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Abstract—As the use of digital images has increased, so has
the means and the incentive to create digital image forgeries.
Accordingly, there is a great need for digital image forensic tech-
niques capable of detecting image alterations and forged images.
A number of image processing operations, such as histogram
equalization or gamma correction, are equivalent to pixel value
mappings. In this paper, we show that pixel value mappings leave
behind statistical traces, which we shall refer to as a mapping’s
intrinsic fingerprint, in an image’s pixel value histogram. We then
propose forensic methods for detecting general forms globally
and locally applied contrast enhancement as well as a method
for identifying the use of histogram equalization by searching for
the identifying features of each operation’s intrinsic fingerprint.
Additionally, we propose a method to detect the global addition
of noise to a previously JPEG-compressed image by observing
that the intrinsic fingerprint of a specific mapping will be altered
if it is applied to an image’s pixel values after the addition of
noise. Through a number of simulations, we test the efficacy of
each proposed forensic technique. Our simulation results show
that aside from exceptional cases, all of our detection methods
are able to correctly detect the use of their designated image
processing operation with a probability of 99% given a false alarm
probability of 7% or less.

Index Terms—Contrast enhancement, digital forensics, digital
image forgery, intrinsic fingerprints, pixel value histograms.

I. INTRODUCTION

N recent years, digital images have become increasingly
prevalent throughout society. Many governmental, legal,
scientific, and news media organizations rely on digital images
to make critical decisions or to use as photographic evidence
of specific events. This proves to be problematic, as the rise of
digital images has coincided with the widespread availability of
image editing software. At present, an image forger can easily
alter a digital image in a visually realistic manner. To avoid both
embarrassment and legal ramifications, many of these organiza-
tions now desire some means of identifying image alterations
and verifying image authenticity. As a result, the field of digital
image forensics has been born.
One of the primary goals of digitalimage forensics is the identi-
fication of images and image regions which have undergone some
form of manipulation or alteration. Because of the ill-posed na-
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ture of this problem, no universal method of detecting image forg-
eries exists. Instead, a number of techniques have been proposed
to identify image alterations under a variety of scenarios. While
each of these methods possesses their own limitations, it has been
posited that if a large set of forensic methods are developed, it
will be difficult for a forger to create an image capable of fooling
all image authentication techniques [1].

Previous image forensic work has dealt with the identifica-
tion of computer generated objects within an image [2] as well
as detecting lighting angle inconsistencies [3], [4]. Inconsisten-
cies in chromatic aberration [5] as well as the absence of color
filter array (CFA) interpolation-induced correlations [6] have
been used to identify inauthentic regions of an image. Classi-
fier-based approaches have been proposed which identify image
forgeries using a variety of statistical features [7]-[9]. Though
these techniques are capable of detecting that an image has un-
dergone some form of manipulation, they are unable to deter-
mine how an image has been altered beyond the identification
of manipulated image regions.

One set of digital forensic techniques aimed at detecting
image tampering has grown out of research into imaging device
identification. Forensic imaging device identification methods
attempt to determine the type of device used to capture an
image, ascertain the device manufacturer or model, and iden-
tify the particular imaging device used [10]. These methods
generally perform identification by estimating some device
specific parameter such as CFA interpolation coefficients or
sensor noise. Image forgery detection techniques have been
proposed which operate by locating inconsistencies in these
parameters [1], [11], or by using these parameters to estimate a
tampering filter [12]. While these techniques are quite effective,
they too suffer the drawback of being unable to identify the use
of specific image altering operations.

It is important to note that most image altering operations
leave behind distinct, traceable “fingerprints” in the form of
image alteration artifacts. Because these fingerprints are often
unique to each operation, an individual test to catch each type
of image manipulation must be designed. While detecting image
forgeries using these techniques requires performing a large set
of operation-specific tests, these methods are able to provide in-
sight into the specific operations used to manipulate an image.
Prior work which identifies image tampering by detecting oper-
ation specific fingerprints includes the detection of resampling
[13], double JPEG compression [14]-[16], as well as the pa-
rameterization of gamma correction [17]. Methods for detecting
image forgeries have been proposed by detecting local abnor-
malities in an image’s signal-to-noise ratio (SNR) [14]. Addi-
tionally, the efficient identification of copy and move forgeries
has been studied [18].
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In this work, we show that with the exception of the identity
mapping, pixel value mappings leave behind statistical artifacts
which are visible in an image’s pixel value histogram. We refer to
these artifacts as the intrinsic fingerprint of a pixel value mapping.
By observing the common properties of the histograms of unal-
tered images, we are able to build amodel of an unaltered image’s
pixel value histogram. We then use this model to identify diag-
nostic features of a pixel value mapping’s intrinsic fingerprint.
Because a number of image processing operations are in essence
pixel value mappings, we propose a set of image forgery detection
techniques which operate by detecting the intrinsic fingerprint of
each operation. Specifically, we propose methods for detecting
general forms globally and locally applied contrast enhancement,
as well as a method for identifying the use of histogram equal-
ization, a commonly used form of contrast enhancement. Addi-
tionally, we propose a method to detect the global addition of
noise to a previously JPEG-compressed image by detailing the
effect of noise on the fingerprint of a known pixel value mapping
applied to the image in question.

While much of this work focuses on detecting operations which
alter the perceptual qualities of an image as opposed to more ob-
viously malicious tampering, detecting the image manipulations
discussed in this work is still forensically significant. The detec-
tion of globally applied contrast enhancement provides insight
into an image’s processing history and may be useful prior in-
formation for other detection algorithms. Furthermore, contrast
enhancement operations may be locally applied to disguise vi-
sual clues of image tampering. Localized detection of these op-
erations can be used as evidence of cut-and-paste type forgery.
Additive noise may be globally applied to an image not only to
cover visual evidence of forgery, but also in an attempt to destroy
forensically significant indicators of other tampering operations.
Though the detection of these types of operations may not nec-
essarily pertain to malicious tampering, they certainly throw in
doubt the authenticity of the image and its content.

