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Abstract—Due to the ease with which digital information can
be altered, many digital forensic techniques have been developed
to authenticate multimedia content. Similarly, a number of anti-
forensic operations have recently been designed to make digital
forgeries undetectable by forensic techniques. However, like the
digital manipulations they are designed to hide, many anti-forensic
operations leave behind their own forensically detectable traces.
As a result, a digital forger must balance the trade-off between
completely erasing evidence of their forgery and introducing new
evidence of anti-forensic manipulation. Because a forensic investi-
gator is typically bound by a constraint on their probability of false
alarm , they must also balance a trade-off between the accu-
racy with which they detect forgeries and the accuracy with which
they detect the use of anti-forensics. In this paper, we analyze the
interaction between a forger and a forensic investigator by exam-
ining the problem of authenticating digital videos. Specifically, we
study the problem of adding or deleting a sequence of frames from
a digital video. We begin by developing a theoretical model of the
forensically detectable fingerprints that frame deletion or addition
leaves behind, then use this model to improve upon the video frame
deletion or addition detection technique proposed by Wang and
Farid. Next, we propose an anti-forensic technique designed to fool
video forensic techniques and develop a method for detecting the
use of anti-forensics. We introduce a new set of techniques for eval-
uating the performance of anti-forensic operations and develop a
game theoretic framework for analyzing the interplay between a
forensic investigator and a forger. We use these new techniques
to evaluate the performance of each of our proposed forensic and
anti-forensic techniques, and identify the optimal actions of both
the forger and forensic investigator.

Index Terms—Digital forensics, anti-forensics, frame deletion,
video compression, game theory.

I. INTRODUCTION

W ITHIN the past decade, a great deal of research has been
performed in the field of digital multimedia forensics.

Digital forensic techniques seek to provide information about
digital multimedia content without relying on external descrip-
tors such as metadata tags or extrinsically implanted informa-
tion such as digital watermarks. Instead, these techniques make
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use of fingerprints left in digital content by editing operations
or the digital capture process. Because multimedia content can
be easily altered using digital editing software, digital forensic
techniques have become extremely important to organizations
seeking to verify the integrity of digital content. Forensic tech-
niques have been developed to perform a variety of tasks such
as detecting evidence of editing or forgery, identifying a media
file’s origin, and tracingmultimedia content’s processing history
for digital images [1]–[5], video [6]–[8], and audio [9]–[11].
Though these digital forensic techniques are quite suc-

cessful at identifying standard digital content manipulations,
researchers have demonstrated that many of them can be
fooled if a forger makes use of anti-forensics. Anti-forensic
techniques are designed to mislead forensic analysis by erasing
or falsifying fingerprints left by editing operations. By studying
anti-forensics, digital security researchers are able to identify
weaknesses in existing forensic algorithms and quantify how
much confidence they can have in their forensic results. In
prior work, anti-forensic techniques have been proposed to
remove traces of image resizing and rotation [12] and forge
the photo-response nonuniformity (PRNU) fingerprint left in
an image by a digital camera’s electronic sensor [13]. A set of
anti-forensic techniques has been proposed to erase or falsify an
image’s compression history [14]–[16]. These techniques can
be used to fool forensic algorithms that identify image forgeries
by searching for inconsistencies in an image’s compression
history [16], [17]. Furthermore, anti-forensic techniques to
remove contrast enhancement fingerprints [18] and to artifi-
cially synthesize color filter array artifacts used for camera
identification or forgery detection [19] have been proposed.
Just as digital editing operations leave behind fingerprints,

anti-forensic operations may inadvertently leave behind their
own fingerprints [14]. If these fingerprints can be identified,
forensic techniques can be designed to detect them. This will
allow forensic investigators to identify digital forgeries even
when editing fingerprints have been anti-forensically removed.
Researchers have recently developed techniques to identify
anti-forensic manipulation of an image’s PRNU [20] and
compression history [21].
When confronted with a forensic technique capable of de-

tecting the use of an anti-forensic operation, an intelligent forger
will attempt to modify their anti-forensic operation in order to
minimize the strength of the fingerprint it leaves behind. This
leads to a cat-and-mouse game between a digital forger and a
forensic investigator. Furthermore, a digital forger can opt not
to completely anti-forensically remove all editing fingerprints
left in their forgery. Instead, they may decrease the strength of
their anti-forensic operation so that it reduces the strength of
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the editing operation’s fingerprint to just below a forensic in-
vestigator’s detection threshold. This will correspondingly re-
duce the strength of the anti-forensic operation’s fingerprint,
thus helping the attacker avoid detection. The forensic investi-
gator, meanwhile, must ensure that the combination of the false
alarm rates from their techniques to detect editing and the use
of anti-forensics is below a constant false alarm rate.
This interplay between a forensic investigator and a digital

forger raises a number of important questions. For example, if
a forensic technique is effective at detecting a particular type
of forgery but can easily be fooled if a forger makes use of
anti-forensics, is it a good or bad detection algorithm? Sim-
ilarly, if an anti-forensic operation is able to successfully re-
move fingerprints left by a particular forgery operation but in-
troduces new fingerprints of its own, how do we evaluate its
effectiveness? What is the optimal strategy for a forger to use
to avoid forensic detection of both their forgery and their use
of anti-forensics? What is the optimal detection strategy for a
forensic investigator to follow when attempting to identify dig-
ital forgeries? Should decision thresholds in forensic detection
techniques be chosen to yield the best performance under a
worst case scenario, or can knowledge of the attacker’s actions
be used to improve detection results? Are there certain editing
operations that an attacker will be unable to hide both forensic
and anti-forensic evidence of their forgery?
To address these questions, we analyze the interaction be-

tween a digital forger and a forensic investigator in a partic-
ular forensic scenario. In this paper, we consider the problem of
forensically detecting video frame deletion or addition. Frame
deletion may be performed by a video forger who wishes to re-
move certain portions of a video sequence, such as a person’s
presence in a surveillance video. Similarly, a forger may wish
to falsify an event by inserting a sequence of new frames into a
video segment. In previous work, Wang and Farid demonstrated
that frame deletion or addition followed by recompression in-
troduces a forensically detectable fingerprint into MPEG video
[6]. Though their technique is quite effective, it requires human
identification of frame deletion or addition fingerprints and can
only be used on videos compressed by a certain class of video
encoders that employ a fixed group of picture (GOP) structure.
In this paper, we propose new video frame deletion or ad-

dition forensic and anti-forensic techniques along with a new
framework for evaluating the interplay between a forger and
forensic investigator. The main contributions of this work can
be summarized as follows:
• We propose a mathematical model of video frame deletion
and addition fingerprints that show themselves in a video’s
P-frame prediction error sequence.

• We use this model to develop two new automatic video
frame deletion or addition detection technique. One of
these techniques is targeted towards video codecs that use
fixed length GOPs when compressing a video, while the
other is suitable for use with newer compression standards
that allow the GOP length to change adaptively.

• We propose an anti-forensic technique capable of hiding
frame deletion or addition fingerprints in digital videos.
This technique operates by first constructing a target
P-frame prediction error sequence that is free from fin-

gerprints, then selectively altering the video’s predicted
frames so that the prediction error sequence from the
anti-forensically modified video matches the target one.

