncontrolled scene settings to deter-
mine the algorithms (and their parameters) employed in internal
processing blocks. In particular, given an output image , we
focus on finding the CFA pattern and the color interpolation al-
gorithms, and show that the forensic analysis results of these
components can be used as a first step in reverse engineering, the
making of a digital camera. In the subsequent sections, we de-
scribe our proposed methodology and algorithms, and demon-
strate their effectiveness with detailed simulation results and
case studies.

IV. FORENSIC ANALYSIS AND PARAMETER

ESTIMATION OF CAMERA COMPONENTS

In this section, we develop a robust and nonintrusive algo-
rithm to jointly estimate the CFA pattern and the interpolation
coefficients by using only the output images from cameras. Our
algorithm estimates the color interpolation coefficients in each
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local region through texture classification and linear approxima-
tion, and finds the CFA pattern that minimizes the interpolation
errors [28].

More specifically, we establish a search space of CFA patterns
based on common practice in digital camera design. We observe
that most commercial cameras use an RGB type of CFA with a
fixed periodicity of 2 2 that can be represented as

...
...

. . .

where is the color of the corresponding sensor
at a particular pixel location. In typical digital cameras, each of
the three types of color sensors (R, G, and B) appears at least
once in a 2 2 cell, resulting in a total of 36 possible patterns
in the search space, denoted by . For every CFA pattern in
the search space , we estimate the interpolation coefficients in
different types of texture regions of the image by fitting linear
filtering models. These coefficients are then used to re-estimate
the output image , and find the interpolation error

. We now present the details of the proposed algorithm.

A. Texture Classification and Linear Approximation

We approximate the color interpolation to be linear in chosen
regions of the image [29]. We divide the image into three kinds
of regions based on the gradient features in a local neighbor-
hood. Defining , the horizontal and
vertical gradients at the location can be found from the
second-order gradient values using

(2)

(3)

The image pixel at location is classified into one of the
three categories.

1) Region contains those parts of the image with a sig-
nificant horizontal gradient for which

, where is a suitably chosen threshold.
2) Region contains those parts of the image with a sig-

nificant vertical gradient and is defined by the set of
points for which .

3) Region consists of the remaining parts of the image
which are mostly smooth.

Using the final camera output and the assumed sample
pattern , we identify the set of locations in each color of that
are acquired directly from the sensor array. We approximate the
remaining pixels to be interpolated with a set of linear equations
in terms of the colors of the pixels captured directly. In this
process, we obtain nine sets of linear equations corresponding
to the three types of regions and three color
channels (R, G, B) of the image.

Let the set of equations with unknowns for a partic-
ular region and color channel be represented as , where

of dimension and of dimension specify
the values of the pixels captured directly and those interpolated,

respectively, and of dimension stands for the interpo-
lation coefficients to be estimated. To cope with possible noisy
pixel values in and due to other in-camera operations fol-
lowing interpolation (such as JPEG compression), we employ
singular value decomposition [30] to estimate the interpolation
coefficients. Let and represent the ideal values of and

in the absence of noise, and the errors in and be denoted
by and , respectively, so that

The values of are found by solving the minimization problem

subject to the constraint that . Equivalently, this
can be written as

(4)

Here, denotes the Frobenius norm of the matrix, so that

(5)
The solution to the minimization problem can be written as

(6)

where represents the right singular vector of
the combined matrix .

B. Finding the Interpolation Error and the CFA Sampling
Pattern

Once we find the interpolation coefficients in each region, we
use them to reinterpolate the sampled CFA output in the corre-
sponding regions to obtain an estimate of the final output
image . Here, the superscript denotes that the output esti-
mate is based on the choice of the CFA pattern . The pixel-wise
difference between the estimated final output and the actual
camera output image is . The interpolation error
matrix of dimension is obtained for all candi-
date search patterns . Denoting the interpolation error in
the red color component as and so on, the final error
is computed by a weighted sum of the errors of the three color
channels

(7)

The CFA pattern that gives the lowest
overall absolute value of the weighted error is chosen as the es-
timated pattern. The constants , , and denote the cor-
responding weights used for the three color components (red,
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Fig. 2. Sorted detection statistics in terms of normalized overall error for dif-
ferent candidate search patterns.

green, and blue), and their values are based on the relative sig-
nificance of the magnitude of errors in the three colors. In our ex-
periments, we choose and to give more
importance to the error in the green channel as it provides more
information about the luminance values of the pixel [23]. The
interpolation coefficients corresponding to the estimated CFA
pattern for all three types of regions and the three color chan-
nels are also obtained in this process. These coefficients can then
be directly used to obtain the parameters of the components in
the imaging model, as will be shown later in Section V-B. They
can also be processed to obtain further forensic evidence, as will
be demonstrated by several case studies in Section VI.