This paper is organized as follows. In Section II, we de-
scribe the forensically significant qualities of an unaltered
image’s pixel value histogram. In Section III, we define the
intrinsic fingerprint of a pixel value mapping. We describe
our proposed contrast enhancement detection techniques in
Section IV. Included are methods for detecting both globally
and locally applied contrast enhancement as well as a method
for identifying histogram equalization. We develop a method
for detecting the addition of noise to a previously JPEG-com-
pressed image in Section V. Experiments designed to test the
efficacy of each forensic scheme as well as simulation results
are discussed after each detection method is proposed. We
conclude this paper in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

In this work, we consider digital images created by using an
electronic imaging device to capture a real world scene. We
adopt the following model of the digital capture process. Each
pixel is assigned a value by measuring the light intensity re-
flected from a real world scene onto an electronic sensor over
the area pertaining to that pixel. Inherent in this process is the
addition of some zero mean sensor noise which arises due to sev-
eral phenomena including shot noise, dark current, and on-chip
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Fig. 1. Left: Histogram of a typical image. Right: Approximation of the his-
togram at left by sequentially removing then interpolating the value of each
histogram entry.

amplifier noise [19]. For color images, it is often the case that
the light passes through a CFA so that only one color compo-
nent is measured at each pixel location in this fashion. If this
is the case, the color components not observed at each pixel are
determined through interpolation. At the end of this process, the
pixel values are quantized, then stored as the unaltered image.
When analyzing a digital image, a histogram A(l) of the color
or gray level values [ recorded at each pixel can be generated
by creating L equally spaced bins which span the range of pos-
sible pixel values, then tabulating the number of pixels whose
value falls within the range of each bin. Unless otherwise spec-
ified, we will hereafter assume that all gray level values lie in
the set P = {0, ...,255}, all color values lie in the set P?, and
that all pixel value histograms are calculated using 256 bins so
that each bin corresponds to a unique gray or color layer value.
After viewing the pixel value histograms of several camera gen-
erated images corresponding to a variety of scenes, we have ob-
served that these histograms share common properties. None of
the histograms contain sudden zeros or impulsive peaks. Fur-
thermore, individual histogram values do not differ greatly from
the histogram’s envelope. To unify these properties, which arise
due to observational noise [19], sampling effects, and complex
lighting environments, we describe pixel value histograms as in-
terpolatably connected. We denote an interpolatably connected
histogram as one where any histogram value A(l) can be ap-
proximated by il(l), the interpolated value of the histogram at
pixel value [ calculated using a cubic spline given h(t) for all
t € P\l. The histogram of a typical unaltered image as well
as its approximation h, where each value of  has been calcu-
lated by removing a particular value from h then interpolating
this value using a cubic spline, are shown in Fig. 1. As can be
seen in this example, there is very little difference between the
image’s histogram and its approximation.

To justify this model, we compiled a database of 341 unal-
tered images captured using a variety of digital cameras. We
obtained each image’s pixel value histogram h, as well as its
approximated histogram h, where each value h(z) was inter-
polated using cubic spline interpolation. We then calculated the
mean squared error between handh along with the signal power
of h to obtain an SNR. The mean SNR of all image’s histograms
in the test database was 30.67 dB, reinforcing the notion that an
image’s pixel value histogram can be modeled as an interpolat-
ably connected function.

There does exist one naturally occurring phenomena, which
we refer to as histogram saturation, that may cause an unaltered
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Fig. 2. Image sampling effects example.

image’s pixel value histogram to contain an impulsive peak at
one of two possible locations. High end histogram saturation ef-
fects occur in images corresponding to especially bright scenes
where the dynamic range of the observed light intensity values
extends well above the cutoff for the maximum pixel value. Be-
cause these pixels must be assigned the maximum pixel value
of 255, a disproportionate number of pixels will take this value
resulting in an impulsive peak at the high end of an image’s
histogram. Low end saturation effects occur in unusually dark
images, where a large number of pixels taking the value 0 will
cause an impulsive peak to occur at the low end of an image’s
histogram. While low end histogram saturation occurs less fre-
quently than high end saturation, we have observed it in several
unaltered images.

To explain why our histogram model is appropriate for dig-
ital images, consider the simple case of imaging a scene con-
sisting of two distinct color regions shown in Fig. 2. Instinc-
tively, we might assume that the histogram of this image would
consist of zeros everywhere except for two impulses located at
the pixel values corresponding to each of the two colors present
in this scene. Such a histogram would obviously violate our
model. In this scenario, however, the border between the color
regions does not align with the pixel boundaries on the sensor
of the imaging device, denoted by the grid. Many pixels lying
along the color border correspond to sensor areas containing
both colors. The resulting values of each of these pixels will
lie in the convex hull of the values corresponding to each of the
two colors present in the scene. The introduction of these new
pixel values will effectively “smooth out” the pixel value his-
togram. Additionally, in the case of a color image, color values
not observed at a particular pixel location must be interpolated
because of the use of a CFA. The value of these interpolated
pixels will also lie in the convex hull of their neighbors values
and further smooth the histogram, resulting in one which is in-
terpolatably connected.

Due to the complexity of real world scenes, it is exceedingly
unlikely that the all color borders in an image will align directly
with the pixel borders on an imaging device’s sensor. Because
of this, the effect described above should be present in virtu-
ally all real world images. Furthermore, additional factors con-
tribute to the “connectivity” of pixel value histograms of im-
ages captured by digital cameras. The complex nature of most
natural and man-made lighting environments rarely result in a
real world scene consisting of several distinct colors with no
shading. Instead, a continuum of colors and illumination levels
normally exist. Furthermore, the presence of observational noise
will slightly change the value of several pixels during the image

capture process, thus further smoothing the histogram and re-
sulting in one which is interpolatably connected.

III. STATISTICAL INTRINSIC FINGERPRINTS OF PIXEL
VALUE MAPPINGS

A number of image processing operations, such as contrast
enhancement, either include or can be specified entirely by a
pixel value mapping. As is the case with most image processing
operations, pixel value mappings leave behind distinct, forensi-
cally significant artifacts. These artifacts, which we will refer to
as the intrinsic fingerprint of a pixel value mapping r, mani-
fest themselves primarily in an image’s pixel value histogram.
To understand the effect of a pixel value mapping on an image’s
histogram, let us define 2z € P as a pixel value present in an
unaltered image and y € P as the value that 7 maps x to such
that

y = m(x). (D

Using this equation, the relationship between the pixel value his-
togram hx of the unaltered image and the pixel value histogram
hy of the same image after its pixel values have been subjected
to the mapping m can be written as

255

hy (1) =Y hx () A(m(t) =1) 2)

where 1(-) denotes the indicator function. As a consequence,
all entries in hy must take a value of either zero or the sum of
several entries in hx . Furthermore, any time 7 unaltered pixel
values are mapped to the same output value, n — 1 entries in hy
must take a value of zero.

We now define the intrinsic fingerprint of m as

Jim(l) = hy (1) = hx (1)
255

=3 hx(OUm(t) = 1) — hx (D) 3)

which represents the change in the image’s pixel value his-
togram due to the application of the mapping m. We can see
that though the pixel value mapping is deterministic, its finger-
print depends on the image’s histogram statistics. In subsequent
sections it will be useful to examine a frequency domain repre-
sentation of f,,, (). Letting m(!) = m(l)—I, the discrete Fourier
transform (DFT) of f,,,(l) can be written as

Fon(]) =DFT{fn (1)}

=" hx (1) (e—jwkmumzs _ 1) J—imhl/128
=0

——2j 2 hix (1) sin @”;Z(Gl)) [TImk/128 (@ + l) |

4)
By examining (3) and (4), we can see that the intrinsic finger-

print is characterized not only by m(l), but by hx(l) as well.
Despite this, the intrinsic fingerprints left in two images with
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different pixel value histograms will be quite similar. In the fre-
quency domain, a mapping’s tampering fingerprint consists of
a linear combination of sinusoids whose frequencies are deter-
mined by 7i(1), which is nonzero only when m(l) # [. While
the value of hx(l) affects the weight of each sinusoid in the
summation, the presence and frequency of each sinusoid, and
hence the basic structure of the intrinsic fingerprint, is deter-
mined by m.