• We identify a new fingerprint that frame deletion or addi-
tion anti-forensics introduces into a modified video’s mo-
tion vectors and propose a forensic scheme designed to de-
tect it. Additionally, we modify our proposed anti-forensic
technique to minimize detection by these means.

• We define a new set of terms to use when evaluating the
performance of both forensic and anti-forensic algorithms.

• We propose a set of game theoretic techniques to study
the dynamics between a digital forger and a forensic in-
vestigator. We do this by formulating each party’s utility
functions in terms of the probabilistic quantities associated
with the performance of their forensic detection technique
or anti-forensic operation.

• We use our new techniques to evaluate the forensic and
anti-forensic algorithms proposed in this paper.

The remainder of this paper is organized as follows. In
Section II we provide an overview of the background material
relevant to frame deletion and addition fingerprints, and develop
our mathematical model of these fingerprints. In Section III,
we use this model to construct a set of automatic frame deletion
or addition detection techniques. We propose our anti-forensic
technique to remove frame deletion and addition fingerprints
in Section IV. We then identify the new fingerprints left by
this anti-forensic technique, use these fingerprints to develop
an algorithm to detect the use of anti-forensics, and modify
our proposed anti-forensic technique in response to this in
Section V. We discuss the performance evaluation of forensics
and anti-forensic algorithms in Section VI and develop our
game theoretic techniques to evaluate the dynamics between
a forger and forensic investigator. We present the results of
several experiments designed to evaluate the performance of
each of our proposed techniques in Section VII. Finally, we
conclude the paper in Section VIII.

II. FRAME DELETION FINGERPRINTS

We begin this section with a brief overview of video compres-
sion, with an emphasis on the forensically significant aspects.
Next, we discuss prior forensic work on video frame deletion or
addition detection. We then propose a new mathematical model
of frame deletion and addition fingerprints which we will use to
develop our forensic and anti-forensic techniques.

A. Video Compression Overview

Due to the size of uncompressed digital video files, virtu-
ally all digital video undergoes compression during storage or
transmission. Though a variety of different video compression
techniques exist, the majority operate in the same basic manner.
Since a scene typically changes very little over a short period of
time, a great deal of redundancy exists between video frames.
Video encoders exploit this redundancy by predicting certain
frames from others, then storing the prediction error. The pre-
diction error can be compressed at a higher rate than the frame
itself, allowing for smaller file sizes.
In order to prevent the propagation of channel and decoding

errors, not all frames are predicted. Instead, the video sequence
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Fig. 1. Illustration of the effects of frame deletion on a video frame sequence. The original video sequence is shown along the top of this figure and the altered
video sequence is shown along the bottom. Each GOP in the altered video contains frames from two different GOPs in the unaltered video sequence.

is segmented into sets of frames known as ‘groups of pictures’
(GOPs). Frames are predicted from other frames in the same
GOP, but prediction does not occur across GOPs. Within
each GOP, frames are assigned one of three types according
to the manner in which they are predicted and compressed.
These frame types are known as: intraframes (I-frames), pre-
dicted-frames (P-frames), and bidirectional-frames (B-frames).
Each GOP begins with an I-frame. I-frames are not predicted

from any other frame and are independently encoded using a
process similar to JPEG compression. The remainder of each
GOP consists of P-frames and B-frames. These frames are pre-
dictively encoded using processes known as motion estimation
and compensation. A predicted version of the encoded frame
is formed from segments of an anchor frame or frames. Only
I-frames and P-frames may act as anchor frames.
P-frame motion estimation is performed by first segmenting

the frame into a series of macroblocks. Next, the preceding an-
chor frame is searched for the macroblock that best matches
each macroblock in the current P-frame. The row and column
displacements between each macroblock in a P-frame and its
match in the anchor frame are recorded as that macroblock’s
row and column motion vectors. A motion-compensated, pre-
dicted version of the P-frame is formed by assembling each of
thematchingmacroblocks from the anchor frame. The predicted
frame is then subtracted from the actual P-frame, resulting in the
P-frame’s prediction error. This prediction error is compressed
using the same JPEG-like process used to encode I-frames.
During storage and transmission, only the motion vectors and

prediction errors are retained. To decompress these frames, the
predicted version of the P-frame is reformed using its motion
vectors and the previous anchor frame, which must be decoded
first. Next, the prediction error is decompressed and added to the
predicted frame, thus reconstructing the frame. B-frames are en-
coded in a similar manner, however each macroblock frame can
be predicted from the anchor frame that immediately precedes
the B-frame, immediately follows the B-frame, or an average of
these two predictions can be used.
In older video compression standards, the structure of each

GOP is fixed, i.e., the sequence of I-, P-, and B-frames always
occurs in the same pattern. Newer video compression standards
allow for the GOP structure to be adjusted depending on the
amount of motion in the scene. For example, rapidly changing

scenes can be encoded using shorter GOPs because the accuracy
of motion compensation greatly decreases as new objects enter
each frame.

B. Detection of Frame Deletion or Addition

In a number of scenarios, a video forger may wish to add
or delete frames from a digital video sequence. To do this, the
forger must decompress the video before frames are added or
deleted, then recompress the video after it has been altered. Pre-
vious work byWang and Farid has shown that recompression of
MPEG video using a fixed GOP structure results in two distinct,
forensically detectable fingerprints; one spatial and the other
temporal [6]. The spatial fingerprint can be observed within a
single I-frame and is similar in nature to the fingerprint left
by double JPEG compression [1], [22]. This fingerprint occurs
when either no frames are added or deleted, or when the number
of frames added or deleted is an integer multiple of the fixed
GOP length. The temporal fingerprint occurs in the sequence of
P-frame prediction errors and occurs only if frames have been
added to or deleted from the video sequence prior to recompres-
sion.
When frames are deleted from or added to a digital video,

each GOP in the recompressed video will contain frames that
belonged to different GOPs during the initial compression.
This effect can be seen in Fig. 1, which shows an example
of frame deletion for a video compressed using a fixed GOP
sequence. Wang and Farid experimentally demonstrated that
when a P-frame is predicted from an anchor frame that initially
belonged to a different GOP, an increase in the total prediction
error is observed [6]. Furthermore, they demonstrated that
if a fixed GOP structure is used, this increase in prediction
error occurs periodically in the sequence of P-frame prediction
errors. As a result, they proposed detecting frame deletion or
addition by visually inspecting the sequence

(1)

for a periodic fingerprint, where is the number of pixels
in each frame and is the prediction error of the th
P-frame at pixel location [6]. Alternately, the discrete
Fourier transform (DFT) of this sequence
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Fig. 2. P-frame prediction error sequence (top left) and the magnitude of its DFT (bottom left) obtained from an unedited, compressed version of the “Carphone”
video sequence along with the P-frame prediction error sequence (top right) and the magnitude of its DFT (bottom right) obtained from the same video after frame
deletion followed by recompression.

can be inspected for peaks resulting from the periodic finger-
print. An example of this fingerprint can be seen in Fig. 2 which
shows the P-frame prediction error sequence of 250 frames of a
compressed version of the commonly used “Carphone” video,
along with the P-frame prediction error sequence of the same
video after the first 6 frames have been deleted followed by re-
compression.
While this frame addition or deletion detection technique is

quite successful, it possesses several shortcomings. Because it
requires human inspection of the P-frame prediction error se-
quence or its DFT, Wang and Farid’s detection technique can
not be run automatically on large amounts of data and is subject
to human error. Furthermore, its reliance on human inspection
makes it difficult to characterize the performance of this detec-
tion technique using a receiver operating characteristic (ROC)
curve or other statistical measure. Most importantly, because
this detector relies on identifying periodic increases within the
P-frame prediction error sequence, it can only be used on videos
that are compressed by a codec with a fixed GOP pattern. It
cannot be used on videos compressed using more recently de-
veloped encoders if their implementations adaptively change
the GOP length. This is because the increase in the P-frame pre-
diction error will not occur periodically unless a fixed GOP pat-
tern is used.

