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ABSTRACT In recent decades, we have witnessed the evolution of information technologies from the
development of VLSI technologies, to communication and networking infrastructure, to the standardization
of multimedia compression and coding schemes, to effective multimedia content search and retrieval. As a
result, multimedia devices and digital content have become ubiquitous. This path of technological evolution
has naturally led to a critical issue that must be addressed next, namely, to ensure that content, devices, and
intellectual property are being used by authorized users for legitimate purposes, and to be able to forensically
prove with high confidence when otherwise. When security is compromised, intellectual rights are violated,
or authenticity is forged, forensic methodologies and tools are employed to reconstruct what has happened
to digital content in order to answer who has done what, when, where, and how. The goal of this paper is to
provide an overview on what has been done over the last decade in the new and emerging field of information
forensics regarding theories, methodologies, state-of-the-art techniques, major applications, and to provide
an outlook of the future.

INDEX TERMS Information forensics, tampering detection, multimedia fingerprint, anti-forensics.

I. INTRODUCTION
Every technology has its time. In the 1970’s, advances in
VLSI led to a new high-tech industrial revolution allowing
electronic systems to be built smaller and run faster. With
that as a foundation, we have witnessed since the 1980’s
the worldwide development of high-speed networking and
wireless infrastructure. Once communication and computing
infrastructure offered enough bandwidth and computational
power for broadband applications, the development of multi-
media compression algorithms and systems took off in the
1990’s. This led to many well known standards such as
JPEG, MPEG-1/2/4 and H.26x. After this came the need to
search and organize content as it proliferates all over the
Internet. Content search and retrieval efforts such as MPEG-7
became the focusing point of the R&D community, and
commercial giants of web search such as Google and Yahoo
emerged. This path of technological evolution has naturally
led to a critical issue that must be addressed next, namely,
to have security and forensic technologies to ensure content,
devices, and intellectual properties being used by authorized
users for authorized purposes and to be able to gather solid
forensic evidence to hold culprits accountable when other-
wise.

The widespread adoption of digital content over traditional
physical media such as film has given rise to a number
of new information security challenges. Digital content can
be altered, falsified, and redistributed with relative ease by
adversaries. This has important consequences for governmen-
tal, commercial, and social institutions that rely on digital
information. To secure communication infrastructure and pre-
vent unauthorized access to digital information, many crypto-
graphic encryption and authentication techniques have been
developed.While a large amount of effort has been devoted to
developing these information security measures, their protec-
tion usually ends once the content is delivered and decrypted.
This is problematic, since there is little control on how digital
information is used or processed after delivery. Furthermore,
these techniques cannot prevent multimedia content from
being manipulated or falsified before it is cryptographically
encrypted or signed.
In many important real world scenarios, digital information

originates from an unknown or untrusted source. When this
happens, a forger or information attacker can easily manip-
ulate digital content such as images or video to create per-
ceptually realistic forgeries. Encryption cannot ensure that
the information being distributed is unaltered and authentic
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in these situations. Before multimedia information of this
nature can be trusted, several questions must often first be
answered such as: what is the true origin of this content?
How has it been processed? Is this content authentic or has
it been manipulated? Compared with the efforts made to
ensure the secure and trusted delivery of information, research
approaches that are aimed at answering these questions are
still relatively new.

In response to the increasing need to verify the trust-
worthiness of multimedia content, the field of information
forensics was born. Information forensics is concerned with
determining the authenticity, processing history, and origin
of digital multimedia content with no or minimal reliance on
side channels other than the digital content itself. It further
aims at reconstructing who, when, how, and what has been
done to the content. When information goes through various
devices and processing, there are inherent traces left from
each processing step. These traces are referred to as intrinsic
fingerprints and are essential for forensic analysis. There
have been many forensic techniques to identify manipulation
by exploiting imperceptible traces that intrinsically arise in
multimedia content during acquisition and processing.

Meanwhile, there are also extrinsically generated security
measures such as digital watermarks. These security mea-
sures are often embedded into information content through
some kind of data embedding technique that is imperceptible
to users. We refer to these traces as extrinsic fingerprints.
Earlier work on extrinsic techniques in the late 1990s mainly
concerned with embedding information to demonstrate copy-
right or verify host media data’s integrity. The recent decade
has seen active research on extending traditional robust water-
marking to embed traceable fingerprints that can identify
individual copies of media content or link the copy to specific
unit of acquisition device, and sustain multiple adversaries’
collaboration attacks.

These notions of ‘‘intrinsic’’ vs. ‘‘extrinsic’’ fingerprints or
signatures were first coined in the literature by an interdisci-
plinary team at the Purdue University for electrophotographic
printers [1]. Leveraging their expertise in the imaging and
mechanical process of printers, they took a pioneering view
of the banding artifacts of printers and treated them as an
‘‘intrinsic’’ signature of the printer that can be identified
by appropriate image analysis techniques. Further, the group
strategically amplified and modulated the banding to embed
additional information as an ‘‘extrinsic’’ signature to encode
such useful information as the date and time that a document
was printed. The forensic value and use of extrinsic finger-
prints was also recognized in traitor-tracing work, and the
term ‘‘multimedia forensics’’ first appeared in the title of a
group-oriented embedded fingerprinting paper [2]. A search
on Google Scholar using the term ‘‘information forensics’’
returns about 26,000 entries published from 2001 to early
2013.

Although the field of information forensics is still young,
many forensic techniques have been developed to detect forg-
eries, identify the origin, and trace the processing history

of digital multimedia content. This paper provides an
overview of information forensics research since the field
began roughly a decade ago. We begin by discussing forensic
techniques designed to identify forgeries and trace the pro-
cessing history of digital image, video, and audio files. Next,
we examine the device-specific fingerprints left by digital
image and video cameras along with forensic techniques
that use these fingerprints to identify the source of digital
multimedia files. We also discuss environmental fingerprints
and forensic traces such as those introduced by the electrical
power network.
The study of information forensics cannot be complete

without a balanced view from the perspective of an adversary.
Because of this, we proceed by discussing the recent devel-
opment of anti-forensic countermeasures designed to fool
forensic techniques and examining the resulting adversarial
dynamics between a forensic investigator and an information
forger. After this, we review embedded fingerprints for traitor
tracing, then discuss social factors and behavior dynamics in
forensics. In fact, an adversary has all the incentives to erase
or degrade the traces of evidence to an undetectable level or
forge new traces to lead to a wrong or ambiguous conclusion.
We conclude with a few final thoughts and a discussion of
future directions.

II. DETECTION OF TAMPERING AND PROCESSING
OPERATIONS
In many scenarios, multimedia content from an unknown or
untrusted source contains important information. For exam-
ple, an image or video released by a hostile foreign govern-
ment may depict an event with significant political or military
consequences. Before the events depicted in this media can
be trusted, it is first necessary to identify any processing the
multimedia file has undergone and determine its authenticity.
Since it is unlikely that the multimedia content would have
had security measures embedded in it before any processing
occurred, researchers have developed a variety of forensic
techniques that operate without relying on extrinsic security
measures. These techniques operate by exploiting properties
of the digital content itself.
Based on the manner in which they operate, forensic

techniques designed to trace a multimedia file’s processing
history, detect manipulation, and identify forgeries can be
grouped into five basic categories. These include statistical
classifiers that use machine learning algorithms trained on
a broad set of image statistics, techniques that search for
inconsistencies in device fingerprints, techniques that detect
manipulation-specific fingerprints, methods that make use
of compression and coding fingerprints, and techniques that
search for physical inconsistencies in the multimedia content.
While no single forensic approach can identify all forms of
manipulation, if used together, these techniques can reliably
detect many types of forgeries and a wide variety of pro-
cessing operations. Here, we provide an overview forensic
techniques in each of these five categories.
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A. STATISTICAL CLASSIFIERS
The manipulation or falsification of multimedia information
inevitably leads to changes in its statistical properties. In
some cases, analytical examination of the manipulation or
forgery process can allow researchers to identify the spe-
cific statistical changes that arise when certain processing
operations are performed. If this is possible, these unique
changes can be used as intrinsic fingerprints when performing
forensic analysis. In many cases, however, it is extremely
difficult to identify these intrinsic fingerprints. One approach
to overcoming these difficulties is to search for changes in
a representative set of statistical features extracted from a
multimedia file.

Several forensic techniques, which can be broadly grouped
together as statistical classifiers, adopt this approach to iden-
tifying inauthentic multimedia content. Instead of developing
a set of features targeted at detecting specific manipulation
fingerprints, these techniques make use of general statistical
features that are likely to change when a multimedia file is
altered or falsified. These forensic techniques use powerful
tools from machine learning such as support vector machines
(SVMs) or neural networks to identify the specific changes in
these features that correspond to manipulation. Before classi-
fication can be performed, these techniques must be trained
using features extracted from both unaltered and falsified or
manipulated multimedia content.

The performance of these algorithms hinges largely on the
selection of an appropriate set of features for discriminating
between each class. Features developed to perform steganal-
ysis can successfully be used to identify image manipula-
tion [3]. By constructing a joint feature set of steganalysis
features consisting of image quality measures, higher order
wavelet statistics, and binary similarity measures, machine
learning algorithms can be used to discriminate between
manipulated and unaltered images [4]. These features can also
be used to train targeted detectors to identify images manip-
ulated by rescaling, rotation, contrast or brightness changes,
blurring, or sharpening. It is worth noting that steganalysis
can be viewed as a specific type of forensic analysis, with
the goal to determine whether or not there is secondary data
embedded in the primary signal (also known as host signal or
cover signal). Although we will not elaborate on steganalysis
in the interest of paper length, interested readers may refer to
the comprehensive textbook [5] and the rich literature on this
topic.

Several image features can be used to detect cut-and-paste
forgeries. Cut-and-paste image forgeries consist of replacing
a segment of one image with content cut from another. Since
the resulting image is completely inauthentic, it is particularly
important to identify these types of forgeries. Bicoherence
features of an image have been successfully used to identify
cut-and-paste forgeries [6]. Additionally, ad-hoc sets of fea-
tures can be grouped together to create feature sets suitable
for detecting cut-and-paste forgeries. Two successful feature
sets of this nature are formed by combining moments of an
image’s wavelet transform coefficients with two dimensional

phase congruency features [7] and with Markov transition
probability matrices calculated from an image’s wavelet
transform coefficients [8].
Forensic techniques designed to identify manipulation typ-

ically assume that the multimedia file being examined corre-
sponds to a real world signal that may have been subsequently
processed. Powerful computer graphics software, however,
can allow forgers to create computer generated images that
appear photorealistic. As a result, differentiating between
computer generated images and those captured by a digital
camera is an important forensic task. Forensic techniques that
identify computer generated images operate by first gathering
a set of features from an image, then by using amachine learn-
ing technique to classify the image as real or computer gen-
erated. First-order and higher-order statistical features from
an image’s wavelet transform can be used in this manner to
identify computer generated images [9], [10]. Alternatively,
a set of geometric features can be used to identify computer
generated images consisting of local patch statistics, fractal
dimension, and a set of differential geometry features [11].
We will discuss more on this in the context of identifying the
type of imaging in Section III-C.