Fig. 3 shows an example illustrating the similarity between
fingerprints left in images with different pixel value histograms
by a common mapping. As a reference, the pixel value his-
tograms of a synthesized image with a uniform pixel values
distribution and a typical image captured by a digital camera
are shown in Figs. 3(a) and (b), respectively. The DFT of both
histograms are shown in Figs. 3(c) and (d). As can be seen,
these histograms differ significantly in both the pixel value and
frequency domains. Next, the intrinsic fingerprints left in each
image’s histogram by the mapping

m) = {7,

are compared. This mapping alters only one pixel value and is
one of the simplest possible pixel value mappings. In this case,
the intrinsic fingerprint left in each image’s histogram will differ
only by a scaling factor. This can be seen in Figs. 3(e) and (f),
which show the magnitude of the frequency domain representa-
tion of each fingerprint. Finally, the intrinsic fingerprints left by
the pixel value mapping

if 1 # 100

if [ = 100 )

7
m(l) = round <Hl> (6)

are compared. This mapping is more complex than the pre-
viously considered mapping, and affects several pixel values.
Figs. 3(g) and (f) show the magnitude of the frequency do-
main representation of each fingerprint. Though these finger-
prints differ by more than a simple scaling factor, they share sev-
eral identifying features including local peaks at w = +0.9081,
+1.8162, and +2.7243 radians, where

£, if0<k<128

1
. 7
(EZ50m - if 128 < k < 255. @

w =

In subsequent sections, we use intrinsic fingerprints along
with our histogram model to identify evidence of image tam-
pering. When examining a potentially altered image, if the his-
togram of unaltered pixel values is known, the tampering fin-
gerprint can be obtained using (3). If the tampering fingerprint
is zero for all [, one can conclude that a pixel value mapping
was not used to alter the image. Alternatively, if the tampering
fingerprint is nonzero for any values of [, it can be used to help
determine the mapping used to alter the image. In most real sce-
narios, however, one has no a priori knowledge of an image’s
pixel value histogram, thus the tampering fingerprint cannot be
calculated. Despite this, we are able to ascertain the presence
of a tampering fingerprint by determining identifying features
of a mapping’s intrinsic fingerprint and searching for their pres-
ence in the histogram of the image in question. Furthermore, we
reduce the number of false detections by using our histogram
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Fig. 3. Tampering fingerprint example showing the pixel value histograms of
(a) a synthesized image with a uniform pixel distribution and (b) a real world
image captured with a digital camera, the magnitude of the DFT of the histogram
of (c) the synthesized image and (d) the real image, the magnitude of the fre-
quency domain tampering fingerprints of (5) left in (e) the synthesized image
and (f) the real image, as well as the magnitude of the frequency domain in-
trinsic fingerprints of (6) left in (e) the synthesized image and (f) the real image.

model to separate naturally occurring histogram features from
those which correspond to a pixel value mapping’s intrinsic fin-
gerprint.

It is important to note that the concept of an intrinsic finger-
print extends to any monotonically increasing mapping, aside
from the identity mapping, applied to discrete-valued data. For
example, when an image undergoes double JPEG compression,
its DCT coefficients are doubly quantized according to the map-
ping y = goround((q1/q2)round(z/q1)), where ¢; and g2 are
the quantization steps used. The periodic DCT coefficient his-
togram artifacts used in [14], [15], and [16] to identify double
JPEG compression correspond to key features of the intrinsic
fingerprint of this mapping. In fact, any time that an identifying
feature of a mapping’s intrinsic fingerprint can be determined,
it can be used to detect the application of that mapping.
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IV. DETECTING CONTRAST ENHANCEMENT

In this section, we identify the intrinsic fingerprints of con-
trast enhancement mappings and use them to develop a set of
image forensic techniques capable of detecting if an image has
undergone contrast enhancement. While prior image forensic
work has studied gamma correction [14], [17], this work as-
sumes that the forensic examiner knows which specific type of
contrast enhancement may have been applied and that the con-
trast enhancement mapping can be described by a simple para-
metric equation. Here, we present a detection approach which
can be used to detect more general contrast enhancement op-
erations and which requires no a priori knowledge of the form
of contrast enhancement potentially applied. We begin by dis-
cussing a method for detecting the global application of contrast
enhancement which operates by identifying histogram features
indicative of general contrast enhancement fingerprints [20].
Next, we extend this technique into one capable of detecting
locally applied contrast enhancement and show how it can be
used to detect certain cut-and-paste image forgeries. Addition-
ally we present a method for identifying the use of histogram
equalization, a specific form of contrast enhancement, by iden-
tifying histogram features unique to its intrinsic fingerprint.

A. Detection of Globally Applied Contrast Enhancement

Contrast enhancement operations seek to increase the dy-
namic range of pixel values within an image. Most globally ap-
plied contrast enhancement operations accomplish this by ap-
plying a nonlinear mapping to the values of each pixel in the
image, as described in Section III. In order to detect these oper-
ations, we must therefore detect the use of any pixel value map-
ping employed by a contrast enhancement operation. Without
excluding any commonly used forms of contrast enhancement,
we assume that all pixel value mappings in question are mono-
tonically increasing. By considering only monotonic pixel value
mappings, we purposefully exclude mappings which consist of a
simple reordering of pixel values. As was previously mentioned,
we detect the use of global contrast enhancement by identifying
a characteristic feature of all monotonically increasing pixel
value mappings (excluding the identity mapping), then use this
feature in conjunction with our histogram model to ascertain
whether the pixel value histogram of an image corresponds to a
contrast enhanced image or an unaltered one.

In order to identify a diagnostic feature for contrast enhance-
ment operations, let us first consider the effect of applying the
mapping m,, defined as

1, ifl#7
m7+(l)_{l—l—l, ifl=71

to an image with pixel value histogram hx, resulting in an al-
tered image with pixel value histogram hy . This mapping is sig-
nificant because any monotonically increasing pixel value map-
ping, aside from the identity mapping, can be formed by the
proper composition of the mappings m, and m,_ using var-
ious values of 7, where m_ is defined as

me-0={7_,

®)

ifl #71

ifl,= 7.