C. Temporal Fingerprint Model

In order to design an automatic frame deletion or addition de-
tection technique as well as an anti-forensic method to remove
frame addition and deletion fingerprints, we have developed a
model of the effect of frame deletion or addition followed by
recompression on a video’s P-frame prediction error sequence.
To simplify our discussion, we will consider only frame dele-
tion for the remainder of this paper. Each of the equations and
techniques presented hereafter can be modified to accommo-
date frame addition by viewing it as the deletion of a negative
number of frames.

Let denote the P-frame prediction error sequence of an
unaltered video that has been compressed once and let
denote the prediction error sequence of that same video after

frames have been deleted followed by recompression. We
model the relationship between the altered and unaltered videos’
P-frame prediction error sequences using the equation

(2)

In this equation, the signal denotes the temporal fingerprint
caused by frame deletion. We propose two different models of
the temporal fingerprint based on whether the video codec used
to perform compression employed a fixed length GOP or an
adaptively changing one.
1) Model for Fixed Length GOPs: As was discussed pre-

viously, Wang and Farid demonstrated that when using a video
codec with a fixed GOP structure frame deletion followed by re-
compression introduces a periodic trace into a video’s P-frame
prediction error sequence. Naturally, this leads us to model
in this situation as a periodic signal. The temporal fingerprint’s
periodicity arises because frame deletion causes a constant shift
in the position of each GOP used during the initial compression
relative to the locations of the GOPs used during recompression.
As a result, each new GOPwill contain frames from exactly two
GOPs present during the initial application of compression in a
repetitive fashion. Using this information and defining as the
period of the temporal fingerprint, we can show that the tem-
poral fingerprint exhibits the following three properties [23]:
Property 1: The temporal fingerprint’s repetitive pattern cor-

responds to a disproportionate increase in exactly once per
fingerprint period.
Property 2: The period of the temporal fingerprint is equal

to the number of P-frames within a GOP.
Property 3: Define the phase of the temporal fingerprint

as the number of P-frames within a GOP before the increase
in due to frame deletion. The phase is determined by the
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equation , where is the number of P-frames
within a GOP, is the set of frames at the beginning of each
GOP that belonged to the same GOP during the initial applica-
tion of compression, denotes the cardinality of , and
denotes the floor operation.
To justify these properties, we note that increases in the

P-frame prediction error sequence due to the temporal finger-
print occur when a P-frame is predicted from an anchor frame
that belonged to a different GOP during the initial compression.
Since each new GOP is comprised of frames from only two
GOPs used during the initial application of compression, a
P-frame will only be predicted in this manner once per GOP.
This justifies the first property. The second property arises
because the sequence consists only of P-frame prediction
errors, thus spikes in due to the temporal fingerprint
will be separated by the number of P-frames in a GOP. The
third property follows directly from the first two properties.
We note that by defining as the number of frames in a
GOP and as the number of frames in the video sequence
that precede the deleted frames, is given by the equation

.
Based on these properties, we model the temporal fingerprint

as

(3)

where and denotes the indicator function. This
corresponds to modeling the P-frame prediction error sequence
of an altered video as a shifted version of the unaltered video’s
prediction error sequence that is scaled by once per
fingerprint period.
2) Model for Variable Length GOPs: Newer video com-

pression standards allow the GOP length to vary based on the
amount of motion in a scene. When frames are deleted from a
video then recompressed using one of these codecs, GOPs in the
recompressed video will be comprised of frames belonging to
multiple different GOPs used during the first compression, but
this will not occur in a repeating pattern. Some new GOPs may
contain frames from more than two GOPs used during the orig-
inal compression, while others will contain frames from only
one. Nonetheless, frame deletion will alter the GOP which each
frame belongs to, but in a random fashion rather than a fixed
one. As a result, spikes in the P-frame prediction error sequence
occur in a random fashion.
To capture this behavior, we model the P-frame prediction

error sequence of a video compressed using variable GOP
lengths as

(4)

where is a constant and is a random variable dis-
tributed over the set . Using this model corresponds to
modeling the prediction error sequence of an altered video as a
shifted version of the altered version’s prediction error sequence
with randomly selected values scaled by .

III. DETECTING FRAME DELETION

To address the weaknesses in Wang and Farid’s detection
technique, we propose two automatic frame deletion or addition

detection techniques; one which exploits the periodic nature of
frame deletion fingerprints for fixed GOP length encoders and
another suitable for use on videos compressed using variable
GOP lengths. We develop these techniques in this section by
posing frame deletion detection as a hypothesis testing scenario.
We keep the convention that is the observed P-frame pre-
diction error sequence associated with a video in question,
is the prediction error sequence of that video before frames have
been deleted, and is the prediction error sequence of the
video after frames have been deleted followed by recompres-
sion.
Using the convention that the null hypothesis corresponds

to the video being unaltered, along with our model from
Section II.C, detecting frame deletion can be viewed as differ-
entiating between the following two hypotheses:

(5)

It is clear from this problem formulation that detecting
frame deletion is equivalent to detecting the presence of the
term . In order to do this, however, we require some
knowledge of what the P-frame prediction error sequence of
the unaltered video is. We obtain an estimate of this signal
by median filtering the observed prediction error sequence
according to the formula

(6)

This estimate has the property that it removes the impulsive
spikes in prediction error corresponding to frame deletion fin-
gerprints, while leaving the prediction error sequence of an un-
altered video largely intact. We model the relationship between
this estimate and the true value of as

(7)

where is a zero mean random variable representing estima-
tion error.
Using this estimate of the unaltered video’s P-frame predic-

tion error sequence, we calculate , an estimate of the fin-
gerprint signal modulated by the prediction error sequence ac-
cording to the equation

(8)

If the frame deletion fingerprint is present, will be com-
posed of the modulated fingerprint signal plus the
noise term . We take the maximum of the difference between

and and zero because we know that the term
is nonnegative.
Now we can reframe our detection problem as differentiating

between the following two hypotheses:

(9)

This is equivalent to detecting the presence of the modulated
frame deletion fingerprint signal in noise.
If the video codec used to perform compression uses a fixed

GOP structure, we are able to leverage the periodic nature
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of when performing detection. Because the number of
P-frames in one GOP can be determined from the encoded
video, the detector can assume knowledge of the fingerprint’s
period. The phase, however, is unknown to the detector because
it depends on information (the number of frames deleted and the
point in the video sequence at which frame deletion occurs) that
is hidden from the forensic investigator. As a result, fingerprint
detection is well suited for the frequency domain, where the
presence of a periodic signal can be readily determined without
requiring information about its phase.
To perform frame deletion detection when the video

codec uses a fixed GOP structure, we first calculate
, the magnitude of the DFT of the

video in question’s P-frame prediction error sequence. For a
prediction error sequence frames long, a peak will occur in

at if frame deletion fingerprints are present.
We measure the strength of this peak using the detection
statistic , defined as

(10)

where and .
The function is used to weight values closer to
more than those further away. The variable is a normalizing
constant chosen such that .
We have observed that for videos with very low average pre-

diction error levels, the total prediction error for P-frames pre-
dicted from I-frames is slightly more than for P-frames pre-
dicted from other P-frames. By requiring videos with very low
average prediction error powers to exhibit stronger periodic fin-
gerprints as evidence of frame deletion, we are able to reduce
the number of false alarms. We detect frame deletion using the
following decision rule:

,
(11)

where is a decision threshold, is a scalar constant, and
is the average of the prediction error sequence .