C. Reducing the Search Space for CFA Patterns

The search space for the CFA patterns can be reduced using a
hierarchial approach. As an example, we synthetically generate
a 512 512 image, sample it on the Bayer pattern, and interpo-
late using the bicubic method. In Fig. 2, we show the detection
statistics given by

(8)

and sorted in ascending order for the 36 different CFA patterns.
In this case, the Bayer pattern gave the lowest interpolation error
and was correctly identified. A closer look at the results in Fig. 2
reveals that the detection statistics form three separate clusters,
with some values close to 0, some around 0.3–0.4, and others
close to 0.7. A similar trend is also observed for real camera
data and other synthetically generated images sampled on dif-
ferent CFA patterns and interpolated with the six representative
interpolation techniques reviewed in Appendix A. This observa-
tion forms the basis for the heuristic discussed in this subsection
to reduce the search space of the CFA patterns.

Fig. 3 shows sample patterns from these three clusters.
Cluster 1 includes all 2 2 patterns that have the same color
along diagonal directions (either along the main diagonal or
offdiagonal), chosen among the three colors (red, green, or

Fig. 3. Sample CFA patterns from the three clusters.

blue). The remaining two spots can be filled in two different
ways, giving a total of 12 such patterns in the first cluster.
Cluster 2 and Cluster 3 consist of patterns that have the same
color along the horizontally (or vertically) adjacent blocks of
the 2 2 grid. Cluster 2 has either red or blue color repeated
to produce a total of 16 possible patterns. The remaining eight
patterns with green appearing twice form Cluster 3. In this
example, the Bayer pattern is the actual color filter array and the
patterns from the first cluster give lower errors compared to the
other clusters. The patterns from Cluster 3 give the highest error
values because the error in the green color channel is penalized
more with the weight assignment and
in (7).

The observation of clustering of patterns into three groups
helps us develop a heuristic to reduce the search space of CFA
patterns. We first divide the 36 patterns into three groups and
choose one representative pattern from each of the three classes.
The interpolation error is then estimated for these representative
patterns to find the cluster that the actual CFA pattern is most
likely to belong. Finally, a full search is performed on the chosen
cluster to find the pattern with the lowest interpolation error.
The number of searches required to find the optimal solution
can be reduced to around 10. If additional information about the
patterns is available, it may be used to further reduce the search
space. For instance, a forensic analyst may choose to test only
on those CFA patterns that have two green color components if
he or she has such prior knowledge about the visual sensor.

D. Evaluating Confidence in Component Parameter
Estimation

In addition to identifying the parameters of the internal
building blocks of the camera, it is also important to know the
confidence level on the estimation result. A higher confidence
value in estimation would increase the trustworthiness of the
decision made by a forensic analyst.

We propose an entropy-based metric to quantify the confi-
dence level on the estimation result. Given a test image, we es-
timate its interpolation coefficients and provide it as an input to
a -class SVM classifier that is trained on the coefficients of the

candidate interpolation methods. The probability that a given
test sample comes from the class is estimated from the soft
decision values using the probabilistic SVM framework [31],
and the test data point is classified into class if is larger than
the other probabilities. Some details of the probabilistic SVMs
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are included in Appendix B for the readers’ reference. The con-
fidence score on the decision is then defined as

(9)

where is defined as the inverse binary entropy func-
tion such that for

. The argument to the function in (9) measures the
entropy difference between the distribution and a discrete
uniform distribution, and the final value of is normalized to
the range of [0, 1] to represent a probability.

To verify that the proposed metric can reflect the confidence
level, we examine two extreme cases. When ,
the decision of choosing the first class is made with a very high
confidence and . And when

where is a
small positive real number, there is an almost equal probability
that the given data sample comes from any of the classes. In
this case, the decision is made with very low confidence and
also approaches zero. For other values of between these two
extreme cases, the value of would lie in the interval [0, 1] with
a higher value, indicating more confidence in the decision.

V. EXPERIMENTAL RESULTS

A. Simulation Results With Synthetic Data

We use synthetic data constructed from 20 representative im-
ages to study the performance of the proposed techniques. The
original images are first downsampled to remove the effect of
previously applied filtering and interpolation operations. They
are then sampled on the three different CFA patterns as shown
in Fig. 1(b). Each sampled image is interpolated using one of
the six interpolation methods reviewed in Appendix A, namely,
1) bilinear; 2) bicubic; 3) smooth hue; 4) median filter; 5) gra-
dient based; and 6) adaptive color plane. Thus, our total dataset
contains images, each of size 512 512.

1) Simulation Results Under No Postprocessing: We test the
proposed CFA pattern and color interpolation identification al-
gorithms on this synthetic dataset. In the noiseless case without
postprocessing, we observe no errors in estimating the CFA pat-
tern. We use a 7 7 neighborhood to estimate the interpolation
coefficients for the three color components in the three types
of texture regions, and pass it to a classifier to identify the in-
terpolation algorithm. A support vector machine (SVM) classi-
fier with a third-degree polynomial kernel [32], [33] is used to
identify the interpolation method. We randomly choose 8 out
of the 20 images from each of the six interpolation techniques
as ground truth for training and the remaining 12 images for
testing. We repeat the experiment 500 times with a random set of
images each time. The classifier is 100% accurate in identifying
the correct color interpolation algorithm without any errors.

2) Simulation Results With Postprocessing: As mentioned
before, postprocessing, such as color correction and compres-
sion, is commonly accomplished in nearly all commercial cam-
eras. Therefore, to derive useful forensic evidence from output

images, it is very important that the proposed methods be ro-
bust to the common postprocessing operations performed in
cameras.