B. DEVICE FINGERPRINTS
Before the emergence of information forensics, fragile and
semi-fragile watermarking was proposed as a means of iden-
tifying manipulation in multimedia files [12], [13]. These
techniques involved inserting an imperceptible, extrinsically
generated fingerprint into a multimedia file that would be
damaged by subsequent editing. If the recipient of a multi-
media file was unable to successfully extract an undamaged
version of this fingerprint from the file, they could assume
that the file had been manipulated.
Since most multimedia files do not have security measures

embedded in them upon file formation, investigators cannot
make use of these extrinsic fingerprints. Forensic researchers,
however, have identified a number imperceptible traces left in
multimedia files by imperfections in an acquisition device’s
components or as a result of the device’s internal process-
ing. As will be discussed in Section III, these traces can be
viewed as intrinsic fingerprints that naturally occur within
a multimedia file. A number of forensic techniques have
been developed to authenticate multimedia files using various
different intrinsic fingerprints.
Due to Snell’s Law, different wavelengths of light will be

refracted different amounts as they pass through a camera’s
lens. As a result, different color bands of light reflected
from the same source will fall incident on slightly different
locations on a digital camera’s sensor. Inconsistencies in this
color distortion, known as chromatic aberration, can be to
identify cut-and-paste image forgeries [14]. This is done by
modeling the lateral chromatic aberration in an image as
a two dimensional linear function. The image’s chromatic
aberration is then fit to this model by finding the model
parameters that minimize the mutual information between
each color layer. Next, the chromatic aberration is estimated
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on a block by block basis. Forgeries are identified by locating
image blockswhose aberration significantly deviates from the
global estimate.

Other image manipulation detection techniques make use
of the nonlinear manner in which a camera maps pixel illu-
mination values recorded by its sensor into color values. This
mapping is known as the camera response function (CRF).
One technique for identifying image forgeries using the CRF
operates by estimating the CRF across several different edges
throughout an image [15]. If inconsistencies exist in certain
key properties of the set of estimated CRFs, an image forgery
is detected. Additionally, CRF inconsistencies can be used
to identify cut-and-paste forgeries [16], [17]. Since different
cameras use different CRFs, the CRF will not be consistent
throughout a cut-and-paste forgery created from images taken
by two different cameras. To identify these inconsistencies, a
parametric model can be used to estimate the CRF in locally
planar patches on both sides of edges throughout an image.
Forged regions will be exposed when the CRFs on both sides
of an edge do not match.

Forensic techniques have been developed to detect image
forgeries by detecting inconsistencies in the statistical prop-
erties of the noise introduced during the imaging process.
By using a technique to blindly obtain estimate an image’s
signal-to-noise ratio (SNR), falsified image regions can be
identified by searching for localized inconsistencies in an
image’s SNR [18]. Inconsistencies in the variance of different
blocks within theHH1 subband of an image’s wavelet decom-
position can be used to identify falsified image regions [19].
Similarly, an improved noise variance estimation technique
can be used to detect image forgeries by identifying localized
differences in the noise variance [20], [21]. Additionally,
additive noise in previously JPEG compressed color images
can be detected by identifying changes to the distribution
of an image’s luminance histogram after it is subjected to a
specific mapping [22].

While inconsistencies in statistical properties of the noise
present in an image can be used to identify forgeries, other
techniques make use of camera-specific fingerprints noise
fingerprints introduced by imperfections in a digital cam-
era’s sensor. Forensic techniques to identify forgeries using
these fingerprints, known as photo-response non-uniformity
(PRNU) fingerprints, will be discussed in detail in Section III.
Additionally, Section III will discuss how camera’s a color
filter array pattern and color interpolation parameters form a
set of intrinsic fingerprints, along with how these fingerprints
can be used to detect image manipulation.

C. MANIPULATION FINGERPRINTS
1) Fingerprints From Copy-Move Forgeries
In some circumstances, a forger will alter an image by replac-
ing a portion of the image with content copied from elsewhere
within the same image. This is often done to hide the presence
of an object by covering it with textured elements, such as
trees or grass, that are not easily falsifiable. Additionally, it

can be used to create duplicates of a significant object within
the image. These types of forgeries, known as copy-move
forgeries, received some of the earliest attention from the
forensics community.
One approach to identifying copy-move forgeries involves

segmenting an image into overlapping square blocks, then
searching the entire image for duplicates of each block [23].
Blocks are matched on the basis of a set of features extracted
from each block. To reduce the computational complexity
of the search for duplicate blocks, the DCT coefficients of
each block are inserted into the rows of a matrix that is then
lexicographically sorted. If the distance between adjacent
rows falls below a user defined threshold, the corresponding
blocks are considered a match. The threshold can be relaxed
to account for the fact that only a portion of some blocks will
correspond to a duplicated region. Additional modifications
to this basic search approach can be performed to reduce its
computations complexity by a factor of four [24].
The performance of this method of identifying copy-move

forgeries depends greatly on the features used for block
matching. In order to prevent false matches, these features
must accurately represent the content within a block. How-
ever, for these features to be practically useful, they must
be robust to degradations such as noise, compression, and
subsequent processing. The quantized discrete cosine trans-
form (DCT) coefficients of each block were proposed as an
early set of block matching features [23]. When using these
features, the quantization parameters can be adjusted to bal-
ance the tradeoff between robustness and matching accuracy.
Several subsequent sets of features have been proposed to
improve upon the robustness of these features. One approach
involves performing principal component analysis on the set
of blocks, then retaining the largest principal components of
each block as features [25]. Block matching features can be
constructed using the mean each color layer along with the
ratio of several spatial averages within each block [26]. Addi-
tionally, features of each block’s Fourier-Mellin transform
[27] and blur invariants [28] have been proposed as block
matching features.
Recently, an alternate means of identifying copy-move

forgeries using scale-invariant feature transform (SIFT)
points has been proposed [29]. SIFT is a computer vision
algorithm designed to identify and represent certain points
as robust local feature descriptors for an image [30]. By
identifying correspondences between matching SIFT points
within an image, duplicate image regions can be exposed.
Unlike techniques that identify copy-move forgeries through
block matching, SIFT-based approaches can identify dupli-
cate image regions even if the duplicated region has been sub-
ject to scaling, rotation, an affine transform, or illumination
adjustment [31], [32].

2) Resampling Fingerprints
Resampling is an image manipulation of particular forensic
importance since resampling is performed any time an image
is resized, rotated, or subjected to an affine transformation.
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Resizing Fingerprints

(a) (b)

FIGURE 1. The p-map of an unaltered image (a) along with the p-map of a resized image
(b). Note the presence of the spectral peaks corresponding to resizing fingerprints in the
p-map of the resized image.

Though detecting evidence of resampling throughout an
entire image does not necessarily imply that the image has
been forged, it does indicate that the image has been pro-
cessed. Furthermore, when creating a cut-and-paste image
forgery, resizing or rotation of the object inserted into the
background image is often necessary to make the forgery
appear visually realistic.

Resampling fingerprints were first identified by noting
that resampling will cause many samples of a signal to be
correlatedwith nearby samples [18]. If the signal is resampled
by a rational factor, these correlations will be periodic in
nature. Resampling fingerprints can be detected by using the
expectation maximization (EM) algorithm to jointly estimate
a linear prediction filter for each pixel value on the basis of its
neighbors along with the probability that a pixel is correlated
with its neighbors [33]. This latter quantity, which is referred
to as a probability map or p-map, will be periodic if the
image has been resampled. Periodicities in the p-map can be
identified by inspecting its discrete Fourier transform (DFT)
for distinct isolated peaks, which can be seen in Fig. 1.

While this method of detecting resampling is very effec-
tive, its reliance on the EM algorithm is computationally
expensive. It has recently been demonstrated that the pre-
diction error of an arbitrary linear filter will be periodic if a
digital signal has been resampled [34]. As a result, the compu-
tational efficiency of this technique can be improved by using
a fixed linear filter to calculate an image’s p-map. Resampling
fingerprints can be automatically detected by comparing the
maximummagnitude of the p-map’s cumulative periodogram
to a threshold [34]. Additionally, the performance of this
technique on JPEG compressed images can be improved by
suppressing spectral peaks that correspond to 8 × 8 pixel
blocking artifacts and searching for shifted spectral peaks that
correspond to resized JPEG blocking artifacts [35].

Alternative means of detecting image resampling have
also been developed. One technique detects resampling by
identifying periodicities in the average of an image’s second

derivative along its rows or columns [36]. Additionally, it can
be proved that the variance of a resampled signal’s derivative
is periodic [37]. Using this fact, image resampling can be
detected by identifying periodicities in an image’s derivative
using the Radon transform.

3) Contrast Enhancement Fingerprints
Contrast enhancement is an editing technique often used
to alter the illumination conditions within an image. When
creating a cut-and-paste forgery, a forger may apply contrast
enhancement to falsified regions of an image to ensure that
lighting conditions match throughout their forgery. Contrast
enhancement operates by applying a nondecreasing nonlinear
mapping to the values of a signal. This nonlinear mapping
will create contrast enhancement fingerprints in the form of
impulsive peaks and gaps introduced into an images pixel
value histogram [38]. In locally contractive regions of a con-
trast enhancement mapping, multiple unaltered pixel values
will map to the same contrast enhanced value. This will cause
an impulsive spike in the image’s pixel value histogram. Simi-
larly, in locally expansive regions of the contrast enhancement
mappingwill cause adjacent pixel values to bemapped further
apart, thus resulting in the absence of values in between from
the enhanced image. This will cause a sudden gap in the
image’s pixel value histogram.
Contrast enhancement can be detected by measuring the

strength of these fingerprints in an image’s pixel value his-
togram [22]. These fingerprints can be easily distinguished
by examining the Fourier transform of an image’s pixel
value histogram. Since an unaltered image’s pixel value his-
togram will typically be smooth, the majority of the energy
in its Fourier transform will be concentrated in low fre-
quency regions. By contrast, the impulsive nature of contrast
enhancement fingerprints will result in a significant amount
of energy in high frequency bands. As a result, contrast
enhancement can be detected by measuring the amount of
high frequency energy introduced into the Fourier transform
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of an image’s pixel value histogram by these impulsive peaks
and gaps [22]. Additionally, the likelihood that a histogram
bin corresponds to a contrast enhancement fingerprint can
be assessed by using the Laplace distribution to model the
difference between each histogram bin and a smoothed ver-
sion of the histogram. This probabilistic model can be used to
jointly obtain a maximum likelihood estimate of the contrast
enhancement mapping used to alter an image as well as
the image’s pixel value histogram before contrast enhance-
ment [39].