If the video is compressed using a newer video compression
standard that uses variable GOP lengths, the frame deletion fin-
gerprint will not be periodic. In this case, frame deletion detec-
tion is equivalent to detecting an unknown signal in the presence
of noise. As a result, we use an energy detector to identify the
presence of . This yields the following decision rule

.
(12)

where is a decision threshold. While the periodicity based
decision rule cannot be used on videos compressed with
variable GOP lengths, the energy detector based decision rule

can be used on any video.

IV. FRAME DELETION ANTI-FORENSICS

If a forger wishes to undetectably delete a sequence of frames
from a digital video, they must remove frame deletion finger-
prints from the video’s P-frame prediction error sequence. The

forger is constrained, however, in how they accomplish this.
Any anti-forensic technique designed to accomplish this must
not introduce an unacceptable amount of distortion into the anti-
forensically modified video. Furthermore, the anti-forensically
modified video must be decodable by standard video decoders.
In order to develop an anti-forensic technique to remove

frame deletion fingerprints, let us first examine how a video’s
prediction error sequence can be manipulated. Each frame’s
prediction error is dependent on the accuracy of the predicted
version of that frame. Normally, video encoders attempt to
create highly accurate predictions of each frame so that the
total prediction error is minimized. This reduces the size of the
compressed video file. If a less accurate prediction technique
is used, the total prediction error for a frame increases. In fact,
any total prediction error value associated with a valid frame
prediction is achievable. This implies that the total prediction
error for a frame can be increased by purposefully choosing
motion vectors that yield a poor predicted frame. We note that
doing this does not introduce new distortion into the video
since each frame can still be recovered by reconstructing its
predicted version from the set of encoded motion vectors, then
adding the prediction error to the predicted frame.
Using this information, we propose an anti-forensic technique

that operates roughly as follows. First, we construct a target
P-frame prediction error sequence that is free from frame
deletion fingerprints. Next, we increase the prediction error for
each P-frame until the target prediction error is reached. We do
this by selectively setting the motion vectors for certain mac-
roblocks to zero, then recalculating the prediction error associ-
ated with that macroblock. By modifying the video in this way,
we are able to meet both of the previously mentioned criteria
imposed upon the anti-forensic technique.
When constructing the target prediction error sequence, we

must ensure that it is achievable. Since we can only increase the
prediction error, this implies that . Nonetheless,
we still wish to keep the prediction error as small as is reason-
ably possible. With this in mind, we construct our target predic-
tion error sequence by setting for values of for
which . If the encoder used to compress
the video employs a fixed GOP structure, this will correspond
to values such that . Otherwise, these
values can be identified by comparing the GOP sequence of

the unaltered video to the GOP sequence used during recom-
pression. We determine the remaining values of by inter-
polating them using a cubic spline. This ensures that no frame
deletion fingerprints will occur in the target P-frame prediction
error sequence.
After we have generated the target prediction error sequence,

wemust modify themotion vectors and prediction errors of each
P-frame so that the actual P-frame prediction error matches the
target error. Since we chose for values of where

, we do not need to modify these P-frames.
For the remaining P-frames, we determine the increase in the
prediction error incurred by each macroblock if its motion vec-
tors are set to zero. We then zero out the motion vectors of the
macroblocks whose prediction error increases the least until the
target prediction error level is reached. An explicit description
of this procedure is provided below.
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Let denote of sum of the absolute value of the predic-
tion error in the macroblock at location in the th P-frame
when motion prediction is used and let be the sum of the
absolute value of the prediction error in the same location when
the macroblock’s motion vector has been set to zero. We define
the increase in the macroblock’s prediction error caused by set-
ting its motion vector to zero as

(13)

We note that because the zero motion vector is in-
cluded in the search space for the optimal motion vector during
compression.
Next, we define as the set of indices of the mac-

roblocks that result in the smallest prediction error increases
when their motion vectors are set to zero. More explicitly,

is defined as

(14)

where is the th smallest entry of .
The total absolute prediction error in the th frame

that results from setting the motion vectors of each macroblock
whose indices are in to zero is given by the equation

(15)

The value of that minimizes the absolute distance between the
target prediction error level and the actual prediction error level
is

(16)

To remove the temporal fingerprint from the th P-frame of the
recompressed video, we set the motion vectors of each mac-
roblock whose indices are in to zero, then recompute
the prediction error at these macroblock locations during recom-
pression. Due to the relatively small number of macroblocks in
each frame, we find for each frame through an exhaustive
search.
In some instances, the target prediction error value for a par-

ticular P-frame is greater than the error incurred by setting all of
the frame’s motion vectors to zero. If this is the case, we search
first for the set of motion vectors that maximize the prediction
error associated with each macroblock. Because many decoders
place a limit on the maximal length of each motion vector, this
search must be conducted over the set of allowable motion vec-
tors for a given codec. We increase the frame’s prediction error
by changing several of its motion vectors to these new, maximal
error motion vectors rather than by setting them to zero. The rest
of our anti-forensic technique remains the same.

V. DETECTING THE USE OF FRAME DELETION ANTI-FORENSICS

In the introduction to this paper, we discussed the possibility
that anti-forensic operations may leave behind new fingerprints
of their own. In this section, we show that this is true for the
case of frame deletion and addition anti-forensics.
In order to remove frame deletion fingerprints from the

P-frame prediction sequence of a video, that video’s motion

vectors must be altered in order to increase the prediction
error. Despite this, the true motion present in the video does
not change. As a result, there is a discrepancy between many
of the motion vectors stored in an anti-forensically modified
video and the true motion of that video scene. This is not the
case for an unaltered video because normal video encoders will
attempt to estimate scene motion as accurately as possible in
order to minimize each frame’s prediction error. Accordingly,
these discrepancies between a video’s stored motion vectors
and the actual motion of the scene are fingerprints left by frame
deletion anti-forensics.
To detect the use of frame deletion anti-forensics, we propose

comparing a compressed video’s P-frame motion vectors to an
estimate of the true motion present in the video scene. We ac-
complish this by first decompressing the video in question, then
performing motion estimation on the video to obtain a new set
of row and column motion vectors. When estimating the true
motion of the video, we use an exhaustive search to determine
each motion vector. We note that care must be taken to ensure
that each frame is predicted from the same anchor frame used
by the compressed video.
Let and denote the stored row and column

motion vectors at macroblock location in the th P-frame
of a compressed video whose authenticity is questioned. Simi-
larly, let and denote the row and column motion
vectors estimated from the decompressed video. We compute
the mean squared Euclidean distance between the stored and
estimated motion vectors at each frame as