€))

Furthermore, let hx (1) = a and hx (7+1) = b; therefore, after
the mapping m, is applied to the image, the altered image’s
histogram values at 7 and 7 + 1 will be hy (7) = 0 and hy (7 +
1) = a + b. The square of the Euclidean norm of hx, denoted
by ||hx ||§, will be less than that of hy- because

lhxllz =D hx()?
l

> hx(1)*+a® + 1
l#1,7+1

> hx(1)?+ (a+b)?
l#7,7+1

2
= [Py ll;-

IN

(10)

By Parseval’s theorem, the energy of the DFT of hy must be
greater than or equal to the energy of the DFT of hx; however,
this increase in energy cannot be realized in the DC coefficient
because the total number of pixels in the image remains con-
stant. An identical result can be proved for the mapping m,_.

Because all monotonically increasing contrast enhancement
mappings can be formed using the proper composition of the
mappings m,4 and m,_, all contrast enhancement mappings
result in an increase in energy within the image’s pixel value his-
togram. This increase in energy corresponds to the energy of the
intrinsic fingerprint left by the contrast enhancement mapping.
In our experiments, we have observed that the increase in energy
tends to be spread across the frequency spectrum, excluding the
DC component which must remain constant. By contrast, since
we model an unaltered image’s histogram as an interpolatably
connected function, we expect the histogram’s DFT H (k) to be
a strongly low-pass signal. As a result, the presence of an appre-
ciable amount of energy in the high frequency regions of H (k)
is indicative of contrast enhancement.

An alternate way of viewing this phenomena is to observe that
locally contractive regions of a contrast enhancement mapping
will cause multiple distinct input pixel values to be mapped to
the same output pixel value. This will result in an isolated peak
in the histogram of the contrast image at the common output
pixel value. Similarly, locally expansive regions of a contrast en-
hancement mapping will cause adjacent input pixel values to be
mapped apart, resulting in sudden gaps in the histogram of the
enhanced image. Because these peaks and gaps are impulsive
in nature, they will result in the presence of a significant high
frequency component in H (k). The bottom two plots of Fig. 4
show the frequency domain representations of the histogram of
a typical image before and after it has undergone contrast en-
hancement.

Though an image’s pixel value histogram is typically low-
pass, this is not the case for an image whose histograms exhibit
saturation effects. The impulsive component present in a sat-
urated image’s pixel value histogram will cause a DC offset to
occur in its histogram’s frequency domain representation which
may be mistaken for the fingerprint of a contrast enhancement
mapping. An example of this can be seen in Fig. 5, which shows
a high end saturated image, its pixel value histogram, and the
frequency domain representation of its histogram.

In light of these observations, we propose a technique which
detects contrast enhancement by measuring the strength of
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Fig. 4. Pixel value histogram of (a) an unaltered image and (b) the same image after contrast enhancement has been performed, as well as the magnitude of the
DFT of (c) the unaltered image’s histogram and (d) the contrast enhanced image’s histogram.
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Fig. 5. Left: Image exhibiting high-end histogram saturation. Middle: Histogram of the image’s green pixel values. Right: Magnitude of the DFT of the image’s

green pixel value histogram.

the high frequency components of an image’s pixel value
histogram, then comparing this measurement to a predefined
threshold. To prevent unaltered images exhibiting histogram
saturation effects from yielding large high frequency measure-
ments indicative of contrast enhancement mapping fingerprints,
we modify an image’s histogram before testing so that it is free
from saturation effects. This modified histogram g(l) is ob-
tained by performing the elementwise multiplication between
h(l) and a “’pinch off” function p(l) so that

g() = p(Hh(1)

(1)

where
%—%COS(]’V’—L), <N,
p(l) = % n %COS (ﬂ(1—2§i+Np)) . 1>255— N, (12)
1 else

and N, is the width of the region over which p(l) decays from 1
to 0. The pinch off function is designed to both remove impul-
sive histogram components which may occur due to saturation

effects as well as to minimize the frequency domain effects of
multiplying h(l) by p(l), which behaves similar to a windowing
function.

We calculate F, a normalized measure of the energy in the
high frequency components of the pixel value histogram, from
g(l) according to the formula

F=< CLE (13)

where N is the total number of pixels in the image, G(k) is the
DFT of g(1), and 3(l) is a weighting function which takes values
between 0 and 1. The purpose of 3(1) is to deemphasize low fre-
quency regions of G(I) where nonzero values do not necessarily
correspond to contrast enhancement artifacts. In this work, we
use the simple cutoff function

ﬂ(k)={17 c< k<128

0, else
where c is the entry of the 256 point DFT corresponding to a
desired cutoff frequency. 3(k) is zero for all values greater than

(14)
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Fig. 6. Contrast enhancement detection ROC curves for images altered by a
power law transformation with (b) v = 1.1 using several values of the cutoff
parameter c.

k = 128 because symmetry properties inherent in the DFT of

real valued signals make it unnecessary to measure these values.
After I has been calculated, the decision rule d.. is used to

classify an image as unaltered or contrast enhanced, such that

image is not contrast enhanced, FE < 7)ce
ce — (15)

image is contrast enhanced, E > ee.

Our observation that an unaltered image’s pixel value his-
togram is a strongly low-pass signal suggests that our detector’s
performance should improve as the frequency cutoff of c is in-
creased. To verify this, we conducted an experiment on one set
of data in which we obtained performance results for our con-
trast enhancement detection technique using c¢ values ranging
from 32 to 112 and compared the results. For this experiment,
we used the green color layer from each of the 244 images in
the Uncompressed Colour Image Database as a set of unaltered
grayscale images [21]. We created a set of contrast enhanced
images by applying the power law transformation

l vy
m(l) = 255 ( )
255

with v = 1.1 to the pixel values of each of the unaltered images.
We then classified each of these images as altered or unaltered
using a series of decision thresholds and with the parameter
N, = 4. The probabilities of detection Py and false alarm P,
were determined for each threshold by respectively calculating
the percent of contrast enhanced images correctly classified and
the percent of unaltered images incorrectly classified. The se-
ries of receiver operating characteristic (ROC) curves displayed
in Fig. 6 was generated using these results. As we hypothesized,
our detection algorithm’s performance improved as the value of
¢ was increased, with the best performance being achieved when
using ¢ = 112.

To perform a larger scale test of our contrast enhancement de-
tection technique, we compiled a database of 341 unaltered im-
ages consisting of many different subjects and captured under
a variety of light conditions. These images were taken with
several different cameras and range in size from 1500 x 1000
pixels to 2592 x 1944 pixels. The green color layer of each of
these images was used to create a set of unaltered grayscale
images. We applied the power law transformation defined in
(16) to each of these unaltered grayscale images using y values

(16)

ranging from 0.5 to 2.0 to create a set of contrast enhanced im-
ages. Additionally, we modified each unaltered grayscale image
using the nonstandard contrast enhancement mapping displayed
in Fig. 7(a). These images were combined with the unaltered im-
ages to create a testing database of 4092 grayscale images.