4) Median Filtering Fingerprints
Median filtering is another editing operation to receive con-
siderable attention from the forensics community. Due to its
nonlinear nature, median filtering is capable of smoothing a
signal while preserving its edge content. As a result, median
filtering is often used to perform denoising or smoothing in
digital images.

One important median filtering fingerprint stems from the
observation that median filtering introduces streaking into
signals [40]. Streaks correspond to a sequence of adjacent
signal observations all taking the same value. As a result,
median filtering can be detected in digital images by analyz-
ing statistical properties of the first difference of an image’s
pixel values. One method of doing this measures median fil-
tering induced streaking by analyzing the ratio of the number
of pixel difference whose value is zero to the number of dif-
ferences whose value is one [41]. Similarly, median filtering
can be detected by analyzing the probability that an image’s
first order pixel difference is zero in textured regions [42].

While these techniques are highly accurate in uncom-
pressed images, their accuracy is greatly diminished if the
image has been JPEG compressed. To overcome this, sub-
tractive pixel adjacency matrix (SPAM) features developed to
perform steganalysis [43] can be employed to capture prop-
erties of an image’s conditional pixel difference distributions
[41]. A support vector machine (SVM) can then be trained
to detect median filtering in JPEG compressed images using
these features. Alternatively, a set of ad-hoc features extracted
from small image blocks can be used to train a SVM to
perform median filtering detection [44].

Recently, statistical properties of an image’s median filter
residual (MFR) have been proposed as features for robustly
detecting median filtering [45]. The MFR is defined as the
difference between a median filtered copy of an image and
itself.While an image’s content will influence statistical prop-
erties of its pixel value differences, it has a diminished effect
on properties of the MFR. Median filtering can be detected
by using an auto-regressive (AR) model to capture statistical
properties of an image’s MFR, then by training a SVM to
identify median filtering using these AR coefficients. This
technique has been experimentally shown to achieve impor-
tant performance gains when identifying median filtering in
JPEG compressed images, small image windows, and distin-
guishing median filtering from other image enhancements.

D. COMPRESSION AND CODING FINGERPRINTS
In order to reduce their size and aid in their storage or trans-
mission over the Internet, the majority of digital multimedia
signals undergo some form of coding or lossy compression.
Like many signal processing operations, compression and
coding leave behind their own distinct fingerprints. As a
result, many digital multimedia signals contain some form of
compression or coding fingerprints. Due to the ubiquity of
these fingerprints, researchers have developed a wide variety
of techniques that use compression or coding fingerprints
to perform a variety of forensic tasks. These range from
identifying forgeries and verifying the authenticity of a mul-
timedia file, to tracing its processing history and determining
its origin.

1) Image Compression Fingerprints
Image compression fingerprints are the most widely studied
form of compression fingerprints used in forensics. JPEG
compression fingerprints play a particularly important role in
forensics due to the widespread use of JPEG compression.
When a grayscale image undergoes JPEG compression, it
is first segmented into a series of nonoverlapping 8 × 8
pixel blocks. Next, the discrete cosine transform (DCT) of
each block is computed, resulting in a set of 64 subbands of
DCT coefficients. Each DCT coefficient X is then quantized
by dividing it by the entry in a quantization matrix Q that
corresponds to its subband, then rounding the resulting value
to the nearest integer. As a result, the quantized version Y of
a DCT coefficient in the (i, j) subband is given by

Yi,j = round(Xi,j/Qi,j). (1)

Finally, each quantized DCT coefficient is converted to
binary, then reordered into a single bit stream using the zigzag
scan order and losslessly encoded.

Color images are compressed in a similar fashion, after
they are first transformed from the RGB to the YCbCr color
space. Each chrominance layer is then typically downsam-
pled, most commonly by a factor of two in both the horizontal
and vertical directions. After this is done, each YCbCr color
layer is then compressed as if it were a single grayscale image.
Because the human visual system has different sensitivities to
luminance and color distortions, different quantization tables
are typically used to quantize the luminance and chrominance
layers.

When a JPEG is decompressed, each of the steps performed
during the encoding process are inverted, with the exception
of quantization. Because quantization is a many-to-one map-
ping, it is non-invertible, therefore dequantization must be
performed instead. Each dequantized coefficient X̂ is calcu-
lated by multiplying its quantized version by the appropriate
entry in the quantization matrix, such that

X̂i,j = Qi,jYi,j. (2)

As a result, each dequantized DCT coefficient is an integer
multiple of the quantization step size. Because each dequan-
tized DCT coefficient is unlikely to correspond to its original
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value, the quantization/dequantization process is the main
source of image distortion caused by JPEG compression.
This distortion, however, results in two forensically signif-
icant artifacts used as fingerprints by forensic examiners;
DCT coefficient quantization fingerprints and blocking fin-
gerprints.

DCT coefficient quantization fingerprints correspond to
the clustering of DCT coefficients around integer multiples
of the quantization step size. Since the DCT coefficients of
an uncompressed image are continuously distributed, these
fingerprints can be easily observed when examining the dis-
tribution of each subband of DCT coefficients in an image.
They manifest themselves as periodic spikes in the distribu-
tion spaced at integer multiples of Qi,j. Blocking fingerprints
correspond to the image discontinuities that occur across each
8 × 8 pixel block in JPEG compressed images. These dis-
continuities are a result of the distortion that is independently
introduced into each block by DCT coefficient quantization.
Evidence of previous JPEG compression can be identified
in an image stored in a lossless format by measuring the
strength of each of these fingerprints [46]. Additionally, the
quantization table used during JPEG compression can be
estimated by obtaining a maximum likelihood estimate of the
constant spacing between the histogram peaks in each DCT
subband [46].

While JPEG is the most commonly used image compres-
sion format, several other lossy compression techniques exist
such as wavelet based coders and differential encoders. If a
compressed image is later saved in a lossless format, how-
ever, it may not be obvious that the image was previously
compressed. A forensic framework can be employed to deter-
mine the compression history of an image saved in a lossless
format [47]. This framework operates by first determining
if an image encoder has performed block processing on an
image. Block processing is detected and the block size is
estimated by examining the average absolute value of the
first difference along the row or column direction for periodic
spikes [48]. After information about block processing has
been gathered, the image is searched for evidence of trans-
form coding. This is done by subjecting the image or image
blocks to a set of candidate transforms, fitting the distribution
of the resulting transform coefficients to a parametric model,
then measuring the distance between the observed coefficient
distribution and the model distribution to reveal evidence
of quantization [49]. If no evidence of transform coding is
identified, the image is searched for evidence of differential
encoding by examining its prediction residue for quantization
fingerprints.

2) Multiple Compression Fingerprints
Identifying evidence that an image has undergone JPEG
compression twice using different quality factors is a well
studied and important forensic problem. In addition to pro-
viding basic information about an image’s processing history,
evidence of double JPEG compression reveals that an image
may have undergone manipulation since an image must be

re-saved after it has been edited. Furthermore, double JPEG
compression has important implications for steganalysis [50].
As a result, a number of forensic techniques have been
designed to detect double JPEG compression.
As was previously discussed, the values of the DCT coef-

ficients in a JPEG compressed image are integer multiples of
the quantization table entry corresponding to their subband.
This causes the distribution of each subband of DCT coeffi-
cients in a JPEG compressed image to resemble a smoothly
decaying periodic impulse train. If the image is compressed
again using a different quantization table, the coefficients of
many DCT subbands will be requantized using a different
quantization step size [50], [51]. The resulting mismatch in
quantization intervals will cause either periodic spikes or
zeros in the amplitude of these impulses depending on the
relationship between the two quantization step sizes. These
periodic artifacts correspond to fingerprints left by double
JPEG compression.
Several techniques exist to detect double JPEG compres-

sion fingerprints throughout an image. A neural network can
be trained to both detect double JPEG compression and esti-
mate the quantization matrix used during the first compres-
sion on the basis of an image’s DCT coefficient histograms
[50]. The performance of this approach can be improved
using a SVM trained on the histograms of several DCT sub-
bands [52]. Alternatively, the Fourier transform of the his-
togram of each subband of DCT coefficients can be inspected
for spikes that correspond to the periodic fingerprints of
double JPEG compression [51]. Additionally, double JPEG
compression using the same quality factor can be detected
by analyzing the number of DCT coefficients whose values
change after subsequent JPEG compression is applied to an
image [53].
The distribution of the first digit of an image’s DCT coef-

ficients can also be used to detect double JPEG compres-
sion [54]. In a single JPEG compressed image, it has been
observed that this distribution can be modeled using a modi-
fied version of Benford’s law. Since the first digit distribution
of DCT coefficients from a double JPEG compressed image
will not fit this model, double JPEG compression can be
detected by examining how well the first digit distribution of
an image’s DCT coefficients fits a modified Benford distribu-
tion. The performance of this technique can be improved by
examining the first digit distribution of each subband of DCT
coefficients independently rather than analyzing the entire set
at once [55].
The detection of localized evidence of double JPEG com-

pression is of even greater forensic significance because it
can expose cut-and-paste forgeries. Localized double JPEG
compression fingerprints take two different forms. The first
corresponds to mismatches in properties of an image’s DCT
coefficient histograms. These mismatches can arise due to
a number of reasons. If only one of the two images used
to create a cut-and paste forgery was previously JPEG com-
pressed, then periodic double JPEG compression fingerprints
will only occur in regions corresponding the image that was
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FIGURE 2. Illustration of the effects of frame deletion on a video frame sequence. The original video
sequence is shown along the top of this figure and the altered video sequence is shown along the
bottom. Each GOP in the altered video contains frames from two different GOPs in the unaltered video
sequence.

previously compressed. Similarly, if the blocking grids of the
background image and pasted image do not align when the
forgery is recompressed, the pasted region will not contain
double JPEG compression fingerprints in the DCT domain.
Additionally, if the two images were previously compressed
using different quantization tables, the periods of the DCT
domain double JPEG fingerprints will be different in each
image region. A number of forensic techniques have been
designed to identify cut-and-paste image forgeries by detect-
ing localized inconsistencies in DCT domain double JPEG
compression fingerprints [56]–[61].

The second type of localized double JPEG compres-
sion fingerprint corresponds to irregularities in the forgery’s
blocking artifacts. If the 8×8 pixel blocking grid of the falsi-
fied portion of the image does not match the blocking grid of
the background, this region will contain two sets of blocking
artifacts. If double JPEG compression occurs when creating
a forgery, it is likely that these fingerprints will be present
because they will occur in 63 of the 64 possible blocking
grid alignments. As a result, many forensic techniques have
been designed to detect these blocking grid misalignment
fingerprints [62]–[65].

3) Video Compression Fingerprints
Compression fingerprints play an important role in video
forensics. Virtually all digital videos undergo compression
because the size of uncompressed video files make it imprac-
tical to store or transmit them. As a result, forensic investiga-
tors can reliably expect compression fingerprints to be present
in digital videos. These compression fingerprints fall into two
basic categories: spatial and temporal. Spatial fingerprints are
isolated to a single video frame and resemble image compres-
sion fingerprints. Temporal fingerprints, however, are spread
throughout the entire video. A number of forensic techniques
have been designed to exploit the spatial and temporal finger-
prints left by video compression.