In this work, we primarily focus on JPEG compression and
additive noise, and study the performance under these distor-
tions. Other postprocessing operations, such as color correction
and white balancing, are typically multiplicative, where the final
image is obtained by multiplying the color-interpolated image
by appropriately chosen constants in the camera color space.
In most commercial cameras, white balancing is performed in
the color space [34], and the inverse transformation may
be applied before estimating the color interpolation coefficients.
The multiplicative factors used in white balancing operations
operate on each color channel separately [35] and, therefore,
white balancing operations do not significantly affect our solu-
tion of the color interpolation coefficients. Gamma correction
can be estimated from the final output images [13] and can be
undone before computing the interpolation coefficients. For the
results presented in this subsection, we directly obtain the co-
efficients from the output images and do not perform inverse
gamma correction based on the estimated values of gamma.
Later in Section V-B, we show that the estimation results are
robust to gamma correction distortions.

a) Performance Results Under JPEG Compression:
JPEG compression is an important postprocessing operation
that is commonly done in cameras. The noise introduced by
compression could potentially result in errors in estimating
the color interpolation coefficients and the CFA pattern. We
test the proposed CFA pattern identification algorithm with the
synthetic data obtained under different JPEG quality factors

. We find that in all cases, the estimator
gives very good results and the correct CFA pattern is always
identified.

Next, we study the accuracy in identifying the color interpo-
lation when the synthetically generated images are JPEG com-
pressed. Here, we consider two possible scenarios. In the first
case, a forensic analyst does not have access to the camera(s)
and, therefore, does not have control over the input(s) to the de-
vice. He or she makes a judgement based on the forensic evi-
dence obtained from the images submitted for trial. In this sce-
nario, the pictures obtained with different interpolation methods
would correspond to different scenes, which we shall call the
multiple-scene case. The performance of the proposed color in-
terpolation identification for the multiple-scene case at different
JPEG quality factors is shown in Fig. 4(a). Here, we use a total
of 12 images (two distinct images for each of the six interpo-
lation methods) for training, and test with the remaining eight
images under each interpolation ( in total). The ex-
periment is repeated 500 times by choosing a random training
set each time. We observe that the average percentage of images
for which the interpolation technique is correctly identified is
around 95%–100% for moderate-to-high JPEG quality factors
of 80–100 and the average performance reduces to 80%–85%
for quality factors from 50 to 80.

Alternatively, if a forensic analyst has access to the camera,
he or she can perform controlled testing by choosing the input
to the cameras so as to reduce the impact of the input’s variation
on the forensic analysis. In this scenario, the analyst may con-
sider taking similar images with all of the cameras under study
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Fig. 4. Fraction of images for which the color interpolation technique is correctly identified under different JPEG compression quality factors for (a) the multiple-
scene case and (b) the single-scene case. The testing results here are for the synthetic dataset.

Fig. 5. Fraction of images for which the color interpolation technique is correctly identified under different noise PSNRs for (a) the multiple-scene case and (b) the
single-scene case. The testing results here are for the synthetic dataset.

in order to improve the estimation accuracy and increase the
confidence level on his or her final judgement. We call this situ-
ation the single-scene case. The single-scene case corresponds
to the semi nonintrusive forensic analysis discussed earlier in
Section I. The performance of the proposed color interpola-
tion technique for this case for different JPEG quality factors
is shown in Fig. 4(b). Here, we use eight images under the six
interpolation techniques for training (48 in total) and the 72
remaining images for testing. We observe that for most JPEG
quality factors, the average percentage of images for which the
color interpolation technique is correctly identified is around
96% and, thus, the forensic decision can be made with higher
confidence compared to the multiple-scene case. The accuracy
can be further improved using more images with representative
characteristics for training. This suggests that with an increasing
number of well-designed image inputs to the system, the detec-
tion performance can be enhanced.

b) Performance Results Under Additive Noise: Additive
noise can be used to model other kinds of random postpro-
cessing operations that may occur during the scene capture

process. In order to study the noise resilience of a forensics
system, we test the proposed CFA pattern identification algo-
rithm with the images obtained under different noise levels
with peak signal-to-noise ratios (PSNRs) of 15, 20, 30, and
40 dB, respectively. The correct CFA pattern was identified in
all but one case, and the only error occurred at an extremely
low PSNR of 15 dB for an image interpolated with the adaptive
color plane method. Even in this case, the correct pattern came
in the top three results.

We then study the identification performance of the color in-
terpolation method under additive noise. The performance for
synthetic data, averaged over 500 iterations, for the multiple-
scene and the single-scene case are shown in Fig. 5(a) and (b),
respectively. We observe that there is around 90% accuracy for
the multiple-scene case and it increases to around 95% for the
single-scene scenario.

B. Results on Camera Data

A total of 19 camera models as shown in Table I are included
in our experiments. For each of the 19 camera models, we have
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TABLE I
CAMERA MODELS USED IN EXPERIMENTS

Fig. 6. Super CCD sensor pattern.

collected about 40 images. The images from different camera
models are captured under uncontrolled conditions-different
sceneries, different lighting situations, and compressed under
different JPEG quality factors as specified by default values in
each camera. The default camera settings (including image size,
color correction, auto white balancing, JPEG compression, etc.)
are used in image acquisition. From each image, we randomly
choose five nonoverlapping 512 512 blocks per image and
use them for subsequent analysis. Thus, our data base consists
of a total of 3800 different 512 512 pictures with 200 samples
for each of the 19 camera models.