(17)

where and are the number of row and column macroblocks
in each video frame.
Since not every frame requires anti-forensic modification to

raise its error level to the anti-forensic target level, some frames
will have distinctly larger values than others. As a result,
a signal similar to the fingerprint signal occurs in for
anti-forensically modified videos. We exploit this information
by measuring the strength of this periodic signal as

where , and as de-
fined in Section III. Additionally we obtain a measure

of the mean value. We combine both of
these features into a feature vector , then use
principal component analysis to reduce its dimensionality to a
one dimensional feature .
Framing the detection of frame deletion anti-forensics as a

hypothesis testing problem, we adopt the convention that the
null hypothesis is that the video has not undergone anti-
forensic modification and the alternative hypothesis is that
the video has been anti-forensically modified. We detect the use
of frame deletion anti-forensics using the following decision
rule:

(18)

where is the decision threshold.
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If a forensic investigator is aware of the possibility that anti-
forensics have been used, we must assume that a digital forger
will be aware of techniques designed to detect their use of anti-
forensics. Since we detect the use of frame deletion anti-foren-
sics by analyzing a video’s motion vectors, an intelligent forger
will modify their anti-forensic algorithm in an attempt to min-
imize the mean squared Euclidean distance between the anti-
forensically modified motion vectors and the true scene motion.
Because the mean squared Euclidean distance is used to com-

pare a video’s motion vectors to an estimate of its true motion,
large differences between the anti-forensically modified motion
vectors will be penalized more than small differences. This is
reasonable because while small errors might realistically occur
during motion estimation, large motion estimation errors are far
less likely. Naively setting the motion vectors of several mac-
roblocks to zero has the potential to create sizable disparities
between these motion vectors and the macroblock’s true mo-
tion. If the target prediction error can be achieved by introducing
small changes to a large set of motion vectors rather than large
changes to a small set, the mean squared Euclidean distance be-
tween the anti-forensically modified motion vectors and the true
motion will be reduced. This will correspondingly decrease the
probability that the use of anti-forensics is detected. In light of
this, we perform the following modifications to our proposed
anti-forensic technique.
Rather than increasing a P-frame’s prediction error by setting

several of its motion vectors to zero, we instead fix a search ra-
dius with an initial value of one pixel around each true motion
vector. We then search the set of motion vectors lying inside
these search radii for the set of motion vectors that maximize the
total prediction error. If the target prediction error is not achiev-
able using motion vectors within the current search radius, the
search radius is incremented by one pixel and the search is re-
peated. This process is iterated until the target prediction error
is achievable at a particular search radius.
Once the appropriate radius is determined, the new

anti-forensic motion vectors and prediction errors are de-
termined using a process similar to that propose in Section IV.
The only modification required is that we change to be
the sum of the absolute value of a macroblock’s prediction error
when that macroblock’s motion vectors are anti-forensically
obtained using the final search radius. Similarly, we change

to the macroblock’s total prediction error when the
macroblock’s motion vectors are anti-forensically determined
using the final search radius minus one.

VI. PERFORMANCE ANALYSIS AND TRADE-OFF

While digital forensic techniques have been studied for
roughly a decade, anti-forensic techniques are relatively new.
Presently, few tools exist to evaluate the performance of
anti-forensic techniques. Still fewer tools exist to understand
the optimal set of actions of a forensic investigator and forger
when the forger’s use of anti-forensics can be detected. In
this section, we propose new techniques for evaluating the
performance of an anti-forensic operation. Additionally, we
propose a game theoretic framework for analyzing the interplay
between a forensic investigator and a forger [24].

A. Evaluating the Performance of Anti-Forensic Techniques

Let be a digital multimedia file and be an editing
operation capable of manipulating . In order to verify the au-
thenticity of , a forensic investigator will attempt to deter-
mine if is actually a manipulated version of another, unaltered
digital multimedia file . This forensic manipulation detection
problem can be formulated as differentiating between the fol-
lowing two hypotheses:

(19)

To identify the correct hypothesis, the forensic investigator will
employ a detection algorithm designed to detect the use of
by measuring the strength of its fingerprints in . Typically,

this is done by calculating a detection statistic and comparing
it to a decision threshold. The decision threshold is chosen to
maximize the detection algorithm’s probability of detection, de-
fined as , without vio-
lating a constraint on its probability of false alarm, defined as

. We adopt the conven-
tion that specifies the detection algorithm operating
using the decision threshold associated with the false alarm rate
.
Once a detection technique has been established, a digital

forger can create an anti-forensic technique designed to fool
. In the past, the performance of an anti-forensic technique

has often been measured by the probability that will iden-
tify a multimedia file as unaltered when it has actually been
edited using then anti-forensically manipulated using ,
i.e., . This measure is biased,
however, because a file altered using will not be identified as
manipulated with probability even if anti-forensics are
not used. As a result, this measure unfairly credits a number of
missed detections to the effects of anti-forensics, thus overesti-
mating the performance of .
Instead, the performance of an anti-forensic technique should

be measured in terms of its anti-forensic effectiveness, or its
ability to cause the missed detection of an altered multimedia
file given that the manipulation is detectable if anti-forensics is
not used. As a result, we define the probability of anti-forensic
effectiveness of as

(20)

It is important to note, however, that an anti-forensic operation
need not achieve a in order to render ineffective. In
fact, only needs to cause to miss a sufficient number of
detections for its performance to become equivalent to making
a random decision, or in other words . In light
of this, it is important to measure the degree to which a forensic
technique is susceptible to an anti-forensic attack. As a result,
we define the anti-forensic susceptibility of a forensic detection
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Fig. 3. Example relating the anti-forensic effectiveness of an anti-forensic op-
eration to the ROC curves achieved by a forensic technique when anti-forensics
is and is not used. The anti-forensic effectiveness at a given false alarm level is
the ratio .

technique operating with a false alarm constraint of to
an anti-forensic attack as

(21)

At a particular false alarm level, the numerator of is the
difference between the probability that will detect manip-
ulation if anti-forensics is not used and the probability that
will detect manipulation if anti-forensics is used to disguise ma-
nipulation fingerprints. More explicitly, it is the decrease in the
performance of due to the use of , as shown by the dis-
tance in Fig. 3. When computing this distance, we take the
maximum between probability that will detect manipulation
if anti-forensics is used, i.e., , and the
probability of false alarm because the forensic investigator can
always achieve by randomly deciding that a mul-
timedia file is manipulated with probability . Any decrease
in the performance of beyond this point is unnecessary to
render ineffective.
To normalize , its denominator is the difference between

the probability of detection achieved by and its corre-
sponding false alarm rate. This difference, which corresponds
to the distance shown in Fig. 3, is the maximum decrease
in the performance of the forensic detection technique that an
anti-forensic attack can cause. As a result, the anti-forensic sus-
ceptibility is a measure between 0 and 1 of the decrease in the ef-
fectiveness of caused by . An anti-forensic susceptibility
of one indicates that is able to cause to perform no better
than a random decision, while an anti-forensic susceptibility of
zero signifies that is unable to cause any reduction in the
performance of . We note that is undefined for
because under this condition, no anti-forensic technique is able

to cause any reduction in the performance of the forensic de-
tector (it will always decide that the file has been manipulated).