To evaluate the performance of our contrast enhancement de-
tection technique on this testing set, each image was classified as
altered or unaltered using a series of decision thresholds. During
classification, the parameters IV, and c were set to N, = 4 and
¢ = 112. As before, the detection and false alarm probabili-
ties were calculated at each decision threshold and the series of
ROC curves shown in Figs. 7(b) and (c) were generated. For
each form of contrast enhancement tested, our detection tech-
nique acheived a Py of 0.99 at a P, of approximately 0.03 or
less.

B. Detection of Locally Applied Contrast Enhancement

Locally applied contrast enhancement can be defined as ap-
plying a contrast mapping to a set of contiguous pixels 7 within
an image. If the cardinality of .7 is large enough that a histogram
of the values of all pixels within J can be modeled as interpolat-
ably connected, then when contrast enhancement is performed
on the set J it will introduce its fingerprint into the histogram
of J. In light of this, the global contrast enhancement detection
technique proposed in Section IV-A can be performed on a test
set of pixels J' to achieve localized contrast enhancement de-
tection.

Ideally, the test set 7’ should be identical to the set J when
performing localized contrast enhancement detection. In reality,
this is seldom the case because if an image contains a set of
contrast enhanced pixels, the members of this set are not public
knowledge. In some scenarios, the authenticity of a particular
image region is thrown in doubt and the test set can be manu-
ally selected to correspond to encompass this region. If local-
ized contrast enhancement is carefully applied, however, it will
not be obvious which image regions have been altered and the
image must be searched for contrast enhancement in its entirety.
This can be performed by segmenting an image into a set of
blocks so that each block corresponds to a unique test set, then
performing contrast enhancement detection on each block. The
blockwise detection results can be combined to identify image
regions which show signs of contrast enhancement.

In some scenarios, locally applied contrast enhancement de-
tection can be used to identify other, more obviously malicious
image manipulations such as cut-and-paste forgery. Cut-and-
paste image forgery consists of creating a composite image by
replacing a contiguous set of pixels in one image with a set of
pixels O corresponding to an object from a separate image. If
the two images used to create the composite image were cap-
tured under different lighting environments, an image forger
may need to perform contrast enhancement on O so that lighting
conditions match across the composite image. Failure to do this
may result in a composite image which does not appear real-
istic. Image forgeries created in this manner can be identified
by using localized contrast enhancement detection to locate O,
the cut-and-pasted region.

When performing blockwise localized contrast enhancement
detection, it is important to ensure that the testing blocks
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Fig. 7. Contrast enhancement detection ROC curves for images altered by a power law transformation with (b) 2.0 > v > 1.2, and (¢) 0.5 > v > 0.9 as well

as the mapping displayed in (a).
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Fig. 8. ROC curves obtained using different testing block sizes for images altered by a power law transformation with v = 0.5 (top left), ¥ = 0.6 (top middle),

v = 0.7 (top right), v = 0.8 (bottom left), and v = 0.9 (bottom right).

are large enough to yield histograms suitable for contrast
enhancement detection. If the blocks are too small, they may
not contain enough pixels for the interpolatably connected
histogram model to hold valid. In order to determine which
block sizes are sufficient to perform reliable detection and
examine the effectiveness of the local contrast enhancement
detection scheme, we performed the following experiment.
Each of the 341 unaltered images from the second test database
described in Section IV-A along with the power law transformed
images corresponding to v = 0.5 through 0.9 were segmented
into square blocks. This process was performed for blocks
of size 200 x 200, 100 x 100, 50 x 50, 25 x 25, and 20 x 20
pixels. Each block was then classified as contrast enhanced or
unaltered by our contrast enhancement detection scheme using
a variety of different thresholds. False alarm and detection
probabilities were determined at each threshold and for every
choice of block size by calculating the percent of incorrectly
classified unaltered blocks and the percent of correctly classified
contrast enhanced blocks respectively. This information was
used to generate a set of ROC curves, shown in Fig. 8 for
each value of v which was tested.

The ROC curves shown in Fig. 8 indicate that local con-
trast enhancement can be reliably detected using testing blocks
sized at least 100 x 100 pixels. At a Py, of approximately 5%,
a Py of at least 95% was achieved using 200 x 200 pixel blocks
and a Py of at least 80% was achieved using 100 x 100 pixel
blocks for each form of contrast enhancement tested. These re-
sults improved markedly when the contrast enhancement ap-
plied was stronger than the relatively mild power law transfor-
mation using v = 0.9. In such cases, a Py of roughly 98.5% and
96% was achieved with a P, of aproximatley 5% for blocks
sized 200 x 200 pixels and 100 x 100 pixels, respectively. It
should also be noted that testing blocks sized 25 x 25 pixels and
smaller appear to contain an insufficient number of pixels to per-
form reliable contrast enhancement detection.

An example of a cut-and-paste image forgery in which the
pasted region has undergone contrast enhancement is shown
in Fig. 9 along with the localized contrast enhancement de-
tection results obtained from our proposed forensic technique.
Adobe Photoshop was used to create the forged image shown in
Fig. 9(c) from the unaltered images shown in Figs. 9(a) and (b).
In order to detect the forgery, the image was then segmented into
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Fig. 9. Cut and paste forgery detection example showing (a) the unaltered image from which an object is cut, (b) the unaltered image into which the cut object is
pasted, (c) the composite image, (d) red layer blockwise detections, (e) green layer blockwise detections, and (f) blue layer blockwise detections. Blocks detected

as contrast enhanced are highlighted and boxed.
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Fig. 10. Cut and paste forgery detection results using 50 x 50 pixel blocks showing (a) red layer blockwise detections, (b) green layer blockwise detections,
(c) blue layer blockwise detections, and (d) blockwise detections that occur across all three color layers.

100 x 100 pixel blocks, each of which was tested for evidence
of locally applied contrast enhancement. Figs. 9(d)—(f) show the
results of performing localized contrast enhancement detection
on the red, green, and blue color layers of the composite image.
Blocks corresponding to contrast enhancement detections are
highlighted and outlined in black. In this example, each of these
blocks contain pixels that correspond to the inauthentic object.
Fig. 10 shows detection results when the block size is reduced
to 50 x 50 pixels. When detection was performed separately
on each color layer of the forged image, several false alarms

occurred, as can be seen in Figs. 10(a)—(c). These false alarm
blocks generally correspond to areas of the sky where the pixel
values are nearly constant, leading to a pixel value histogram
that contains an impulsive component outside of the pinch off
region. The number of false alarms can be reduced in color im-
ages such as this by classifying a block as contrast enhanced
only if a detection occurs at the corresponding block in each of
the three color layers. Fig. 10(d) shows the results of applying
this detection criteria to the single color layer detections dis-
played in in Figs. 10(a)—(c).
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C. Histogram Equalization

In some scenarios, it may be desirable to identify the spe-
cific form contrast enhancement used to modify an image. One
simple and commonly used form of contrast enhancement is
histogram equalization. Histogram equalization effectively in-
creases the dynamic range of an image’s pixel values by sub-
jecting them to a mapping such that the distribution of output
pixel values is approximately uniform [22]. The mapping used
to accomplish this is dependent upon the histogram of the unal-
tered image and is is generated according to the equation

!
mpe(l) = round (255 Z %)

t=0

a7

where N is the total number of pixels in the image. Because the
histogram of an unaltered image does not normally approximate
auniform distribution, the “uniformity” of an equalized image’s
histogram can be used as an identifying feature of this map-
ping’s intrinsic fingerprint. We propose a test which measures
the distance between an image’s normalized histogram and the
uniform distribution, then uses this distance to determine if the
image has undergone histogram equalization. This test can be
used after contrast enhancement has been detected or it can per-
formed independently of our generalized contrast enhancement
detection technique.