While a variety of video compression standards have been
proposed, the majority operate in the same basic manner.

Rather than processing the entire video at once, an encoder
will divide the sequence of video frames into smaller chunks.
Each chunk, known as a group of pictures (GOP), begins with
an intra-frame (I-frame). I-frames are independently encoded
using a process similar to JPEG compression. The remain-
der of the GOP consists of predicted-frames (P-frames) and
bidirectional-frames (B-frames).
P-frames are predicted from I-frames or P-frames that

occur before them in the video sequence using a process
known as motion compensation. During motion compensa-
tion, the frame to be encoded is divided into macroblocks.
A prediction of the frame is created by searching the previous
frame for the block that best matches each macroblock. The
prediction error is stored by the encoder using a process
similar to JPEG compression, along with the motion vectors
corresponding to the row and column displacements between
each matching macroblock. B-frames are encoded in a sim-
ilar manner, however for these frames, macroblocks can be
predicted from I- or P-frames that precede or follow each
B-frame.
Since I-frames are encoded using a process similar to JPEG

compression, I-frames contain spatial fingerprints that are
nearly identical to those left by JPEG compression. As a
result, double MPEG compression can be detected by search-
ing for double quantization fingerprints in the DCT coeffi-
cients of a video’s I-frames. This can be done by first using
a probabilistic model to calculate the probability that the
DCT coefficients in each macroblock in an I-frame have been
quantized twice, then by identifying macroblocks that are
likely inauthentic [66]. Additionally, spatial double compres-
sion fingerprints can be detected in I-frames using techniques
originally designed to identify double JPEG compression.
If a sequence of frames are deleted from a digital video,

temporally distributed fingerprints will be introduced into the
sequence of the video’s P-frame prediction errors [67]. Frame
deletion will cause a shift in the sequence of video frames,
resulting in the formation of a new set of GOPs when the
video is recompressed. When this happens, some P-frames
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within a GOPwill be predicted from I-frames or P-frames that
previously belonged to a different GOP. An example of this
can be seen in Fig. 2. This will result in a sudden spike in the
prediction error corresponding to frame deletion fingerprints.

Two different models of frame deletion fingerprints have
been built depending on the GOP structure used by the video
encoder [68]. If a fixed GOP structure is used during com-
pression, the spikes in the P-frame prediction error sequence
will occur periodically. As a result, these fingerprints can be
detected by searching for spikes in the Fourier transform of
the P-frame prediction error sequence. If, however, variable
GOP lengths are used, this sequence will be aperiodic. These
fingerprints can be detected by measuring the energy of the
difference between the P-frame prediction error sequence and
a smoothed version of itself.

E. PHYSICAL INCONSISTENCIES
All of the manipulation detection techniques described thus
far in this section operate by making use of some type of
forensic fingerprint. One final family of multimedia authenti-
cation techniques exists that does not use any form of finger-
prints. Instead, these techniques detect falsified multimedia
files by using physics-based models to identify inconsisten-
cies within the content of multimedia files. This is often
accomplished by making use of concepts developed by com-
puter vision researchers.

One set of techniques identifies image forgeries by check-
ing for lighting inconsistencies in a scene. In early work,
this was accomplished this by obtaining a two dimensional
estimate of the direction of the light source illuminating an
object [69]. This technique exploits the fact that by estimating
lighting angle along an object’s occluding boundary, two of
the three dimensions that define the location of the light
source can be estimated from a single image. Image forgeries
can be identified by calculating the lighting angle for several
objects in an image and checking to ensure that they all
correspond to a common source.

While the previous technique assumes that a scene is illu-
minated by a single light source, this is often not the case.
To address this, a more advanced method exists to estimate
the locations of multiple light sources in a scene [70]. Alter-
natively, a three dimensional estimate of the direction of the
lighting source can be obtained using specular reflections
in the human eye [71]. This is accomplished by modeling
the cornea as a spherical surface. By doing this, the surface
normal is known on all points on the cornea and the three
dimensional lighting angle can be resolved.

Video forgeries can be exposed by identifying projectiles in
videos whose path of motion violates physical laws [72]. This
is done by observing that a projectile’s motion through three
dimensional space should take a parabolic path. To verify that
the motion of a projectile in the video has not been falsified,
the path of the object through the video can be tracked and the
trajectory of the object is estimated. Video forgeries can then
be identified by testing to see if this trajectory significantly
deviates from the parabolic motion model.

III. DEVICE FORENSICS
With the advancement of digital imaging technologies, we
have seen a growth in the popularity of digital cameras and
images. Tracing where an image is from and how it was
generated is an important step in ensuring the security and
trustworthiness of such digital data. As a result, the need
for conducting forensic analysis of an acquisition device
is becoming common in today’s crime scene investigation.
Similar trends can be seen from fighting against terrorists
and protecting homeland security, to mitigating business and
industrial espionage. It is crucial to ensure the trustworthiness
of a digital image before it can be used as forensic clues or as
evidence in court.
An easy option for imaging device linkage is through the

metadata associated with an image file, such as JPEG file
headers. Such metadata, however, are not always reliable,
especially in an adversarial environment where the metadata
may be altered to mislead forensic analysis. Instead, indi-
vidual processing modules in the imaging pipeline, either
hardware or software, leave in the final output image certain
‘‘intrinsic traces’’ that potentially carry useful information
about the imaging history. Compared tometadata, such intrin-
sic traces are much more difficult to modify, and therefore
may serve as a more robust tool for imaging device link-
age. This methodological framework, referred to as com-
ponent forensics, is designed to collect evidence of what
techniques and parameters are employed in various hard-
ware and software modules used to produce a digital visual
output [73].
More specifically, component forensic techniques look for

unique inherent device traces that can be used to differenti-
ate between imaging mechanisms, device models, or device
units. The traces to identify one aspect of an image’s origi-
nating device, such as individual units, may be different from
such other aspects as brand or model. In order to differenti-
ate between individual device units, especially those coming
from the same manufacturer and model line, it is necessary
to exploit features that capture individuality. Variations in
a device’s physical or analog sensing modules are potential
sources for revealing individuality. For example, imperfec-
tions in the camera manufacturing process lead to slight
variations among photon sensors in their photon-electron
conversion ability. As a result, each individual camera unit
has its own variation pattern.
Beyond these individual variations, it is necessary to

answer such questions as what is common among all iPhone 5
cameras but different from Samsung, and what is common
among all pictures generated by digital cameras but different
from those that are scanned. The evolution and coexistence
of analog and digital processing suggest two possible sources
of intrinsic traces to examine: certain ensemble characteris-
tics of physical/analog sensors between two manufacturers
or model lines, and characteristics from in-camera software
processing that is the often the same across units from the
same brand or model but different between different brands
or models. For example, noise strength and other statistical
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FIGURE 3. Imaging process in digital cameras.

characteristics (instead of the specific noise patterns in the
above case) may be different between manufacturers because
of the different technologies or processes used, and may
also reflect the differences in imaging mechanisms. Another
example that we shall discuss next is color processing in
today’s digital cameras. Because different camera brands
and models employ their own color-processing methods and
parameters, color features can be potentially useful traces to
trace down to brand or model.

A. EXPLORING COLOR PROCESSING TRACES
As mentioned above, component forensics was proposed
as a framework to collect evidence of which techniques
and parameters are employed in various hardware and soft-
ware modules used to produce a digital visual output. Here,
we use images captured by digital cameras as an exam-
ple to present the framework and approaches to component
forensics.

The first step of component forensics for a digital camera is
to understand the process of how a digital image is generated.
As shown in the dashed box of the schematic diagram in
Fig. 3, when a scene is captured by a digital image or video
camera, light from the scene first passes through the camera’s
lens and optical filters and is then recorded by CCD sensor
arrays. Few consumer-level color cameras directly acquire
full-resolution information for all three primary colors (usu-
ally red, green, and blue). This is not only because of the
high cost in producing full-resolution sensors for all three
colors, but also due to the substantial difficulty involved in
perfectly matching the corresponding pixels and aligning the
three color planes together. For these reasons, most digital
cameras and camcorders use a color filter array (CFA) to
sample the real-world scene [75]. The CFA consists of an
array of color sensors, and is typically a pattern tiled with
2 × 2 cells of R/G/B sensors. Each sensor captures the cor-
responding color of the real-world scene at its pixel location.
The remaining color values of the pixel are interpolated from
other directly observed values in its neighborhood [76]. For
example, in the CFA array shown in Fig. 3, we have one red
color value, one blue value, and two green values for every
four pixels in a 2×2 neighborhood, resulting in a set of three
partially sampled color layers. The unobserved values in each
color layer are then filled in using an interpolation algorithm.
After interpolation, the three color layers corresponding to the
red, green and blue components go though a post-processing
stage. Color corrections such as white balancing are done in

this stage, and the image or image sequence may undergo
lossy compression (e.g. via JPEG orMPEG) to reduce storage
space.
The performance of color interpolation directly affects the

quality of the image captured by a camera, as artifacts in an
interpolated picture will be propagated and may be ampli-
fied by subsequent processing modules [77]. As such, color
interpolation has become one of the major components that
various cameramanufacturers intensively compete on. Differ-
ent manufacturers often have different variations of schemes.
From a component-forensics perspective, color interpolation
is a promising component to provide evidence that can differ-
entiate images taken by different cameras. There are several
commonly used algorithms for color interpolation in the lit-
erature, such as bilinear, bicubic, smooth hue, and gradient
based [77], [78]. These algorithms can be broadly classified
into two categories, non-adaptive and adaptive algorithms,
based on their ability to adapt the interpolation algorithm
according to local image characteristics [76]. For example,
edge adaptive algorithms tries to perform interpolation along
edge directions instead of across edges in order to retain
sharpness in the interpolated image. The CFA interpolated
image then goes through a post-processing stage where white
balancing and color correction are done to remove unrealistic
color casts in the image.
To cope with the dependency among multiple intercon-

nected components inside a camera, a set of robust and non-
intrusive algorithms can be developed that make inference
from output images to jointly estimate the parameters in
these multiple components. Taking color interpolation as an
example, both the CFA pattern and interpolation coefficients
are unknown and closely related. As a result, they must be
estimated together. Since a camera may employ different
interpolation filters for different types of regions, it is desir-
able to first classify each image pixel into one of several
groups, for example, with the local neighborhood having
significant horizontal edges, vertical edges, or being mostly
smooth. It is also necessary to establish a search space of CFA
patterns and use knowledge of common practices in sensor
design to keep the search space as small as possible. For each
CFA pattern p in the search space, the set of pixels in the
interpolated image S(i)p obtained directly from CCD sensors
and those obtained by interpolation are first identified. After
this, a set of linear equations can be established relating the
values of all the interpolated pixels to directly observed ones.
To overcome noisy values in these equations that are due to
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FIGURE 4. CFA patterns for (a) Canon EOS Digital Rebel and (b) Fujifilm
S3000 cameras.

operations following interpolation (such as JPEG compres-
sion), a least squares method is used to estimate the inter-
polation coefficients for each type of region. Finally, these
estimated coefficients are used to perform color interpolation
and the resulting image can be is comparedwith the the output
image Sd from the camera. The CFA pattern p̂ that gives the
lowest interpolation error and its corresponding coefficient
estimates are chosen as the final estimation results.