Note that all of the cameras in our data base use RGB type of
the CFA pattern with red, green, and blue sensors. The search
space for CFA in our experiments focuses on such RGB-type
CFA since it has been widely employed in digital camera design
and most cameras in the market currently use this pattern or
its variation. There are a few exceptions in CFA designs. For
example, some models use the CMYG type of CFA that captures
the cyan, magenta, yellow, and green components of light [24].
Our proposed algorithms may be extended to identify CMYG-
type CFA patterns by incorporating an appropriate set of CMYG
combinations in the search space.

Among RGB-type CFA patterns, several layouts of the three
types of color filters have been used in practice. The 2 2 square
arrangement is the most popular and most digital cameras utilize
a shifted variation of the Bayer pattern to capture the real-world
scene. Recently introduced super CCD cameras [36] have sen-
sors placed as shown in Fig. 6. To test the performance of the
proposed algorithms to such cameras, we include images from
Fujifilm Finepix A500 (camera 17) that uses super CCD [36] in
our data base.

As an initial step, we try to estimate the CFA pattern from
the output images using the algorithm described in Section IV.
The estimation results show with high confidence that all of the
cameras except Fujifilm Finepix A500 (camera 17) use shifted
versions of the Bayer color filter array as their CFA pattern. For
instance, the estimated 2 2 CFA that minimized the fitting

Fig. 7. Sample CFA patterns for (a) Canon EOS digital rebel and (b) Fujifilm
Finepix S3000.

errors on JPEG images from Canon EOS Digital Rebel (camera
6) and the Fujifilm Finepix S3000 (camera 16) are shown in
Fig. 7(a) and (b), respectively. The estimation results perfectly
match these cameras’ ground-truth data obtained by reading the
headers of the raw images files produced by the two cameras.

When testing the images from Fujifilm Finepix A500 (camera
17) with the same 36 square patterns in the CFA pattern search
space, we notice that the best 2 2 pattern in the search space
is still a shifted version of the Bayer pattern. However, we ob-
serve that the minimum error , as given by (7), is larger than the
ones obtained from other square-CFA cameras. Therefore, the
overall decision confidence is lower for this super CCD camera
compared to the other cameras in the data base. Further, we also
find that the CFA pattern estimation results are not consistent
across different images taken with the same camera (i.e., dif-
ferent images from Fujifilm Finepix A500 give different shifted
versions of the Bayer pattern as the estimated CFA). Such incon-
sistencies in the results, along with lower confidence in param-
eter estimation, could be an indication that the camera does not
employ a square CFA pattern. One possible approach to identify
super CCD is to enlarge the CFA search space to include these
patterns. We plan to further investigate this aspect in our future
work to gather forensic evidence to distinguish super CCD cam-
eras and square CFA cameras.

Next, we try to estimate the color interpolation coefficients
in different image regions using the algorithm presented in
Section IV-B. In our simulations, we find the coefficients of
a 7 7 filter in each type of region and color channel, thus
giving a total of coefficients per image.
Sample coefficients obtained using the Canon Powershot A75
camera for the three types of regions in the green image are
shown in Fig. 8. For region that corresponds to areas having
a significant horizontal gradient, we observe that the value
of the coefficients in the vertical direction (0.435 and 0.441)
are significantly higher than those in the horizontal directions
(0.218 and 0.204). This indicates that the interpolation is done
along the edge which, in this case, is oriented along the vertical
direction. Similar corresponding inferences can be made from
coefficients in region of a significant vertical gradient.
Compared to these two regions, the coefficients in region
have almost equal values in all four directions, and do not have
any directional properties. Moreover, careful observation of
the coefficients in region reveals their close resemblance to
the bicubic interpolation coefficients shown in Fig. 8(d). This
suggests that it is very likely that the Canon Powershot A75
camera uses bicubic interpolation for smooth regions of the
image. Similar results obtained for other camera models indi-
cate with confidence that all cameras use the bicubic
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Fig. 8. Interpolation coefficients for the green channel for one sample image taken with the Canon Powershot A75 camera for (a) Region < with significant
horizontal gradient, (b) Region < with significant vertical gradient, (c) smooth region < , (d) coefficients of bicubic interpolation.

interpolation for handling smooth regions. This is consistent
with common knowledge in image processing practice that
bicubic interpolation is good for regions with slowly changing
intensity values [37].

VI. CASE STUDIES AND APPLICATIONS OF

NONINTRUSIVE FORENSIC ANALYSIS

In this section, we present case studies to illustrate the appli-
cations of the proposed nonintrusive forensic analysis method-
ology for camera identification (acquisition forensics), and for
providing clues to identify infringement/licensing.

A. Identifying Camera Brand From Output Images

The color interpolation coefficients estimated from the image
can be used as features to identify the camera brand utilized
to capture the digital image. As shown in Section V-B, most
cameras employ similar kinds of interpolation techniques for
smooth regions. Therefore, we focus on nonsmooth regions and
use the coefficients obtained from the horizontal gradient re-
gions and vertical gradient regions as features to con-
struct a camera brand identifier.