B. Analysis the Interplay Between a Forger and Forensic
Investigator Using Game Theory

In many instances, an anti-forensic operation will leave be-
hind forensically detectable fingerprints of its own. If this is the
case, a new forensic detection technique can be designed to
detect the use of . Under this scenario, the forensic detector
must determine whether a digital multimedia file is a manipu-
lated and anti-forensically modified version of another unaltered
file or not. This problem can be framed as a hypothesis test by
defining the two hypotheses as

(22)

To avoid confusion, we rename the previous hypotheses used
in the manipulation detection scenario as and . By
formulating the detection of anti-forensic manipulation in this
manner, the performance of can be measured using the prob-
abilities of detection and false alarm as before.
The existence of a detection technique capable of identifying

the use of anti-forensics poses a new problem for a forger:
should anti-forensics be used to disguise a forgery if the use
of anti-forensics can itself be detected? A multimedia file will
be identified as forged if either manipulation or the use of
anti-forensics is detected, therefore a forger must attempt to
hide evidence of both. In response, the forger may design their
anti-forensic operation in such a way that the strength with
which it is applied can be adjusted. By reducing the strength of
their anti-forensic attack, a forger decreases the strength of fin-
gerprints left by anti-forensics and correspondingly decreases
the probability that their use of anti-forensics will be detected.
This is not without a cost, however, because as the strength
with which anti-forensics is applied is decreased, the strength
of manipulation fingerprints remaining in a multimedia file will
increase. This will correspond to an increase in the probability
that manipulation will be detected. As a result, the forger must
identify the strength with which to apply their anti-forensic
operation that minimizes the probability that either their ma-
nipulation of the multimedia file or their use of anti-forensics
will be detected.
Additionally, some anti-forensic operations degrade the

quality of the digital multimedia file that they are used on. If
this occurs, it is possible that a human inspecting a forgery may
be able to perceptually identify the forgery even if it does not
contain detectable manipulation or anti-forensic fingerprints.
Alternately, a human may not be able to identify that the
multimedia file has been forged, but the perceptual quality
of the forgery may be so low that it is rendered useless. In
these cases, the forger must also take the perceptual quality
of their forgery into account when choosing the appropriate
anti-forensic strength.
It is fairly obvious that the optimal anti-forensic strength

for the forger to use depends on the decision thresholds used
by and . Consequently, a forensic detector will choose
the decision thresholds for both and that maximize
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their probability of detecting a forgery. Typically, however, a
forensic investigator is not free to choose any set of decision
thresholds because they must operate in accordance with some
false alarm constraint. Since the probabilities of false alarms
associated with both and contribute to the total prob-
ability of false alarm, the forensic detector must decide how
much to allow each detection technique to contribute to the
total probability of false alarm. This implies that the probability
of false alarm allocation that maximizes the forensic detector’s
probability of detecting a forgery depends on the anti-forensic
strength used by the forger. As a result, both the forger and
forensic investigator’s optimal actions depend on the actions of
their counterpart.
The dependence of the forensic investigator’s and forger’s

optimal actions on the actions of the other naturally leads to the
following question; is there a set of actions (i.e., anti-forensic
strength and probability of false alarm allocation) for the both
the forger and forensic investigator that neither have any incen-
tive to deviate from? Furthermore, if this set of actions exists
and both parties take these actions, what is the probability that
a forgery will be detected? To answer these questions we use
game theory to evaluate the dynamics between the forensic in-
vestigator and the forger.
To formulate this situation as a game, we let player 1 de-

note the forensic investigator and player 2 denote the forger. We
adopt the convention that player 1 moves first, or in other words,
the forensic investigator chooses their probability of false alarm
allocation and corresponding decision thresholds first, then al-
lows the forger to respond. Given a total probability of false
alarm constraint , the set of strategies that the forensic investi-
gator can employ is the set of false alarm levels that
can be allocated to . The corresponding false alarm level
allocated to is the maximum false alarm level such that

(23)

Let be an anti-forensic operation operating at strength
, where corresponds to using anti-forensics at full

strength and is equivalent to not using anti-forensics at
all. The set of strategies that the forger can employ is the set of
anti-forensic strengths .
For a particular pairing of strategies , the utility of

player 1 is the probability that either manipulation or the use of
anti-forensics will be detected, i.e.,

(24)

Because this corresponds to the probability that a forgery will
be detected, player 1 wishes to maximize this utility. By con-
trast, player 2 wishes to minimize this quantity along with some

measure of the perceptual distortion in-
troduced into their forgery by the use of anti-forensics. As a re-
sult, the utility of player 2 is

(25)

By substituting in the appropriate expressions for the prob-
abilistic quantities in each utility function, we can find the
Nash equilibrium strategies that neither player has an
incentive to deviate from. In practice, however, the analytical
evaluation of these utilities is often difficult or impossible. In
many forensic scenarios, no known equation exists to express
the probabilistic quantities used in each utility function. As a
result, the Nash equilibria must often be sought out numerically.
Once the Nash equilibrium strategies have been identified,

we can evaluate the probability that the forensic investigator
will detect a forgery. To do this, we simply need to evaluate

because this probability is the utility of player 1.
Since the strategy of player 1 is influenced by the false alarm
constraint placed on the forensic investigator, it is possible that
different Nash equilibrium strategies and different probabilities
of forgery detection will be achieved at different levels. By
varying between 0 and 1, we can determine the probability
of detecting a forgery at the Nash equilibrium associated with
each value. Using this information, we can construct a receiver
operating characteristic (ROC) curve that displays the forensic
investigator’s ability to detect a forgery at each false alarm level
if both players act rationally. We call this ROC curve the Nash
equilibrium receiver operating characteristic (NE ROC) curve.
It is this curve, rather than the individual ROC curves of each
forensic detection technique, that most accurately characterizes
a forensic investigator’s ability to detect a digital forgery.

VII. EXPERIMENTS AND RESULTS

We conducted a series of experiments to evaluate the perfor-
mance of each of our proposed forensic and anti-forensic tech-
niques. In order to create data suitable for our experiments, we
compiled a set of 36 standard video test sequences in the QCIF
format (i.e., a frame size of 176 144 pixels). A complete list of
the names of these sequences, along with information regarding
where these sequences can be downloaded, is provided in the
Appendix. Because these sequences are distributed in an unal-
tered and uncompressed state, we were able to completely con-
trol each video’s processing history and ensure that no finger-
prints left by other signal processing operations affected our ex-
perimental results.
Next, we simulated motion compensated video compression

and decompression in Matlab. In this implementation, we used
a fixed twelve frame GOP structure IBBPBBPBBPBB along
with standard MPEG DCT coefficient quantization tables.
During motion estimation, we determined the set of motion
vectors for a predicted frame using an exhaustive search. We
then compressed the first 250 frames of each uncompressed
video sequence, creating a database of unaltered videos com-
pressed using a fixed GOP length.
Because newer compression schemes allow the GOP struc-

ture to vary during encoding, we modified our encoder so
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that it randomly chose between the GOP structures IBBPBB,
IBBPBBPBB, and IBBPBBPBBPBB for each GOP during en-
coding. By allowing the encoder to use variable GOP lengths,
we were able to simulate the forensically significant manner in
which newer codecs differ from older codecs. We compressed
the first 250 frames of each of the uncompressed video se-
quences using this variable GOP length encoder, creating a
second database of unaltered videos. Frame deletion experi-
ments run on these videos were used to simulate the aperiodic
frame deletion fingerprints introduced by newer video com-
pression techniques.