To demonstrate this joint estimation approach, we used
two cameras that offer raw sensor output containing the
ground-truth information of CFA pattern. Using JPEG images
obtained from a Canon EOS Digital Rebel camera as input,
the joint estimation algorithm reveals that the CFA patterns
shown in Fig. 4(a) minimizes the interpolation error; simi-
larly, the estimated CFA pattern for Fujifilm S3000 camera
is in shown Fig. 4(b). These results agree perfectly with the
ground-truth supplied by the cameras’ raw sensor output file.
The estimated interpolation coefficients corresponding to the
CFA pattern can be further fed into SVM classifiers to infer
what kind of interpolation algorithm was employed by the
camera (e.g. bilinear, bicubic, edge-directed interpolation,
etc.) [74]. With the use of the least square formulation in
solving for interpolation parameters, it has been shown that
the obtained parameters have very good resilience against
compression and other post-processing in identifying the type
of interpolation algorithms used to produce a camera output
image [79].

This type of camera component analysis can provide a
number of distinguishing features to help identify which cam-
era has been used to capture a given image. For example,
the estimated algorithm and parameters from color interpo-
lation can be used as features to build a classifier for cam-
era identification. As a simple demonstration, we considered
16 different cameras and collected 40 images taken by each
camera in an uncontrolled environment. The images taken
by different cameras generally have different scene content
and are compressed under default JPEG quality factors as
specified by the cameras. The color interpolation coefficients
were estimated using the algorithm outlined above and were
used to perform classification. We considered each manufac-
turer as one class (which may consist of different models of
the same manufacturer) and built an 8-class classifier. We
randomly chose 25 images to train an SVM and then test
on the remaining 15 images. This process was repeated 200

TABLE 1. Confusion matrix of classification results on camera brands.

(with * denoting insignificant values below 3%)

(C) (N) (S) (O) (M) (Cs) (F) (E)
Canon (C) 98% * * * * * * *
Nikon (N) 6% 85% 5% * * * * *
Sony (S) * * 93% * * * * *
Olympus (O) 6% 6% * 85% * * * *
Minolta (M) * * 4% * 91% * * *
Casio (Cs) * * * 5% * 91% * *
Fuji (F) * * * * * * 95% *
Epson (E) * * * * * * * 100%

times and the average classification results are computed.
The results are put together in a confusion matrix shown in
Table 1. Here, the (i, j)th element in the confusionmatrix gives
the probability of being classified as camera brand−j when
the picture actually comes from camera brand−i. We can see
that main-diagonal elements has an average value of 92.25%
for 8 camera brands.
The classification performance can be further enhanced by

exploiting more detailed models to handle different gradient
regions [80], and account for more sophisticated color inter-
polation techniques [81]. It is also possible to use the same set
of features to build a classifier to differentiate between spe-
cific model lines. For example, the likely upgrade in software
processing acrossmodel families from the samemanufacturer
could be used to distinguish between an iPhone 3 and an
iPhone 5. Along this line, the similarities and differences
between the component forensic features may shine light on
how the technologies have evolved. In case of close simi-
larities observed between different manufacturers, forensic
studies provide an interesting and unique lens into technology
cooperation in industry (such as by OEM from a common
supplier or by technology licensing if legitimately done), or
serve as a smoking gun for potential patent infringement [73].
Although explicit estimation of CFA interpolation parame-

ters in the component forensic framework provides an encour-
aging accuracy under uncontrolled settings and a scalability
to a large number of brands/models, alternative approaches to
camera identification can be found in the literature employing
features that bypass such explicit estimations, possibly at a
somewhat reduced computational complexity. In [82], the
weighting coefficients from the EM algorithm in [78] and
the peak location and magnitudes of the frequency spectrum
of the probability map are used as features for classifica-
tion [82]. When images captured from two cameras under
controlled input conditions along with randomly acquired
images from the Internet for a third camera were used in a set
of experiments, the authors reported accuracies close to 84%
on three brands [82]. Further improvements to this algorithm
were made in [83] by separately considering smooth and non-
smooth regions in the image to obtain accuracies close to 96%
for three camera brands.

B. LINKING TO INDIVIDUAL DEVICE UNITS
As discussed in the opening of this section, in order to dif-
ferentiate between individual device units, especially those
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FIGURE 5. PRNU examples from two cellphone cameras. These are best viewed using the electronic version.

(a) Detection showing a match between two PRNUs. (b) Detection showing unmatch between PRNUs.

FIGURE 6. PRNU matching and unmatching examples. (a) Detection showing a match between two PRNUs. (b) Detection
showing unmatch between PRNUs.

coming from the same manufacturer and model line (such as
two different iPhone 5 units), it is necessary to exploit fea-
tures that capture individuality. Instances from the variations
of a device’s physical/analog sensing modules are potential
sources reflecting the individuality. Intrinsic features that are
difficult to manipulate or duplicate, often known as physically
unclonable features (PUF), can be particularly attractive for
this forensic task. For images taken by cameras, linking an
image to a particular camera unit can be achieved by exploit-
ing the ‘‘noise’’ hidden in the image.

Digital cameras that use CCD or CMOS sensors contain
a number of sources of noise that affect their output digital
images. One of the main noise sources is due to manu-
facturing variations or imperfections when the camera was
produced. These can cause each photonic sensor element in
a camera to have slight variations in their sensitivity to inci-
dent light. As a result, different pixels may register different
values even under the same light intensity. Such unevenness
of light sensitivity is referred to as Photo Response Non-
Uniformity (PRNU) [84]. The unique PRNU pattern of each
camera sensor can thus serve as a fingerprint to characterize
an individual camera’s sensor array. Sample PRNU noise

patterns for two cameras are shown in Fig. 5, wherein brighter
pixels correspond to pixels that are more light-sensitive.
As the effect of the PRNU is generally proportional to the

intensity of the incident light, the amount of PRNU at each
pixel can be modeled as a multiplicative noise-like signal [85]
given by I = I (0) + I (0)K + θ . Here, I is the pixel intensity
recorded by the given pixel of the camera sensor, I (0) is the
ideal sensor output in the absence of noise, K represents the
PRNU noise at the pixel per unit amount light, and θ accounts
for the combination of other noise sources. Assembling the
estimate of K from each pixel gives the overall PRNU pattern
for the camera sensor. The PRNU pattern can be obtained
by first applying denoising to extract the noise components
from each of N training images that are taken by the camera
of interest. After this, an estimate of the PRNU is computed
using themaximum likelihood estimationmethod. For a given
pixel in the camera’s PRNU pattern, this most probable esti-
mate of the PRNU is shown to be:

K =

∑N
i=1WiIi∑N
i=1 (Ii)

2

178 VOLUME 1, 2013



C. STAMM et al.: Information Forensics

where Wi corresponds to the noise residual obtained by
denoising and Ii the light intensity in the ith image [85].

Similarly, to determine whether an image under question
(the testing image) has been taken by a specific camera, the
noise pattern can first be extracted from the testing image. The
similarity can then be compared between this noise pattern
and a camera’s PRNU pattern. A significant relative peak
in the normalized cross correlation suggests the image is
highly likely taken by the camera in question. Fig. 6 shows
a typical correlation plot between two matched patterns and
between unmatched patterns, respectively. Strategic weight-
ing techniques can be further employed during the detection
to deal with different sources of inaccuracy in PRNU noise
estimation [86].

Image-based PRNU has been extended to identifying
specific digital camcorders from videos taken by these
devices [87], and the influence of video content on identifica-
tion performance has been examined in [88]. An increasingly
popular way to generate videos is by the more ubiquitous
cell-phone cameras. As cell-phones generally apply stronger
compression to video captured, this challenge needs to be
properly addressed. Studies in [89] found that different video
frame types (I- and P- in the MPEG family) have different
levels of reliability for PRNU estimation. By reordering and
applying proper weights to frames in a video according to
their reliability, more accurate identification of the source
camera can be achieved by processing a small fraction of
frames.

C. IDENTIFYING IMAGING TYPE
In a practical forensic investigation scenario, there are many
potential unknowns, and it is desirable to develop conjectures
and guide investigations into the origin of an image in a
logical fashion. For example, linking an image to a specific
camera unit often requires having a ‘‘suspect’’ device avail-
able to test with. Without additional information, this can be a
task of finding a needle in a haystack. Using color processing
and other related features can help verify the trustworthiness
of the camera brand/model information at the image header
or identify the correct brand of camera, but how do we know
an image was taken by a camera in the first place? It will be
helpful if an investigator can first determine what imaging
mechanism has been used to generate the image, as this can
significantly narrow down the search range for the next step
of the investigation, or help discover discrepancies, such as
identifying that an photo-realistic image was in fact generated
by computer graphics [11].

As was discussed briefly in the previous section, a camera
response function (CRF) relates image irradiance at the image
plane to the measured intensity values. The work in [11]
explored physical insights from imaging and differential
geometry characteristics commonly seen in computer graphic
rendering. It was discovered there that the CRF revealed from
gradient patches of an image can be substantially different
from those rendered by computer graphics. Polygonal mod-
els that are commonly used in computer graphic rendering

can result in unusually sharp edges and sharp corners in
the image intensity function as compared to natural pho-
tographic images. Since computer graphic rendering often
assumes color independence in the object surface model,
which is generally not true for real-world object, the differ-
ence in the RGB correlation for photographic and computer
graphic images can be exploited using the surface Laplacian.
Further studies on reliable estimation of CRF were made
in [90].
In addition to the camera response function and differential

geometric characteristics, noise properties have been shown
to be effective discriminating features as well. We have seen
that the PRNU pattern related to noise introduced in the
imaging process can be used to differentiate between camera
units. Although multiple noise sources may contribute as a
whole to the pixel value variation and these noise sources
appear highly random in nature, their statistical characteris-
tics may be relatively stable with respect to the same imaging
ormanufacturingmechanism.While the imaging devicesmay
apply post-processing to reduce noise or for other purposes,
some statistical properties of noise remain. In [91], [92] and
follow-up developments of [93], [94], noise characteristics
were explored from several angles: by employing various
denoising algorithms to extract noise and examine the noise
strength and statistical variations; by analyzing the statistical
properties of the Wavelet coefficients and filterbank outputs
of images; and by applying prediction using neighborhood
pixels and examining the statistical attributes of the prediction
residues. Features collected through these means can be used
to train a classifier, for example, a SVM, which may possi-
bly be preceded by dimensionality reduction techniques as
principal component analysis (PCA) or linear discriminative
analysis (LDA), so that the most likely imaging type can be
determined for an image under question.
Combining such forensic features as noise statistics [95]

and noise plus color interpolation features [96] with machine
learning techniques, algorithms have been developed to deter-
mine the most likely type of imaging techniques or devices
that was used to generate an image under question. For exam-
ple, to determine if an image is from a scanner, or computer
graphic rendering, or a digital camera, or a low-end cell-
phone camera.