To obtain more reliable forensic evidence from the input
image for camera identification, we first preprocess the image
by edge detection to locate five significant 512 512 blocks
with the highest absolute sum of gradient values. The inter-
polation coefficients corresponding to the regions and ,
from all three color channels, estimated from these 512 512
blocks are used as features for identification.

We use a classification-based framework to identify the
camera brand. For each camera in the data base, we collect 40
different images and obtain 200 different 512 512 image
blocks by locating the top five regions with higher gradient
values. These 200 image blocks collected from each of the
19 cameras are grouped so that all images from the same
brand form one class. A 9-camera-brand SVM classifier with
a polynomial kernel function [33] is constructed with 50%
of the images randomly chosen from each class for training.

The remaining images are used in testing and the process is
repeated 500 times by randomly choosing a training set each
time. Table II shows the average confusion matrix, where the

element gives the percentage of images from camera
brand- that are classified to belong to camera brand- . The
main diagonal elements represent the classification accuracy
and achieve a high average classification rate of 90% for nine
camera brands.

The above results demonstrate the effectiveness of using
the color interpolation component as features to differentiate
different camera brands. The robustness of estimating these
features under JPEG and additive noise has been shown earlier
in Section V-A2. Here, we further examine the robustness
against such nonlinear point operations as gamma correction.
As a common practice in digital camera design, most cameras
perform gamma correction with a to match the
luminance of the digital image with that of the display monitor.
In order to test the goodness of the proposed algorithms for
gamma correction, we first do inverse gamma correction with

on the original camera images.3 The interpolation
coefficients are then estimated from these gamma-corrected
images and used in camera brand identification. In this case,
the confusion matrices are similar to the ones in Table II, and
average identification accuracy was estimated to be 89%. This
negligible difference from the nongamma correction case of
90% suggests that the camera identification results are invariant
to gamma correction in digital cameras.

As the problem of camera brand identification only received
attention recently, there is a very limited amount of related
work to compare with. Some algorithms were developed re-
cently in [21] and [22], where the authors test their algorithms
for pictures taken under controlled conditions with the same
scene captured with multiple cameras (corresponding to the
single-scene case discussed earlier in Section V-A). The best

3In a general scenario, the value of  can be estimated from the output im-
ages [13] and the corresponding inverse could be applied before estimating the
interpolation coefficients.
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TABLE II
CONFUSION MATRIX FOR IDENTIFYING DIFFERENT CAMERA BRANDS ( DENOTES VALUES SMALLER THAN 4%)

TABLE III
CONFUSION MATRIX FOR ALL CAMERAS. THE MATRIX IS DIVIDED BASED ON DIFFERENT CAMERA MAKES. THE VALUES BELOW

THE THRESHOLD � = 1=19 ARE DENOTED BY �. THE CAMERA INDEX NUMBERS ARE ACCORDING TO TABLE I

performance initially reported is 84% on three brands [22], and
sensitive to other in-camera processing such as compression
owing to the dependence on image content by the null-based
spectral features employed in [22]. In concurrent of the present
paper, further improvement has been made to [22] by separately
obtaining the coefficients from smooth and nonsmooth regions
of each image, leading to an enhanced classification accuracy
of 96% for three camera brands [38]. Compared to these alter-
native approaches, the interpolation coefficients derived in our
work by exploring the spatial filtering relations are less depen-
dent on input scenes and are robust against various common
in-camera processing. The formulation of minimizing noise
norm helps mitigate the impact from noise, compression, and
other in-camera processing. As a result, the features obtained
from the proposed component forensics methodologies are
able to achieve a high classification accuracy over a much
larger data base with 19 camera models from nine different
brands. Further, as to be demonstrated later in this section, the
proposed component forensic techniques has a broader goal of
identifying the algorithms and parameters employed in various
components in digital cameras, and are not restricted to camera
brand identification.

B. Identifying Camera Model From Output Images

Our results in the previous subsection demonstrate the ro-
bustness of nonintrusively identifying the camera brand using

the color interpolation coefficients as features. In this subsec-
tion, we extend our studies to answer further forensic questions
to find the exact camera model used to capture a given digital
image, and examine the performance in identifying the camera
model.

We use 200 images from each of the 19 cameras in our ex-
periments. Out of these 200 images, a randomly chosen 125 im-
ages are used for training and the remaining are for testing with
a 19-camera model SVM classifier. The simulation is repeated
500 times with different training sets and the average confusion
matrix is shown in Table III. The element in the confu-
sion matrix gives the fraction of images from camera model-
classified as camera model- . In order to highlight the signifi-
cant values of the table, we show only those set of values that are
greater than or equal to a chosen threshold , where
is the number of cameras ( in our experiments). The
average classification accuracy is 86% for 19 camera models.

The classification results reveal some similarity among
different camera models in handling interpolation, as there are
some off-diagonal elements that have a nonzero value greater
than the threshold of 1/19. For example, among the Canon
Powershot S410 (camera 3) images, 20% were classified as
belonging to Canon Powershot S400 (camera 2). A similar
trend is also observed for images from other Canon models.
These results indicate that the color interpolation coefficients
are quite similar among the Canon models and, hence, it is
likely that they are using similar kinds of interpolation methods.
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C. Similarities in Camera Color Interpolation Algorithms

Motivated by the results in the previous subsection, we further
analyze the similarity between the camera models in this subsec-
tion, and propose metrics to quantitatively evaluate the close-
ness among interpolation coefficients from several cameras.