A. Frame Deletion Detection

To test the forensic effectiveness of our proposed frame
deletion detectors, we first created a database of forged videos.
To do this, we deleted 3, 6, and 9 frames from the beginning
of each unaltered video sequence compressed using a fixed
length GOP, then recompressed each video. This corresponded
to removing 1/4, 1/2, and 3/4 of a GOP respectively. To test
against frame addition, we added 6 frames to the beginning
of each unaltered video sequence compressed with a fixed
length GOP, then recompressed these videos. Additionally, we
deleted 6 frames from the videos compressed using randomly
varying GOP lengths. We then used each of our proposed
detection techniques to determine if frame deletion or addition
had occurred in each video.
When testing for frame deletion or addition, we varied the

value of the decision threshold used in each detector over a
range of values. The probabilities of detection and false
alarm were determined for each threshold by respectively
calculating the percentage of forged videos that were correctly
classified and the percentage of unaltered videos that were in-
correctly classified. We used these results to generate the series
of ROC curves for shown in Fig. 4 and for shown
in Fig. 5. We can see from these ROC curves that both detec-
tors’ performance remains consistent regardless of the number
of frames deleted. Furthermore, we can see that frame addition
can be detected with the same accuracy as frame deletion. By
examining the ROC curves for each detector corresponding to
the average performance across all frame deletion amounts, we
can see that both detectors were able to achieve at a of at
least 85% at a false alarm rate less than 5%. Both detectors also
achieved a of at least 90% at a false alarm rate less than 10%.
These results indicate that both detectors can be used to reliably
detect frame deletion. Additionally, results presented in Fig. 5
suggest that can be used to detect frame deletion in videos
compressed using randomly varying GOP lengths as well.

B. Frame Deletion Anti-Forensics

To evaluate the performance of our proposed frame dele-
tion anti-forensic technique, we deleted six frames from each
unaltered video compressed using a fixed GOP structure, then
recompressed each video while applying our anti-forensic
technique. When implementing our anti-forensic technique, we
incorporated the modifications to our algorithm discussed in
Section V.
An example of typical results achieved by our proposed anti-

forensic technique is shown in Fig. 6. This figure displays the

Fig. 4. ROC curves for obtained by testing against different amounts
frame deletion and addition.

Fig. 5. ROC curves for obtained by testing against different amounts
frame deletion and addition.

P-frame prediction error sequence taken from an untampered
version of the ‘Foreman’ video compressed using a fixed GOP
length, as well as the P-frame prediction error sequences ob-
tained after deleting the first six frames then recompressing the
video with and without applying our anti-forensic temporal fin-
gerprint removal technique. The temporal fingerprint features
prominently in the prediction error sequence of the video in
which frames are deleted without the use of our anti-forensic
technique, particularly in the frequency domain. By contrast,
these fingerprints are absent from the prediction error sequence
when our anti-forensic technique is used to hide evidence of
frame deletion.
Next, we examined the ability of our proposed anti-forensic

technique to fool each of our automatic frame deletion detection
techniques. To do this, we used both of our proposed detection
techniques to classify each video in our databases of unaltered
and anti-forensically modified videos as unaltered or one from
which frames had been deleted. This was done using a series of
different decision thresholds, then the probabilities of detection
and false alarm corresponding to each decision threshold were
calculated from the results. We used this data to generate a new
set of ROC curves for and when frame deletion has
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Fig. 6. P-frame prediction error sequences (top row) and the magnitudes of their respective DFTs (bottom row) obtained from an untampered compressed version
of the “Foreman” video (left column), as well as from the same video after the first six frames were deleted followed by recompression without anti-forensic
modification (middle column) and with the use of our proposed anti-forensic technique (right column).

been disguised using anti-forensics. These ROC curves are dis-
played in Fig. 7(a).
In this figure, the dashed line represents the performance of

a decision rule that randomly classifies a video as forged with a
probability equal to . Reducing a detection technique’s per-
formance to this level corresponds to making it equivalent to a
random guess. As we can see from Fig. 7(a), both frame deletion
detection techniques perform at or near this level when our anti-
forensic technique is applied to a video. Similarly, we used this
data to compute the anti-forensic susceptibility of each detector
to our proposed anti-forensic frame deletion technique. These
results, which are displayed in Fig. 7(b), show that the detector

is entirely susceptible to our anti-forensic technique at all
false alarm levels. The detector was slightly less suscep-
tible to our anti-forensic attack, however, our anti-forensic tech-
nique achieved an anti-forensic susceptibility of .7 or greater for
all % for this detector. These results demonstrate that
our proposed anti-forensic technique is able to render forensic
frame deletion detection techniques nearly completely ineffec-
tive.

C. Detecting Frame Deletion Anti-Forensics

In order to evaluate the performance of our technique de-
signed to detect the use of frame deletion anti-forensics, we re-
examined the videos in our database of unaltered and anti-foren-
sicallymodified videos compressed using a fixedGOP structure.
We used our proposed detector to classify each video as un-
modified or anti-forensically modified at a variety of different
decision thresholds, then used these results to generate the ROC
curve shown in Fig. 8.
The results of this experiment show that our proposed de-

tector achieved perfect detection (i.e., a of 100% at a of
0%). These results are slightly misleading, however, because the
motion vectors of the videos in the unaltered database are ob-
tained using an exhaustive search. Since an exhaustive search is

Fig. 7. Experimental results showing (a) ROC curves for and and
(b) anti-forensic susceptibility plots for and obtained by testing on
anti-forensically modified videos compressed using a fixed GOP structure.
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Fig. 8. ROC curves for the anti-forensics detector when tested on video
data compressed using an exhaustive search to determine motion vectors and
video data encoded using a three step motion vector search algorithm.

also used when estimating a video’s true motion during the de-
tection of anti-forensics, there will be very little difference be-
tween an unaltered video’s stored and recalculated motion vec-
tors.
In reality, many video encoders use efficient algorithms to

perform motion estimation. These algorithms greatly reduce the
time needed to encode a video and produce a near optimal set of
motion vectors. Nonetheless, the motion vectors obtained using
these algorithms differ slightly from those obtained using an
exhaustive search. As a result, it is more difficult to differentiate
between an anti-forensically modified video and an unaltered
video if one of these algorithms is used during encoding.
To evaluate the performance of our proposed frame deletion

anti-forensics detection technique under less favorable condi-
tions, we modified our video coder to perform motion estima-
tion using the three step search algorithm proposed by Zhu and
Ma [25]. We then created a new database of compressed unal-
tered videos whose motion vectors were obtained using this ef-
ficient search algorithm. We repeated the previous experiment
with this data and used the results to generate the ROC curve
shown in Fig. 8.
We can see from Fig. 8 that the performance of our pro-

posed detector is degraded in this scenario. While the detection
of frame deletion anti-forensics can still be performed, it must
be done with a higher false alarm rate. This suggests that if a
forensic investigator’s maximum acceptable false alarm rate is
sufficiently low, a video forger using anti-forensics is likely to
avoid detection. To mitigate this, a forensic investigator may
wish to repeat frame deletion anti-forensics detection using a de-
cision threshold corresponding to a higher false alarm rate, but
not immediately assume that detections correspond to forged
videos. Instead, these videos can be flagged for closer investi-
gation using additional forensic techniques.