D. MANIPULATION DETECTION USING DEVICE
FINGERPRINTS
As we first discussed in Section II-B, not only can device fin-
gerprints identify the camera used to capture a digital image,
but they can also be used to expose image manipulation. This
holds true for PRNU fingerprints as well as a camera’s CFA
pattern and color interpolation parameters.When a forger cre-
ates a falsified image through cut-and-paste forgery, this often
involves splicing together parts of pictures captured using
different cameras. It is likely that these cameras may employ
a different set of algorithms, parameters, or characteristics for
their internal components. Examining the inconsistencies of
device traces as well as the absence of anticipated traces or
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(a) (b) (c)

FIGURE 7. Example of tampering detection based on inconsistencies of CFA estimates between regions: (a) a forgery image; (b) editing map
showing regions in the forgery image obtained from the two cameras; (c) estimation result of acquisition camera for each block of (a).
Black: Sony P72; white: Canon S410; grey: regions with low classification confidence (mostly smooth regions that do not reveal significantly
different CFA traces among manufacturers).

the presence of additional traces are common methodologies
to detect tampering.

Since the overwhelming majority of consumer level digital
cameras employ CFAs in their image processing pipeline,
unaltered camera images should contain CFA interpolation
fingerprints. CFA interpolation fingerprints may be absent,
however, from manipulated images. To detect these finger-
prints, an expectation maximization (EM) algorithm can be
used to jointly obtain a linear estimate of the CFA interpola-
tion filter’s coefficients as well as the probability that a pixel
is correlated with its neighbors due to CFA interpolation [78].
Forgeries can be detected by identifying image segments
that do not contain CFA interpolation fingerprints. Another
approach builds on the component forensic framework
reviewed in Section III-A. This approach operates by obtain-
ing regional estimates of the CFA interpolation parameters
and classifies the parameters according to the best match-
ing camera model learned from an offline training phase. It
then examines the consistencies of the classification results
between region. Forgeries can be exposed by identifying
mismatches in the origin of different image regions. An exam-
ple of forensic results obtained in this manner is shown in
Fig. 7.

Other techniques with lower computational complexity can
be found in the literature to detect the presence of CFA
interpolation fingerprints without requiring the estimation of
the CFA interpolation filter. One method involves searching
for periodicities in the variance of the output of a high-
pass filter that has been averaged along one of the diago-
nal directions [97]. Certain forms of these periodicities will
reflect the CFA interpolation fingerprints. Other techniques
are designed to specifically detect the localized presence or
absence of CFA interpolation fingerprints. One such method
operates by analyzing the uniformity of the error induced by
reapplying CFA interpolation, while another similar method
operates by comparing the power of statistical noise present
in interpolated pixels to the noise power in directly observed
pixels [98].

Additionally, CFA fingerprints can also be used to iden-
tify editing operations that have been globally applied to an
image [99]. This is done by approximating an editing opera-
tion as a linear filter, then using an iterative process to obtain

an estimate of this filter through blind deconvolution. The
iterative process works by first obtaining an estimate of the
original image by performing a ‘‘deconvolution’’ in the fre-
quency domain using the current estimate of the manipulation
filter. Next, properties of the color interpolation coefficients
are imposed as a set of constraints on the in the pixel domain
and used to refine the estimate of the manipulation filter. This
process is iterated until a stable estimate of the tampering
filter is obtained.
Once an estimate of the manipulation filter has been

obtained, image tampering is detected by calculating a sim-
ilarity score between the estimate of the tampering filter
and estimates gathered from unaltered images (which, if if
round-off errors are omitted, should correspond to an iden-
tity transform with a flat spectral response). This technique
is able to detect manipulation in the form of a number of
global image processing operations such as linear smoothing,
median filtering, resizing, rotation, histogram equalization,
JPEG compression, and the addition of noise [100]. Examples
of the estimated manipulation filters under various operations
are shown in Fig. 8. Since the estimate of the manipula-
tion filter reflects the linear-shift-invariant component of the
‘‘empirical frequency response’’ of the operation that the
image has undergone, by examining the characteristics of this
response shared among the same type of operations (such
as JPEG compression and filtering), the type of manipula-
tion can be further identified [101]. This blind-deconvolution
approach can also be used to perform universal steganalysis
to determine whether an expected camera output image has
additional data hidden in it, and can detect both quantization
based and spread-spectrum based steganography [100].
PRNU fingerprints constitute another important form of

device fingerprints that can be used to identify falsified
images. As was discussed in Section III-B, imperfections in
a digital camera’s sensor cause the sensor’s response to light
to vary from pixel to pixel. The resulting PRNU noise pattern
left in a digital image or video frame is unique to that device.
If the PRNU of the camera that captured a digital image is
known, it can be used to identify falsified regions in the image
[102]. This is done by first computing the correlation between
the PRNU estimated from an image and the PRNU of its
camera of origin over a sliding window. Inauthentic image
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FIGURE 8. Frequency response of the manipulation filter for camera outputs that are manipulated by (a) 7 × 7
averaging filter, (b) 11 × 11 averaging filter, (c) 7 × 7 median filter, (d) 20 degrees rotation, (e) 70% resampling,
(f) 130% resampling, (g) noise addition with PSNR 20dB, and (h) histogram equalization. The frequency response
is shown in the log scale and shifted so that the DC components are in the center. (Source: [100])

regions are detected if the correlation score falls below a
certain threshold. To determine the optimal threshold, the cor-
relation score can be modeled using a generalized Gaussian
distribution with different distribution parameters depending
on whether the block has been tampered or not. A Neyman-
Pearson rule for identifying falsified image regions can then
be designed to determine the optimal detection threshold for a
desired false alarm rate [103]. Changes in noise statistics can
also be explored to identify postprocessing operations applied
to scanned images [94], [104].

IV. EMERGING FORENSIC USE OF ENVIRONMENTAL
SIGNATURES
In this section, we discuss an emerging class of forensic
techniques that exploit signatures from a sensing environ-
ment. To motivate these techniques, consider the propa-
ganda videos that were periodically released by Osama bin
Laden. When faced with these videos and videos like them,
counter-terrorism analysts and officials worldwide will seek
the answers to many information forensic questions: given
a video in question, when and where was it shot? Was the
sound track captured together at the same time/location as
the visuals or was it superimposed later? Similar questions
about the time, location, and the integrity of multimedia and
other sensor recordings are also important to provide security
and trust in law enforcement, journalism, infrastructure moni-
toring, smart grid/energy management, and other commercial
operations.

Although an increasing number of devices are now
equipped with GPS capabilities and many offer user-
configurable time stamps, such time and location information
is not always available or trustworthy. The adversarial situa-
tions that many forensic applications must work in prompt
a need for examining complementary types of evidence that
can reveal the time and location in which media and sen-
sor information were acquired. Here, we review emerging
techniques that hold an encouraging potential to address

these questions by exploiting novel fingerprints from the
environment. Such environmental fingerprints become nat-
urally ‘‘embedded’’ into videos or other common types of
sensor signals at the time of recording. They may carry
time and location information, and may facilitate verification
of the integrity of the sensed data. One important example
of environmental fingerprints arises from the power grid in
the form of small random-like fluctuations of the electricity
frequency.
The electric network frequency (ENF) is the supply fre-

quency of power distribution networks in a power grid. Its
nominal value is 60 Hz in the United States, and 50 Hz in
Europe and a large part of Asia. Digital devices, such as
audio recorders, CCTV recorders, and video cameras, that
are connected to the power mains or are battery powered
and located near power sources, pick up the ENF because
of influences from electro-magnetic (EM) fields generated
by power sources. Although the ENF is closely regulated
to stay at the nominal value, its value actually fluctuates
from the nominal because of time-varying loads on the power
grid and the dynamic control process to match electricity
supplies with demands [105]. The main deviations from the
nominal value are consistent across the same power grid
because of its interconnection nature. There are three major
grids in North America; one for the east, one for the west,
and one in Texas [106]. The ENF fluctuations in the United
States vary randomly and continuously between 59.90Hz and
60.10 Hz [107]. Similarly in Europe, these fluctuations are
typically between 49.90 Hz and 50.10 Hz [108]. The power
grid in Asia is less tightly regulated, leading to noticeable
ripples observed in China and significant drift as much as
0.5Hz in India [109], as shown in Fig. 9.
It has been demonstrated that the ENF can be ‘‘heard’’

in sound recordings by electricity powered and many bat-
tery powered devices [107], [108]. Additionally, it has
recently been shown in a proof-of-concept demonstration that
the ENF is detectable from visual recordings with indoor
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(a) from power line in U.S. (b) from power line in India (c) from video signal in China

FIGURE 9. Spectrogram showing ENF signals observed in different countries and modalities.

lighting. The low frame rate and low signal-to-noise ratio
in video, however, impose challenges that call for advanced
signal processing theory and techniques to solve this
problem [109].

What can ENF do for us? ENF signals can be continu-
ously recorded from a power outlet or through such wire-
free means as audio/visual sensing to serve as a reference
for the respective power grid. Since the random fluctua-
tion of the ENF vary over time, the ENF can be extracted
from a sensor recording of interest via a variety of fre-
quency estimation methods [108]–[111] and aligned with a
reference ENF signal to determine or verify the recording
time. The forensic use of ENF to authenticate audio record-
ings was first demonstrated in Europe [108], and has been
incorporated into the forensic practices by some European
countries [112].

With ENF reference data from multiple grids, the power
grid within which the recording was made can be identified
since the overall trends of ENFfluctuation are the samewithin
a grid. By examining detailed characteristics of the ENF and
having multiple spatially located references, we may poten-
tially narrow down the location within a grid [111], [113].
The ENF traces extracted from multiple streams may help
forensically bind them, for example, to determine if the sound
track and the visual track of a video were captured at the same
time [109]. Inconsistencies observed in ENF, such as abrupt
changes in extracted instantaneous frequencies and discon-
tinuities in phase, signal potential content tampering [109],
[114]. An example is shown in Fig. 10.

V. ANTI-FORENSICS AND COUNTERMEASURES
While existing forensic techniques are able to successfully
detect multiple types of standard media manipulations, many
forensic techniques do not account for the possibility that
a forger with an advanced knowledge of signal process-
ing techniques may attempt to disguise their forgery. As a
result, researchers have begun studying anti-forensic opera-
tions capable of fooling forensic techniques.