1) Studying Similarities in Cameras Using Leave-One-Out:
We perform additional experiments to identify the camera
models with similar color interpolation by a leave-one-out
procedure. More specifically, we train the classifier by omit-
ting the data from one of the camera models and test it with
these coefficients, to find the nearest neighbor in the color
interpolation coefficient space. For instance, when we train
the SVM using all of the 200 images from 18 cameras except
Canon Powershot S410 (camera 3), and then test it using the
200 images from Canon Powershot S410, we observe that 66%
of the Canon Powershot S410 images are classified as Canon
Powershot S400. Furthermore, out of the remaining images,
28% of the pictures are classified as one of the remaining Canon
models. The reverse trend is also observed when we train with
all of the images except Canon Powershot S400 (camera 2)
and use these images for testing. Around 45% of the Canon
Powershot S400 pictures are classified as Canon Powershot
S410, 19% are categorized as Canon Powershot A75, and 15%
of the remaining guessed as some other Canon model. This
result suggests that there is a considerable amount of similarity
in the kind of interpolation algorithms used by various Canon
models.

A similar trend is also observed for the two Sony cameras
in our data base. We note that around 66% of the Sony Cyber-
shot DSC P7 models are classified as Sony Cybershot DSC P72
models when the former was not used in training. These results
indicate the similarities in the kind of interpolation algorithm
among various models of the same brand. Interestingly, we also
observe similarity between Minolta DiMage S304 and Nikon
E4300. Around 53% of the Minolta DiMage S304 pictures are
designated as the Nikon E4300 camera model. This suggests
closeness between the interpolation coefficients in the feature
space.

2) Quantifying Similarity in Color Interpolation With a Di-
vergence Score: From our preliminary analysis in Section V-B,
we observe that the majority of cameras use similar kinds of
interpolation techniques in handling smooth regions. We thus
focus our attention on the type of interpolation used by a camera
in the nonsmooth regions. We extend our interpolation coeffi-
cient estimation model in Section IV-B to explicitly target non-
smooth regions in the image. To do so, we divide the image into
eight types of regions depending on the relative gradient esti-
mates in eight directions (namely north, east, west, south, north-
east, northwest, southeast, and southwest). The gradient values
can be obtained following the threshold-based variable number
of gradients (VNG) algorithm [39]. For example, the gradient
in the north direction is obtained by using

(10)

where represents the image pixel
sample. Similar expressions for gradients in the remaining
seven directions can be developed to find the local gradient
values [39]. Once these gradients are obtained, they are com-
pared to a threshold to divide the image into eight types of
texture regions. The interpolation coefficients are obtained in
each region by solving a set of linear equations as given by (6).

We use a classification-based methodology to study the sim-
ilarities in interpolation algorithms used by different cameras.
To construct classifiers, we start with 100 representative images,
downsample them (by a factor of 2) and then reinterpolate with
each of the six different interpolation methods as discussed in
Section V-A. With a total of 600 images synthetically generated
in this way, we run the color interpolation estimator to find the
coefficients for each image. The estimated coefficients are then
used to train a 6-class SVM classifier, where each class repre-
sents one interpolation method. After training the SVM classi-
fier, we use it to test the images taken by the 19 cameras. For
each of the 200 images taken by every camera in the 19-camera
dataset, we estimate the CFA parameters (eight sets of coeffi-
cients each with a dimension of 5 5),4 feed them as input
to the above classifier and record the classification results. The
probabilistic SVM framework is used in classification and the
soft decision values are recorded for each image [31] (refer to
Appendix B for more details). If the two camera models employ
different interpolation methods (not necessarily the same as the
six typical methods in the classifier), then the classification re-
sults are likely to be quite different, and their differences can be
quantified by an appropriate distance between the classification
results.

More specifically, for each image in the data base, the interpo-
lation coefficients are found and fed into the -class classifier,
where denotes the number of possible choices of the inter-
polation algorithms studied ( in our experiments). Let
the output of the classifier be denoted as a probability vector

, where gives the probability that the
input image employs the interpolation algorithm- . Such prob-
ability vectors are obtained for every image in the data base and
the average performance is computed for each camera model.
Let the average classification results for camera model be rep-
resented by the vector , where is
the average probability for an image from camera model to be
classified as using the interpolation algorithm . The ’s are
estimated using soft decision values obtained by using the prob-
abilistic SVM framework. The similarities of the interpolation
algorithms used by any two cameras (with indices and ) can
now be measured in terms of a divergence score , defined
as symmetric Kullback–Leibler (KL) distance between the two
probability distributions and

(11)

where (12)

The symmetric KL distance is separately obtained in each of
the eight types of regions by training with synthetic data and

4A kernel size of 5 � 5 is chosen in this case to limit the total number of
coefficients, and to make the total number of features to be on the same order of
magnitude as the previous case in Section VI-B where we used a kernel size of
7 � 7 and three gradient-based regions.
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TABLE IV
DIVERGENCE SCORES FOR DIFFERENT CAMERA MODELS AS INDEXED IN TABLE I. THE VALUES BELOW OR EQUAL TO 0.06 ARE SHADED,

AND THE � INDICATES ZERO SIMILARITIES BETWEEN THE SAME CAMERA MODELS BY DEFINITION

testing with the camera images using the appropriately chosen
coefficients as features. The overall divergence score is obtained
by taking the mean of the individual divergence scores in eight
regions and three color components. A low value of an overall
divergence score indicates that the two cameras are similar and
are likely to use very similar kinds of interpolation methods.