Like any other contrast enhancement mapping, histogram
equalization will introduce zeros into an image’s pixel value
histogram through the process discussed in Section III. Because
of this, measures such as the Kullback-Leibler divergence are
ill equipped to determine the distance between an image’s
normalized histogram of an equalized image and the uniform
distribution. Similarly, other measures such as the mean ab-
solute difference or the mean squared difference between an
image’s normalized histogram and the uniform distribution will
be biased away from small values indicative of a uniform his-
togram by the zeros and accompanying impulsive peaks present
in an equalized image’s histogram. To mitigate this problem,
we propose measuring the uniformity of an image’s histogram
in the frequency domain, where histogram equalization’s iden-
tifying features can be separated from other obfuscating effects.

The frequency domain representation of a constant function
is an impulse centered at zero. Using this fact, we obtain a fre-
quency domain measure of the distance D of an image’s nor-
malized histogram from the uniform distribution according to
the formula

1
D=5 Y [Hk)|a(k) (18)

k50

In (18), a(k) is a weighting function used to deemphasize the
high frequency regions in H (k) where the energy introduced by
histogram equalizations intrinsic fingerprint tends to accumu-
late. After calculating D for an image in question, the decision
rule 6y, is then used to determine if histogram equalization has
been performed, as in (19), shown at the bottom of the page,
where 7). is the decision threshold.

As discussed in Section IV-A, frequency domain detection
methods suffer problems due to the constant offset present in
H(k) in high and low end histogram saturated images. Multi-
plying A(l) by a pinch off function will not remove the effects
of histogram saturation because for histogram equalized images,
the location of the impulsive component is often shifted by his-
togram equalization. Instead, we identify impulsive components
which are likely due to saturation effects and remove them to ob-
tain a modified histogram.

For low end histogram saturated images, we may safely as-
sume that before histogram equalization is applied to an image,
the impulsive nature of its histogram will cause the number of
pixels in the lowest bin to be greater than 2N /255. After his-
togram equalization is performed, the pixel value [ = 0 will be
mapped to an output value greater than or equal to 2 because

=0

mpe(0) =round <255 Z %)

t=0

2
>round | 255 = 2.
255

Letting I’ denote the lowest value of [ such that h(l) > 0, im-
ages which may be of this nature can be identified if I’ > 2 and
h(l") > 2N /255. For these images, the effects of the impul-
sive histogram component can be mitigated by forming a new
histogram A/([) by retaining only the section of the histogram
corresponding to pixel values larger than the kth nonzero entry.
More explicitly, A'(l) can be defined as h/(l) = h(l}, + 1+ 1),
where [}, is the kth nonempty bin in A (l). The parameter h(l) in
(18) can then be replaced by h/([) to obtain a value of D unbi-
ased by low end histogram saturations effects.

In the case of high end histogram saturated images, we can
similarly assume that h(255) > 2N /255. When histogram
equalization is performed on these images, the input pixel value
[ = 254 is mapped to an output value of 253 or less because

(20)

=254

mpe(254) =round (255 Z %)

t=0

2
<round <255 <1 — )) =253. (21)
255

Using this information, high end saturated images that may have
undergone histogram equalization can be identified by deter-
mining if {” < 253 and h(255) > 2N /255, where I” is the

P histogram equalization not present,
"¢ = histogram equalization present,

D> Nhe

D < e (19)
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largest value of [ such that [ < 255 and h(I”) > 0. A new
histogram that does not contain the impulsive histogram com-
ponent can now be formed by letting h”(l) = h(l) for | =
0,...,0} —1, where [}/ is the kth nonempty bin in /([) counting
backwards from [ = 255. As before, h(l) in (18) can be re-
placed by (1) to achieve a value of D unbiased by high end
histogram saturations effects.

To evaluate the performance of our histogram equalization
classification method, we performed histogram equalization on
the 341 unaltered grayscale images from our global contrast en-
hancement test database described in Section IV-A. We com-
bined the histogram equalized images with their unaltered coun-
terparts to create a histogram equalization testing database. Next
we used our detection algorithm to determine if each image in
the database had undergone histogram equalization. Detection
was performed using two different weighting functions

[ exp(—r1k), if0 <k <128
o (k) = {exp(—r1(256 — k), if128<k<255 2P
with r; taking values between 0.1 and 0.5 and
N J1, ifk<ryor(256 —k)<r
(k) = {07 else (23)

with 75 values ranging from 4 to 16. The false alarm and detec-
tion probabilities were then determined by calculating the per-
centage of incorrectly classified unaltered images and the per-
centage of correctly classified histogram equalized images re-
spectively.

A series of ROC curves showing the performance of our his-
togram equalization detection scheme are displayed in Fig. 11.
Our detector achieved its best performance using a4(k) as a
weighting function with r; = 0.5. Under these conditions, a Py
of 99% was reached with a P, of approximately 0.5% as well
as a P4 of 100% with a P, of nearly 3%. Additionally, Fig. 11
shows that our detection scheme’s performance improved as
the value of r; increased when using «;(k), and as the value
of o decreased when using (k). Both of these trends corre-
spond to an increase in detector performance as the weighting
function is chosen to place more emphasis on low frequency
regions of H (k) during detection. This reinforces the notion
that a weighting function is needed to deemphasize the middle
and high frequency regions of H (k) where general contrast en-
hancement artifacts can obscure evidence of histogram equal-
ization.

Additionally, we performed an experiment to verify that our
histogram equalization classification technique can differentiate
between histogram equalization and other forms of contrast en-
hancement. We created a new testing database consisting of the
341 unaltered grayscale images as well as 1705 of the gamma
corrected images corresponding to vy = 0.5 to 0.9 from the ex-
periment discussed in Section IV-A. We then used our histogram
equalization detection test to classify each of the images in the
database as histogram equalized or not equalized. During classi-
fication, the weighting function described in (22) was used with
ro = 4. The probabilities of detection and false alarm were ob-
tained by calculating the percentage of correctly classified his-
togram equalized images and incorrectly classified gamma cor-
rected images respectively. These probabilities were then used
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Fig. 11. Histogram equalization detection ROC curves obtained (a) using the
weighting function defined in (22) and (b) using the weighting function defined
in (23).
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Fig. 12. ROC curves obtained when differentiating between histogram equal-
ization and other forms of contrast enhancement.

to generate the ROC curves displayed in Fig. 12. A Py of 100%
was achieved at a P, of less than 1% for each form of contrast
enhancement tested.