This is important for a number of reasons. By develop-
ing anti-forensic operations, researchers can identify vul-
nerabilities in existing forensic algorithms. This will allow
researchers to honestly assess how reliable their forensic
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FIGURE 10. ENF comparisons for video tampering detection.

results are. Furthermore, it may help researchers improve
forensic algorithms. This will hopefully prevent scenarios
in which forged multimedia files are declared authentic by
forensic analysis. Additionally, anti-forensic operations may
leave behind unique fingerprints in the same manner that
traditional editing operations do. By studying anti-forensic
operations, researchers can develop new techniques to detect
the use of anti-forensics.

A. ANTI-FORENSIC TECHNIQUES
We start with providing a brief overview of existing anti-
forensic research and the forensic techniques which they are
designed to fool.

1) PRNU Forgery
As we discussed in Sections II and III, camera specific PRNU
fingerprints that arise due to spatially distributed imperfec-
tions on a digital camera’s imaging sensor can be used to
identify which camera captured a digital image and verify an
image’s authenticity [84], [103]. An intelligent forger, how-
ever, can anti-forensically manipulate PRNU fingerprints,
thus allowing a forger to disguise image forgeries and falsify
a digital image’s origin [115]. This is done by first removing
the authentic PRNU left in an image using a technique called
flatfielding. If the forger wishes to make an image appear
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FIGURE 11. Histogram of coefficient values from the (2,2) DCT subband taken from an uncompressed image (left), the same
image after JPEG compression (center), and an anti-forensically modified copy of the JPEG compressed image (right).

as if it were captured by another camera, the PNRU of the
target camera can be estimated from a series images taken by
the target camera. After this is done, the inauthentic PRNU
is multiplicatively inserted into an image using inverse flat-
fielding. Alternatively, a forger can modify the image, then
re-insert an estimate of the authentic PRNU. This will prevent
irregularities in the image’s PRNU from revealing evidence of
manipulation.

2) Hiding Traces of Image Resampling
Image resampling fingerprints can be hidden using a set of
anti-forensic techniques [116]. This is especially important
to forgers creating cut-and-paste image forgeries, because
an object cut from one image must often be resized or
rotated before it is pasted into another image. Since resam-
pling fingerprints are caused by linear dependencies between
pixels introduced by resampling, one simple approach to
hiding these fingerprints is to apply a nonlinear filter
such as a median filter. While nonlinear filtering can suc-
cessfully hide resampling, it often introduces perceptually
detectable distortion in the form of blurring. This problem
is mitigated by a more sophisticated anti-forensic approach
that uses a combination of nonlinear filtering and geo-
metric distortion to remove resampling fingerprints. The
strength of the geometric distortion is modulated by the
local edge strength to ensure that it does not signifi-
cantly degrade the quality of the anti-forensically modified
image.

3) Falsifying an Image’s Compression History
If the fingerprints of a particular processing operation can be
accurately modeled, then this model can be used by a forger
to design an anti-forensic technique to optimally remove
these fingerprints. This has been done in the case of image
compression fingerprints [117]. Recall from Section II-D that
when an image is compressed using a transform coder such as
JPEG, the quantization of its transform coefficients will leave
behind fingerprints in the transform coefficients’ distribution.
By using a parametric model to describe the distribution of
an uncompressed image’s transform coefficients, the distri-
bution of these transform coefficients after compression can
be obtained by integrating this model over each quantization
interval.

To remove the quantization fingerprints in transform
coefficients, the model parameters of an uncompressed
version of an image’s transform coefficient distribution are
first directly estimated from a compressed version of the
image’s transform coefficients. These parameters are used
to design an anti-forensic dither, which is added to the
quantized transform coefficients of the compressed image.
The anti-forensic dither’s distribution is chosen so that it
matches the distribution of the uncompressed image’s trans-
form coefficients over each individual quantization inter-
val. By doing this, it can be theoretically proven that an
anti-forensically modified image’s transform coefficient dis-
tributions will match those distributions before the image
was compressed. This technique has been adapted for both
standard JPEG compression as well as DWT based meth-
ods such as JPEG 2000 and SPIHT [117]–[119]. An exam-
ple of the effectiveness of this anti-forensic technique can
be seen in Fig 11, which shows DCT histograms from an
image before compression, after JPEG compression, and
after the JPEG compressed image has been anti-forensically
modified.
Additionally, JPEG blocking artifacts can be erased by

using median filtering followed by the addition of low power
Gaussian noise to an image. The size of the median filter win-
dow and the variance of the additive noise can be adapted to
the quality factor used during compression. This is necessary
because existing deblocking techniques focus on removing
visual traces of blocking fingerprints but do not completely
remove all statistical blocking fingerprints [117], [120].
By using these anti-forensic techniques to remove both

blocking fingerprints and DCT coefficient quantization fin-
gerprints from JPEGs, a forger can disguise double JPEG
compression, falsify an image’s origin, and hide evidence
of cut-and-paste forgeries [117], [120]. Double compression
fingerprints can be prevented by anti-forensically removing
DCT coefficient quantization fingerprints from an image
before it is compressed a second time. If this is done to both
images used when creating a cut-and-paste forgery, no local-
ized mismatches in the forged image’s compression history
will arise. Blocking fingerprints can also be anti-forensically
removed from each image to prevent the occurrence of mis-
aligned blocking fingerprints in the cut-and-paste forgery.
This will prevent forensic cut-and-paste detection techniques
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FIGURE 12. P-frame prediction error sequences (top row) and the magnitudes
of their respective DFTs (bottom row) obtained from the ‘Foreman’ video (after
the first six frames were deleted followed by recompression without
anti-forensic modification (left column) and with the use of the anti-forensic
technique in [68] (right column).

that use double compression or blocking fingerprints from
identifying the forgery. Furthermore, an image’s origin can
be falsified by first erasing all previous JPEG compression
fingerprints, then recompressing the image using the quanti-
zation table associated with a different digital camera. Addi-
tionally, the tradeoff between the compression rate, distortion
introduced by anti-forensics, and the likelihood that a forgery
will be concealed by anti-forensics has been recently charach-
terized [121].

4) Undetectable Video Frame Deletion
Similarly, fingerprints from frame deletion that are left in a
digital video’s sequence of P-frame prediction errors can be
anti-forensically concealed by making use of the model of
these fingerprints discussed in Section II-D [68], [122]. To
accomplish this, the model of the video’s P-frame prediction
error sequence is used to identify spikes in the prediction error
that correspond to frame deletion fingerprints. A feasible
target sequence of P-frame prediction errors that does not
contain frame deletion fingerprints is constructed by interpo-
lating the values between these spikes using a cubic spline.
Next, the prediction error in each P-frame is increased to its
corresponding value in the target sequence by altering the
motion vectors in each P-frame through an iterative process.
Once an acceptable set of anti-forensically modified motion
vectors is obtained, the prediction error for each P-frame is
recalculated.

The effects of this anti-forensic algorithm can be seen in
Fig. 12 which shows the P-frame prediction error sequence
of a video before and after anti-forensic modification. It is
important to note that altering the video in this manner results
in no decrease in the visual quality of the anti-forensically
modified video and ensures that the anti-forensically mod-
ified video can still be decoded by a standard video
decoder.

5) Hiding Evidence of Contrast Enhancement
Contrast enhancement fingerprints can also be anti-
forensically removed from a digital image. Recall that these
fingerprints correspond to impulsive peaks and gaps in an
image’s pixel value histogram. These fingerprints can be
removed by selectively adding Gaussian noise to pixels
whose values lie in a certain neighborhood of pixel values
corresponding to a peak or gap in the pixel value histogram.
This will smooth out the peaks and gaps in the pixel value his-
togram that correspond to contrast enhancement fingerprints.

B. DETECTING ANTI-FORENSICS
In response to the development of digital anti-forensics, a
small number of techniques designed to detect the use of anti-
forensics have been recently developed.

1) PRNU Forgery Detection
If the PRNU of an image is forged to match the PRNU of
a different camera, the PRNU of the target camera must be
estimated from a set of images that the forger has access to.
For example, these images may come from an online photo
sharing website. As a result, the PRNU extracted from a
forged image will be more highly correlated with the PRNU
extracted from an image used to obtain the forged PRNU
pattern than from a new image taken by the same camera.
This fact can be exploited to create a technique capable
of detecting PRNU forgery [123]. A linear relationship can
be established between an estimate of the correlation score
between an image’s PRNU and a camera’s reference PRNU,
and the actual correlation score. This linear model will not
hold when examining the correlation score between a forged
image and an image used to estimate the forged PRNU pat-
tern. Therefore, if a forensic examiner examines the estimated
and actual correlation scores for at least one image used to
obtain the forged PRNU, the forgery can be exposed.
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2) Detecting Single JPEG Compression Anti-Forensics
Two sets of techniques have recently been proposed to iden-
tify images which have been anti-forensically modified to
remove evidence of a single application of JPEG compres-
sion. One set of techniques operates by establishing a model
of the relationship between the variance of different DCT
subbands [124]. This model will likely not hold for DCT coef-
ficients in high frequency subbands of anti-forensically mod-
ified images because it is difficult for a forger to accurately
estimate the uncompressed distributions of these coefficients
from the quantized DCT coefficients. Additionally, calibra-
tion techniques developed to perform steganalysis can be used
to analyze the variance of each subband of DCT coefficients
for inconsistencies. Alternatively, the use of anti-forensics
can be detected by compressing an image in question at a
variety of different JPEG quality factors and measuring the
total variation of each compressed image [125]. If an image
has been anti-forensically modified, the total variation will
sharply increase for images compressed at higher quality
factors than the original image.

It should be noted that while these techniques are able
to identify when anti-forensics has been used to hide sin-
gle JPEG compression, they do not work well when anti-
forensics has been used to hide double JPEG compression.

3) Detecting Video Frame Deletion Anti-Forensics
While video frame deletion fingerprints can be prevented
using anti-forensics, the anti-forensic technique used to do
this leaves behind fingerprints of its own [68]. Recall that
frame deletion anti-forensics operates by modifying a video’s
motion vectors in order to selectively increase the prediction
error in certain P-frames and hide frame deletion fingerprints.
Since the true motion in the video will not change due to
anti-forensics, the use of anti-forensics can be exposed by
analyzing a digital video’s motion vectors and comparing
them to the true motion in the scene. If the motion vectors
stored in the video significantly differ from the true motion
in the scene, then the video has likely been anti-forensically
modified.