The divergence scores of the 19 different camera models are
shown in Table IV. Here, the element in the matrix rep-
resents the average symmetric KL distance between the interpo-
lation coefficients of camera model and camera model . Di-
vergence scores below a threshold of 0.06 have been shaded. We
observe from the table that most cameras from the same brand
are likely to use similar kinds of interpolation algorithms. This is
especially evident for some models of Canon and Minolta used
in our analysis.

The divergence score between the two Canon models—S400
and S410—is very low, suggesting that both of these models
are likely to use similar techniques for color interpola-
tion. We also observe similarities between the two Minolta
models—DiMage S304 and DiMage F100—and between the
two Sony models—Cybershot DSC P7 and P72. The metric
is close to zero in all of these cases, thus indicating that cam-
eras from the same manufacturer have similar interpolation.
Interestingly, we also observe some similarity between several
cameras from different manufactures. As shown in Table IV, the
divergence score between Olympus C765UZ (camera 12) and
Casio QV2000UX (camera 15) is only 0.01, which suggests a
close resemblance in the type of interpolation used by these two
cameras. We also see that the two cameras showing similarity
in the leave-one-out experiment, Nikon E4300 (camera 7) and
Minolta DiMage S304 (camera 13), give quite a low divergence
score as a quantitative indication of their similarity.

The work that we have presented so far quantifies the simi-
larity of camera models based on the estimated color interpo-
lation coefficients. The parameters of the other stages in the
scene capture model, such as white balancing and JPEG com-
pression, may be further used to study similarities among dif-
ferent camera models and brands. In such cases, the forensic in-

Fig. 9. Proposed forensic analysis methodology.

formation collected from various components may also be fused
together to provide quantitative evidence to identify and analyze
technology infringement/licensing of cameras.

VII. GENERAL COMPONENT FORENSICS METHODOLOGY

In this section, we extend the proposed nonintrusive forensic
analysis to a methodology applicable to a broad range of
devices. Let be the sample outputs ob-
tained from the test device that we model as a black box, and

be the individual components of the black
box. Component forensics provides a set of methods to help
identify the algorithm and parameters used by each processing
block . A general forensic analysis framework is composed
of the following processing steps as shown in Fig. 9.

1) Modeling of the test device: As the first step of forensic
analysis, a model is constructed for the object under study.
This modeling helps break down the test device into a set
of individual processing components and
systematically study the effect of each block on the final
outputs obtained with the test object.
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2) Feature extraction: The forensic analyst identifies a set of
features that has good potential to help identify the algo-
rithms used in the device component . These fea-
tures are based on the final output data and are chosen to
uniquely represent each algorithm used. For the case of
digital cameras, we have used the estimated color interpo-
lation coefficients as features for forensic analysis in this
paper. The parameters of other components, such as white
balancing constants and gamma correction values, are also
possible features to incorporate.

3) Feature analysis and information fusion: We analyze
the features extracted from the previous stage to obtain
forensic evidence to meet specific applications’ needs. The
appropriate analysis technique depends on the component
under study, the application scenario, and the type of
evidence desired. The results obtained from each analysis
technique can be combined to provide useful evidence
about the inner working of the device components.

4) Testing and validation process: The validation stage uses
test data with a known ground truth to quantify the ac-
curacy and performance of the forensic analysis system.
It reflects the degree of success of each of the above pro-
cessing stages and their combinations. Representative syn-
thetic data obtained using the model of the test object can
help provide ground truth to validate the forensic analysis
systems and provide confidence levels on estimation. The
results of this stage can also facilitate a further refinement
of the other stages in the framework.

The methods and techniques adopted in each stage may vary
depending on the device, the nature of the device components,
and the application scenario. Regarding feature extraction, in
some situations, the features by themselves (without further pro-
cessing) can be proven to be useful forensic evidence and be
used to estimate the parameters of the model. For instance, the
color interpolation coefficients were directly estimated from the
camera output, and used to study the type of interpolation in dif-
ferent regions of the image in Section V-B. Evidence collected
from such analysis can be used to study the similarities and dif-
ferences in the techniques employed in the device components
across several models and answer questions related to infringe-
ment/licensing and evolution of digital devices. In some other
application scenarios, the component parameters might be an
intermediate step and further processing would be required to
answer specific forensic questions. For example, we have used
the estimated color interpolation coefficients as features to build
a robust camera identifier to determine the camera model (and
make) that was used to capture a given digital image as seen in
Sections VI-A and VI-B.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of component foren-
sics and propose a set of forensic signal processing techniques to
identify the algorithms and parameters employed in individual
processing modules in digital cameras. The proposed method-
ology is nonintrusive and uses only the sample data obtained
from the digital camera to find the camera’s color array pat-