V. DETECTING ADDITIVE NOISE IN PREVIOUSLY
JPEG-COMPRESSED IMAGES

In this section, we present a technique designed to detect the
global addition of noise to an image that has previously under-
gone JPEG compression. Though this may initially seem to be a
fairly harmless operation, additive noise can be used to disguise
visual traces of image forgery or in an attempt to mask statistical
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artifacts left behind by other image altering operations. Previous
work has dealt with the detection of noise added to specific re-
gions of an image by searching for fluctuations in localized es-
timates of an image’s SNR [14]. This method fails, however,
when noise has been globally added to an image because this
scenario will not result in localized SNR variations. Instead of
relying upon SNR measurements, our proposed technique oper-
ates by applying a predefined mapping with a known fingerprint
to a potentially altered image’s pixel values [23]. This mapping
is chosen such that an identifying feature of its fingerprint will
be absent if noise was added to the image. Accordingly, we are
able to detect the presence of additive noise if the application
of the predefined mapping does not introduce a fingerprint with
this feature.

A. Scale and Round Mapping

To perform additive noise detection, we make use of a map-
ping which we refer to as the scale and round mapping. We de-
fine the scale and round mapping as

v = round(cu) (24)
where u, v € Z and c is a fixed scalar. To understand the finger-
print left by this mapping, let us also define U.(v) as the set of
u values mapped to each distinct v value by (24), where

U.(v) = {u|v = round(cu)}. (25)
The cardinality of this set, denoted by |I.(v)]|, depends on the
values of both ¢ and v. It can be proven that if ¢ = p/q such
that p, ¢ € Z are relatively prime, |U.(v)| is periodic in v with
period p. To see why this is so, consider first the following two

easily proven lemmas:
Lemma 1: Givena € Zandb € R

a =round(b) & a+ k =round(b+ k), Vk € Z.

?

(26)

Lemma 2: Given u, v € Z, and ¢ = p/q such that p,q € Z
are relatively prime

v =round(cu) & v+ p=round(c(u+q)). (27)
Now using Lemma 2, we can state that for all u € U.(v),
there exists some @ € U.(v + p), namely & = u + ¢, which
implies that |, (v)| = [U.(v + p)|. This proves that the number
of u values mapped to each v value is periodic with period p. As
a consequence, the intrinsic fingerprint of the scale and round
operation will contain a periodic component with period p.

B. Hypothesis Testing Scenario

‘We now shift our discussion to JPEG compression and its sig-
nificance to the detection of additive noise. When a color image
undergoes JPEG compression, each pixel in the image is first
converted from the RGB color space to the YCbCr color space
using a linear transformation. Next, each color layer is divided
into a series of 8 x 8 pixel blocks and the discrete cosine trans-
form of each block is computed. The resulting set of DCT coef-
ficients are quantized by dividing each coefficient by its corre-
sponding entry in a quantization matrix, then rounding the result

to the nearest integer. Finally, the quantized DCT coefficients
are reordered into a single bitstream which is losslessly com-
pressed.

The image is decompressed by losslessly decoding the bit-
stream of quantized DCT coefficients, then reshaping it back
into the series of blocks. The DCT coefficients are dequantized
by multiplying each quantized DCT coefficient by its corre-
sponding entry in the quantization matrix used during compres-
sion. Next, the inverse DCT (IDCT) of each block is computed,
resulting in a set of pixel values in the YCbCr color space. Be-
cause the dequantized DCT coefficients are integer multiples of
their respective quantization table entries and because the IDCT
is a fixed linear transformation, the pixel values in the YCbCr
color space will lie in a countable subset of R3. As aresult, if a
monotonically increasing mapping is applied to any color layer
in the YCbCr color space, that mapping’s fingerprint will be in-
troduced into the histogram of the color layer’s values.

In the final stage of JPEG decompression, the pixels are trans-
formed from the YCbCr to the RGB color space, then projected
back into 3. Letting y denote a pixel in the RGB color space,
x denote the same pixel in the YCbCr color space, and T be the
linear transformation that maps a pixel from the YCbCr to the
RGB color space, this process can be described mathematically
by the equation

y = truncate(round(Tx)) (28)
where the operation truncate(:) maps values of its argument
less than 0 to 0 and values greater than 255 to 255. By defining
Q(Tx) = truncate(round(Tx)) — Tx, we may now formu-
late the detection of additive noise as the following hypothesis
testing problem:

Hy:y =Tx+ Q(Tx)
Hy:y=Tx+ Q(Tx) +n. (29)

It should be noted that traditional Bayesian techniques cannot
be used to differentiate between these two hypotheses because
the distribution of x is unknown. Instead, we differentiate be-
tween these two hypotheses by observing that the fingerprint
left by the mapping

z = round(cT ™ 'y) (30)

where the constant ¢ = p/q is such that p,q € Z are rela-
tively prime, differs under each hypothesis. When this mapping
is applied to each pixel within an image, the hypothesis testing
problem outlined in (29) can be rewritten as

Hy : z =round(cx + e)

H, : z =round(cx + e 4+ ¢T 7 'n) 31

where e = ¢T7'Q(Tx).
Under hypothesis Hy, the ith entry of z can be expressed as
according to the formula

z; =round(cz; + ¢;)

=round(cz;) + round(e;) + d; (32)
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Fig. 13. Example showing an unaltered image (top left), its normalized z; his-
togram (middle left), and the magnitude of the DFT of its z; histogram (bottom
left), as well as an altered version of the image to which unit variance Gaussian
noise has been added (top right), its normalized z; histogram (middle right),
and the magnitude of the DFT of its z; histogram (bottom right). In both cases,
the scaling parameter was chosen to be ¢ = 3/4.

where d; is an independent random variable which accounts for
the error induced by summing the individually rounded terms
cx; and e;. Because the variances of the terms round(e;) and d;
are typically small, the term round(cz;) dominates the behavior
of the PMF of z;. Since the term round(cz;) is of the same
form as (24), the number of distinct z; values mapped to each
z; value will occur in a fixed periodic pattern. This will result in
the presence of a discernible periodic pattern with period p in
the envelope of the histogram of z; values. This pattern, which
corresponds to the intrinsic fingerprint of the scale and round
mapping, can be clearly seen in Fig. 13.