D. Game Theoretic Evaluation of Video Forensics and
Anti-Forensics

Once we evaluated the performance of each proposed
forensic detection technique as well as the proposed video
frame deletion anti-forensic technique, we used our game the-
oretic framework to identify the optimal strategies of both the
forensic investigator and video forger. To do this, we modified

our frame deletion anti-forensic technique to operate at vari-
able strengths. This was accomplished by choosing the target
P-frame prediction error sequence associated with strength as

(26)

where denotes the fingerprint-free target prediction error
sequence described in Section IV.
Because our proposed anti-forensic technique introduces vir-

tually no distortion into a forged video, we set the term
in the utility function of player 2. As a result,

causing our video forensic scenario to reduce to a
zero sum game. This allowed us to find the Nash equilibrium
strategies by solving the following equation

(27)

Since no closed form expression for exists in this sce-
nario, we evaluated (27) numerically. This was done by first
deleting frames from each single compressed video in our data-
base, then anti-forensically modifying each video with strengths
ranging between 0 and 1. For each anti-forensically modified
video, we performed frame deletion detection and anti-foren-
sics detection using a variety of different decision thresholds
then calculated the and associated with each decision
threshold and anti-forensic strength pairing. Using this data, the
Nash equilibrium strategies and probability of forgery detection
were calculated.
Fig. 9 shows the utility function when the

forensic investigator operates under the false alarm constraint
%. Under this condition, the Nash equilibrium

strategy is , which corresponds to the forger
reducing the strength of their anti-forensic attack to half and
the forensic investigator allowing all of their false alarms to
come from the anti-forensic detector . The probability with
which the forensic investigator will detect a forgery, i.e., the
value of , is 38.9%. We note that it is less than the
probability of detection achieved by both the frame deletion
detector and the anti-forensics detector at the same false alarm
level. This reinforces the notion that the forger can create a
more successful anti-forensic attack by decreasing its strength.
We determined theNash equilibrium strategies and calculated

the probability of forgery detection for a set of total probability
of false alarm constraints between 0% and 100%.We used these
results to create the NE ROC curve displayed in Fig. 10. From
this curve we can see that if the forensic investigator must op-
erate with a total probability of false alarm constraint of 10%
or less, frame deletion forgeries are difficult to detect. If the
forensic examiner is able to relax their probability of false alarm
constraint to roughly 15% or greater, then they will be able to
detect frame deletion forgeries at a rate of at least 85%.
Table I shows the Nash equilibrium strategies for a variety

of total probability of false alarm levels . In some cases, mul-
tiple values of are Nash equilibrium strategies for a particular
value of . We note that here, the value of corresponding
to each Nash equilibrium strategy at a particular value is the
same. From the data presented in this table, we can observe two
trends. The first is that as the false alarm constraint increases, the
optimal strategy for the forger is to decrease the strength with
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Fig. 9. Utility function of the forensic investigator when the total
probability of false alarm constraint is %.

Fig. 10. Nash equilibrium ROC curve for video frame deletion detection.

TABLE I
NASH EQUILIBRIUM STRATEGIES AND OBTAINED FOR THE
FORGER AND FORENSIC INVESTIGATOR RESPECTIVELY AT

DIFFERENT CONSTRAINTS ON THE FORENSIC
INVESTIGATOR’S TOTAL PROBABILITY

OF FALSE ALARM

which they apply anti-forensics. The second is that regardless of
the value of , the optimal strategy for the forensic investigator
is to allow all of their false alarm contributions to come from the
anti-forensics detector . This is because the effectiveness of
the frame deletion detection technique drops off quickly as is
increased. By contrast, the anti-forensics detector can still op-
erate effectively even at low anti-forensic strengths. As a result,
it is in the best interest of the forensic investigator to place the
maximum load on .

VIII. CONCLUSION

In this paper, we have proposed a set of automatic frame
deletion or addition detection techniques that operate by iden-
tifying increases in a video’s P-frame prediction error that
correspond to frame deletion or addition fingerprints. To do
this, we first developed a model of a video’s P-frame prediction
error sequence before and after frame deletion or addition
has occurred. Additionally, we used this model to design an
anti-forensic technique capable of removing frame deletion or
addition fingerprints form a forged video. This technique oper-
ates by first constructing a target prediction error sequence free
from frame deletion or addition fingerprints, then modifying
the motion vectors of each P-frame so that its total absolute
prediction error matches the target value. Furthermore, we
have proposed a forensic technique to detect the use of frame
addition or deletion anti-forensics by comparing a compressed
video’s motion vectors to an estimate of the true motion in the
video.
Through a series of simulations and experiments, we have

evaluated the performance of each of our proposed forensic and
anti-forensic techniques. Our results show that both of our pro-
posed frame deletion or addition detection techniques can auto-
matically detect video forgeries with a high degree of accuracy
if anti-forensics is not used. These results also show that our
proposed anti-forensic frame deletion or addition technique can
successfully fool both forensic techniques. If this technique is
applied at full strength, however, our anti-forensics detector is
able to identify that anti-forensics has been used with a high de-
gree of accuracy.
In addition, we have proposed a set of methods to evaluate the

performance of anti-forensic techniques. Furthermore, we have
proposed a game theoretic framework that can be used to un-
derstand the interplay between a forensic detector and a forger
when the forger’s use of anti-forensics can be detected. This
framework allows us to identify the optimal set of actions for
both the forensic investigator and forger, as well as to evaluate
the ability of the forensic investigator to identify forgeries. We
have applied our game theoretic framework to the video frame
deletion or addition forgery scenario and identified the optimal
strategies for a forensic investigator and video forger to employ.
These results show that as the forensic investigator’s probability
of false alarm constraint is increased, the strengthwith which the
forger should apply anti-forensics is decreased. By contrast, the
forensic investigator should allow their video frame addition or
deletion detector to operate at a of 0% and allow all of their
false alarms to come from their anti-forensics detector, regard-
less of the constraint on their total probability of false alarm.
Furthermore, we have found that if the forensic investigator is
bound by a total probability of false alarm constraint of approxi-
mately 10% or less, the forensic investigator will have less than
a 50% chance of detecting a video forgery. If the total prob-
ability of false alarm constraint is above 15%, video forgeries
can be detected at a rate of 85% or greater.

APPENDIX

The following video sequences were used to perform the
experiments in this paper: Akiyo, Bowing, Bridge-Close,
Bridge-Far, Carphone, City, Claire, Coastguard, Container,
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Crew, Deadline, Flower Garden, Football, Foreman, Galleon,
Grandma, Hall, Harbour, Highway, Husky, Intros, Pam-
phlet, Mobile, Mother and Daughter, News, Paris, Salesman,
Sign-Irene, Silent, Soccer, Stefan, Students, Table, Tempete,
Vtc1nw, WashDC.
These videos were obtained from the online video databases:
• http://trace.eas.asu.edu/yuv/
• http://media.xiph.org/video/derf/
• ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
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