tern and the color interpolation methods. We show through de-
tailed simulations that the proposed algorithms are robust to
various kinds of postprocessing that may occur in the camera.
These techniques are then used to gather forensic evidence on
real-world datasets captured with 19 camera models of nine dif-
ferent brands under diverse situations. The proposed forensic
methodology is used to build a robust camera classifier to nonin-
trusively find the camera brand and model employed to capture
a given image for problems involving image source authenti-
cation. Our results indicate that we can efficiently identify the
correct camera brand with an overall average accuracy of 90%
for nine brands. Our analysis also suggests that there is a consid-
erable degree of similarity within the cameras of the same brand
(e.g., Canon models) and some level of resemblance among
cameras from different manufacturers. Measures for similarity
are defined and elaborate case studies are presented to elucidate
the similarities and differences among several digital cameras.
We believe that such forensic evidence would provide a great
source of information for patent infringement cases, intellectual
property-rights management, and technology evolution studies
for digital media.

In our future work, we plan to investigate other important
components inside digital cameras, such as white balancing.
For many cameras in the market that do not provide raw sensor
output, the estimation of white balancing algorithm and param-
eters will facilitate nonintrusive estimations of the raw data ac-
quired directly by the imaging sensor prior to corrective opera-
tions. Comparing the information about the raw sensor data and
the white balanced results will provide valuable information on
the distinct characteristics of the sensor. This will allow us to
push the component forensic capability deeper into the core of
the imaging device.

APPENDIX A
SOME POPULAR COLOR INTERPOLATION ALGORITHMS

There have been many algorithms employed in practice for
CFA interpolation. In this appendix, we briefly review some
of the popular methods. For a detailed survey, the readers are
referred to [24]. Color interpolation methods can be broadly
classified into two main categories, namely, adaptive and non-
adaptive methods, depending on their adaptability to the image
content. While nonadaptive methods use the same pattern for all
pixels in an image, adaptive methods, such as gradient-based al-
gorithms, use the pixel values of the local neighborhood to find
the best set of coefficients to minimize the overall interpolation
error.

Bilinear and bicubic methods are examples of nonadaptive
interpolation schemes. In these algorithms, the pixel values are
interpolated according to the following equation [10]:

where are the original raw values obtained from the sensor
with representing the red color and so on, de-
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notes the interpolation results, and denotes the 2-D filters of
dimension used in interpolation. In a general case,

may be dependent on the color channel. Let , , and
denote the values taken by for red, green, and blue colors,
respectively. For the bilinear case, these filters are given by

and

The corresponding filters for the bicubic case are given by

The smooth hue interpolation algorithm is based on the obser-
vation that the hue varies smoothly in natural images. In this al-
gorithm, the green channel is first interpolated by using bilinear
interpolation to yield . The red components are then
obtained by interpolating the ratios of “red/green” via

The blue components can be obtained similarly by interpolating
the “blue/green” ratios.

In median filter-based algorithms, the three channels are first
interpolated using bilinear interpolation. Then, the differences
“red-green,” “red-blue,” and “green-blue,” are median filtered
to produce , , and , respectively. At each pixel lo-
cation, the missing color values are obtained by linearly com-
bining the original color sensor value and the appropriate me-
dian filter result [10]. For example, the green color component
at the location of the red color filter is obtained as

All of the methods described above are nonadaptive in nature
and do not depend on the characteristics of particular regions.
In contrast to these techniques, the gradient-based algorithms
are more complex. Here, the horizontal gradient and the
vertical gradient at the point are first estimated using

where and is the CFA pattern
matrix (e.g., Bayer pattern) with , 2, or 3, indi-
cating that the CFA pattern at the pixel is red, green,
or blue, respectively. The edge direction is then estimated from
the gradient values, and the missing pixel values in the green
component of the image are obtained in such a way that the
interpolation is done along the edge and not across the edge,
using only pixel values from the green channel. The missing red
and blue components are found by interpolating the difference,
“red-green” and “blue-green” along the edge, respectively.

The adaptive color plane interpolation method is an extension
of the gradient based method. Here, the horizontal and vertical
gradients are estimated using

Unlike the simple gradient-based method, the interpolation of
one color component here also uses the other colors, and the
output is a linear combination of sampled sensor outputs in the
neighborhood across the three color channels [27].

APPENDIX B
PROBABILISTIC SUPPORT VECTOR MACHINES

We employ the probabilistic SVM framework proposed in
[31] to find the likelihood that a given data sample comes
from the class. Let the observation feature vector be denoted
as and the class label as , where for a -class
problem. With the assumption that the class-conditional den-
sities are exponentially distributed [40], the estimate

of the pairwise class probabilities
is found by fitting a parametric model to the poste-

rior probability density functions .
The values of and are estimated by minimizing the Kull-
back–Leibler distance between the parametric pdf defined ear-
lier and the one observed obtained from the training samples.
We then find , the probability that the data
sample comes from the class for a -class SVM, by solving
the optimization problem that minimizes the following:

Further details of the algorithm can be found in [31], and a pos-
sible implementation is available in [33].
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