Under hypothesis Hy, we find that the histogram of z; values
exhibits different behavior. Defining the matrix W as the in-
verse of T such that

Wii Wia Wigs
T '=W= |Wy Wyy Wiy (33)
Ws1 Wi Wi
the +th entry of z can be expressed as
3
z; =round | cz; + Z cW; inj + e;
j=1
3
=round(cz;) + Z round (cW; jn;)
j=1
+ round(e;) + d; (34)

where d; is an independent random variable which accounts for
the error induced by moving the summation of terms outside
the round operation. Under this hypothesis, the PMF of z; is
equivalent to the convolution of each of these terms. Under this
hypothesis, however, three additional terms containing the scale
and round mapping appear, each with their own scaling constant
cW; ;. If these scaling constants along with the original scaling
constant ¢ are such that the fingerprints introduced into each
individual term share no common period, then the convolution
of the PMFs of each term will effectively smooth out the PMF
of z;. As aresult, no periodic pattern will be introduced into the
histogram of z; by the mapping defined in (28). This effect can
be observed in the example shown in Fig. 13.

C. Additive Noise Detection in Images

Using this information, we are able to rephrase the detection
of the addition of noise to a previously JPEG-compressed image
as the detection of the the periodic fingerprint of (28) within the
envelope of h, (), the normalized histogram of z;. Because of
its periodic nature, the detection of this fingerprint is particu-
larly well suited for the frequency domain, where it will produce
a peak centered at the frequency bin corresponding to its funda-
mental frequency or an integer multiple thereof. The bottom two
plots of Fig. 13 show the presence or absence of this peak under
each hypothesis. Furthermore, since the period of the fingerprint
is dictated by our choice of the scaling constant, we are able to
choose the frequency location of this peak.

To facilitate detection, we obtain a frequency domain repre-
sentation G ., (k) of the histogram h_, (I) which is free from any
possible high or low end histogram saturation effects. We ac-
complish this by defining G, (k) as the DFT of g, (1), which
we calculate using the equation

9=, (1) = h=,(D)p(1)

where p(!) is the pinch off function denoted in (12). Next, we
test for the presence of the periodic fingerprint by measuring the
strength of the peak that it introduces into G, (k). This measure-
ment is obtained using the equation

(35)

S = min i |G ()] —, — |G (k)| : (36)
B 2 G0 w2 1G=0)]
JEB JEB2

where k* is the frequency location of the expected peak and
By and Bs are sets of contiguous indices of G, lying above
and below k* respectively. Finally, we use a decision rule 6,
corresponding to the threshold test

it S <,

noise has not been added,
on = { itS>n, O

noise has been added,

to determine the presence or absence of additive noise within
the image.

When using this technique, the sets By and By should be
chosen such that they do not include indices directly adjacent to
k*. This is because DFT windowing effects may result in artifi-
cially larger values of |G, (k)| around the peak if it is present.
Additionally, the interpolatable connectivity restriction placed
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Fig. 14. Additive noise detection ROC curve for images which were JPEG-
compressed using default camera settings then altered by adding unit variance
Gaussian additive noise.

upon the histogram of pixel values in our image model im-
plies that G ., (k) will be strongly low-pass in nature. This prop-
erty suggests that to achieve better differentiability, ¢ should
be chosen such that it introduces a high frequency signal into
h.,(1).

To evaluate the performance of our additive noise detection
technique, we compiled a set of 277 unaltered images taken by
four different digital cameras from unique manufacturers. These
images capture a variety of different scenes and were saved as
JPEG-compressed images using each camera’s default settings.
A set of altered images was created by decompressing each
image and independently adding unit variance Gaussian noise
to each pixel value. These altered images were then saved as
bitmaps, along with decompressed versions of the original im-
ages, creating a testing database of 554 images. Next we used
our additive noise detection test to determine if noise had been
added to each image in the database. When creating the his-
togram of z; values, we chose ¢« = 1 which corresponds to using
the luminance or “Y” component of each pixel. The parameter
¢ was chosen to take the value ¢ = 7/11 leading to an expected
peak location of k* = 71. The sets of By and B2 were chosen
tobe By = {61,...,68} and B, = {74,...,81}.

Detection and false alarm probabilities were determined at
a series of decision thresholds by calculating the percentages
of correctly classified images to which noise had been added
and incorrectly classified unaltered images, respectively. Using
this data, an ROC curve showing the performance of our ad-
ditive noise detection algorithm is displayed in Fig. 14. A Py
of approximately 80% was achieved at a false alarm rate less
than 0.4%. When the Py, was held less than 6.5%, the Py in-
creased to nearly 99%. These results indicate that our detection
scheme is able to reliably detect additive noise in images previ-
ously JPEG-compressed using a camera’s default settings.

Additionally, we evaluated our additive noise detection
technique’s ability to operate on images previously JPEG-com-
pressed at different quality factors. To do this, we JPEG-com-
pressed each of the 244 images in the Uncompressed Colour
Image Database at the quality factors @ = 90, 70, 50, and 30
[21]. As before, we created a set of altered images by adding
unit variance Gaussian noise to each image, then saved each
image as a bitmap. We then tested each image for the presence
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Fig. 15. Additive noise detection ROC curve for images which were JPEG-
compressed at several different quality factors then altered by adding unit vari-
ance Gaussian additive noise.

of additive noise with our proposed forensic technique using a
variety of detection thresholds. We conducted this experiment
using the same experimental parameters as our previous test.
For each threshold, the probabilities of detection and false
alarm were calculated then used to construct the series of ROC
curves displayed in Fig. 15. Results comparable to our previous
experiment were achieved for images previously compressed
using quality factors of 50 or greater. For these quality factors,
a Py of 99% was acheived at a Py, of 3.7% or less. At lower
quality factors, however, noise detection appears to become
more difficult.

VI. CONCLUSION

In this paper, we proposed a set of digital image forensic tech-
niques capable of detecting global and local contrast enhance-
ment, identifying the use of histogram equalization, and detec-
tion of the global addition of noise to a previously JPEG-com-
pressed image. In each of these techniques, detection depends
upon the presence or absence of an intrinsic fingerprint intro-
duced into an image’s histogram by a pixel value mapping.

We developed a model of an unaltered image’s pixel value
histogram and provided justification for this model. We defined
the intrinsic fingerprint which a mapping leaves in the histogram
of of an image’s pixel values or other discrete valued data. By
observing that the intrinsic fingerprints of contrast enhancement
operations add energy to the high frequency components of an
image’s pixel value histogram, we developed a global contrast
enhancement detection technique. We extended this technique
into a method for detecting locally applied contrast enhance-
ment and demonstrated its usefulness for detecting cut and paste
type forgeries. Characteristic features of histogram equaliza-
tion’s intrinsic fingerprint were identified and used to propose
a scheme for identifying the use of this operation. Additionally,
we proposed a technique which detects the global addition of
noise to a previously JPEG-compressed image by searching for
the intrinsic fingerprint of a specific pixel value mapping applied
to the image in question.

Through detailed simulations, we tested the effectiveness of
each of the proposed forensic techniques. Our simulation results
show that aside from exceptional cases, each of the proposed
techniques achieved a P4 of 99% with a P, of 7% or less. These
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results indicate that all of the proposed forensic techniques are
very useful tools for identifying image manipulations and forg-
eries.
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