4) ENF Related Anti-Forensics and Countermeasures
As discussed in Section IV, the electrical network frequency
(ENF) signal is a time stamp that is being used by an emerging
class of approaches for determining the creation time and
location of digital audio and video recordings. However, in
adversarial environments, anti-forensic operations may be
used to manipulate ENF-based time stamps. As a result, it is
crucial to understand the robustness of ENF analysis against
anti-forensics. A recent work [126] explored a set of possible
anti-forensic operations that can remove and alter the ENF
signal while trying to preserve the host signal, and developed
detection methods targeting these anti-forensic operations.
Concealment techniques that can circumvent detection were
also discussed, and their corresponding trade-offs were exam-
ined. Based on the understanding of individual anti-forensic
operations and countermeasures, the work provided an evolu-

tionary view on the dynamic interplay between forensic ana-
lysts and adversaries. As with other anti-forensic problems,
the understandings obtained on the strategy space of forensic
analysts and adversaries can be incorporated into a game
theory framework for quantitative analysis on the adversarial
dynamics.

C. ADVERSARIAL DYNAMICS
Prior to the recent development of anti-forensics, the actions
of a forger and forensic investigator were largely considered
independently. It was generally assumed that a forger’s pri-
mary concern was to create a perceptually realistic forgery.
As a result, the detection strategy employed by a forensic
investigator could be developed without having to account
for an active adversary. The introduction of anti-forensic
techniques, however, has highlighted a new dynamic interplay
between a forger and a forensic investigator.
Since anti-forensic techniques enable a forger to actively

evade forensic detection, the actions taken by a forger greatly
influence the optimal detection strategy for a forensic inves-
tigator. Similarly, the detection strategy adopted by a foren-
sic investigator must be considered when determining the
forger’s optimal anti-forensic countermeasures. As a result,
each party must anticipate the actions of their adversary when
identifying their own optimal course of action. In order to
understand this dynamic interplay, researchers have recently
begun using game theory to characterize the interactions
between a forger and a forensic investigator.
To determine the optimal actions of a forger and foren-

sic investigator if both the forger’s use of a manipulating
operation m and anti-forensics countermeasures αm to hide
m can be detected, a game-theoretic framework has recently
been developed [68]. In this scenario, a forger can reduce
the strength k of their anti-forensic technique to decrease the
probability that their use of anti-forensics will be detected.
This, however, will result in an increase in the probability
that their manipulation will be detected. Since a forensic
investigator’s discovery of either either file manipulation or
the use of anti-forensics will expose a forgery, the forger
must identify the anti-forensic strength that minimizes the
investigator’s overall probability of detecting their forgery.
On the other hand, a forensic investigator must balance a

tradeoff of their own caused by a constraint on their total false
alarm rate. Since the investigator’s manipulation detection
algorithm and anti-forensics detection algorithm will both
contribute to the total false alarm rate, the investigator must
determine how much each algorithm will contribute to the
total false alarm rate. This is critical because the performance
of each detector is dependent on the false alarm rate allo-
cated to it. The false alarm rate allocation that maximizes the
investigator’s probability of identifying a forgery, however,
is dependent upon the anti-forensic strength used by the
forger.
To identify the actions that both parties are incentivized

to take, the action set of the forger and investigator are
characterized as the set of anti-forensic strengths and false
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alarm rate allocations respectively. Next, the utility function
that the forensic investigator wishes to maximize is defined
as the probability that a forgery will be identified either by
detecting manipulation or the use of anti-forensics. Similarly,
the utility function for the forger is defined as the negative of
the investigator’s utility minus a term to account for the cost
of introducing perceptual distortion into their forgery. Using
these utility functions, a set of Nash equilibrium strategies
that neither party will have any incentive to deviate from can
be identified.

This game-theoretic analysis leads to a technique for mea-
suring the overall performance of the forensic investigator.
By varying the investigator’s total false alarm constraint 0%
and 100% and identifying the Nash equilibrium strategies
at every point, the probability that the investigator detects a
forgery under equilibrium can be determined at all possible
false alarm rates. These can be combined together to create a
Nash equilibrium receiver operating characteristic (NE ROC)
curve.

This framework has been used to analyze the interaction
between a forger and investigator in the context of video
frame deletion forensics. The NE ROC characterizing this
scenario was determined using the results of this analysis and
it was discovered that if a forensic investigator is constrained
to operate with a false alarm rate of less than 10%, it is likely
that video frame deletion will not be detected. Conversely, if
the investigator is allowed to operate with a false alarm rate
of 15% or above, it is highly likely that any attempt to delete
frames from a video will be detected.

Additionally, game theory has been used to investigate
adversarial dynamics in the context of identifying a multime-
dia file’s source [127]. In this scenario, a forensic investigator
must identify the optimal strategy for determining the source
of a sequence of multimedia files. Similarly, a forger will
attempt to use the optimal anti-forensic strategy to falsify
the source of these multimedia files. The asymptotic Nash
Equilibrium can be identified for an infinitely long sequence
of media files, and this information can be used to approxi-
mate the investigator and forger’s optimal forensic and anti-
forensic strategies respectively.

VI. EMBEDDED FINGERPRINTING AND FORENSIC
WATERMARKING
As we have seen so far in this article, to perform forensics
on multimedia, one must start with discovering some traces
of evidence. Analogous to human fingerprints in criminal
forensics, there are two forms of ‘‘fingerprints’’ in digital
domain. The previous sections have reviewed invisible traces
of evidence left in content when the content goes through vari-
ous devices and operations. These ‘‘intrinsic’’ fingerprints are
shown to provide powerful forensic evidence regarding the
history and provenance of digital content, as well as the inner
workings of the associated devices. ‘‘Extrinsic’’ approaches
complement ‘‘intrinsic’’ ones to provide proactive protections
through embedded or attached data. Earlier work on extrinsic
techniques in the late 1990s focused on embedding infor-

FIGURE 13. Using embedded fingerprinting for tracing users.
(Source: [129])

mation to represent ownership rights or verify host media
data’s integrity [12], [13]. In this section, we discuss advances
in ‘‘extrinsic’’ fingerprints in the most recent decade. These
advances extend traditional robust watermarking to embed a
unique ID or signal representing each user in his or her copy of
a multimedia file [128]–[130], and use this later as a forensic
tracer in the event of leak or misuse to determine who was
the original recipient. Together, these forensic technologies
complement each other and can provide useful evidence to
help answer a number of forensic questions arising from law
enforcement, intelligence operations, journalism, and intel-
lectual property protection.

A. BACKGROUND: ROBUST EMBEDDING AND
COLLUSIONS
Fig. 13 shows an overview of the process involving embedded
fingerprinting for tracing content distributions. As with other
forensic problems, adversaries have incentives to apply a
variety of attacks to circumvent fingerprint detection from a
multimedia file. An adversarymay act alone to apply filtering,
compression, and other noise and distortions in hopes to
remove or weaken fingerprints, or render them difficult to
be detected with high confidence. Collusion is a powerful
multi-user attack where a group of users combine their copies
of the same content to generate a new version with the
fingerprint attenuated or removed. In addition to resistance
against attacks, three aspects of system efficiency need to
be considered when designing an anti-collusion fingerprint-
ing system, namely, the efficiency in constructing, detecting
and distributing fingerprinted signals. Construction efficiency
concerns the computational complexity involved during the
generation of fingerprinted content; detection efficiency is
related to the computational complexity of detection; distri-
bution efficiency refers to the amount of bandwidth consumed
during the transmission of all the fingerprinted signals.

1) Spread-Spectrum Based Robust Embedding
An embedded fingerprinting system for the tracing and track-
ing of multimedia data builds on top of robust data embed-
ding methods that are capable of withstanding adversaries’
attacks to remove the embedded fingerprint. In this aspect,
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embedded fingerprinting is closely related to digital water-
marking and the fingerprints are sometimes referred to as
‘‘forensic watermarks’’. In contrast to having a single marked
copy available to adversaries in most watermarking applica-
tions, the presence of multiple distinctly marked copies in
most
fingerprinting applications prompts the additional challenge
of creating collusion resilient designs to combat collusion
attacks and identify colluders. Many techniques have been
proposed for embedding information in multimedia sig-
nals [12]. Here we briefly review the spread spectrum additive
embedding technique and its role in robustly embedding
fingerprint signals into multimedia.

Spread spectrum embedding borrows ideas from spread
spectrum modulation [137]. The basic embedding process
consists of the following steps. The first step is to identify
and compute proper features that will carry watermark sig-
nals. Depending on the design requirements and the type of
media data, the features can be signal samples, transform
coefficients (such as DCT and wavelet coefficients), or from
other functions suitable for the specific type of media content
(such as local shape parameters for curves [138]). Next, we
generate a watermark signal and apply perceptual models to
tune its strength to ensure imperceptibility. A spread spec-
trum watermark typically resembles weak noise and covers a
broad spectrum as well as a large region of the media data.
Finally, we add the watermark to the feature signal, replace
the original feature signal with the watermarked version, then
convert it back to the signal domain to obtain a watermarked
signal. The detection process for spread spectrum water-
marks begins with extracting features from a media signal
in question. Then the similarity between the features and a
watermark is examined to determine the existence or absence
of the specific watermark in the media signal. A correlation
similarity measure is commonly used, often in conjunction
with preprocessing (such as whitening) and normalization to
achieve reliable detection [12].

Spread spectrum embedding has been shown to be very
robust against a number of signal processing operations and
attacks [131], [132], including strong lossy compression,
format conversions, filtering, and more. By appropriately
choosing features and applying alignment procedures, spread
spectrum watermarks can survive moderate geometric distor-
tions, such as rotation, scaling, shifting, and cropping [133],
[134]. Information theoretic studies also suggest [135], [136]
that it is nearly capacity optimal when the original host signal
is available in detection, which is a situation often considered
in fingerprinting applications.

2) Orthogonal vs. Code Modulation
A simple way to realize fingerprinting via spread spectrum
embedding is to use mutually orthogonal watermarks as fin-
gerprints to identify each user [139], [140]. The orthogonality
allows for distinguishing the fingerprints to the maximum
extent. The simple encoding and embedding of orthogonal
fingerprints makes them attractive to applications that involve

a small group of users and tractable for analytic studies on
their performances [141]–[143]. The orthogonality may be
approximated by using pseudo-random number generators to
produce independent watermark signals for different users.
A second option of using spread spectrum watermarking

is to employ code modulation [144], [145]. Code modulation
allows fingerprint designers to design more fingerprints for a
given fingerprint dimensionality by constructing each user’s
fingerprint signal as a linear combination of orthogonal noise-
like basis signals. For a large number of users, the detection
complexity of coded fingerprinting can be much lower than
that of the orthogonal construction that is proportional to the
number of users. To embed a codeword, we first partition
the host signal into L non-overlapped segments, which can
be one block of image or a frame or a group of frames of
video, with one segment corresponding to one symbol. The
fingerprint signal for the jth user, wj, is constructed using a
linear combination of a total of v orthogonal basis signals {ui}:

wj =

v∑
i=1

bijui. (3)

Here the coefficients {bij}, representing fingerprint codes, are
constructed by first designing codevectors with values {0, 1},
and then mapping them to {±1}.

It is possible to extend the binary coded fingerprinting to
M -ary by employing M orthogonal basis signals for each
M-ary code symbol [145], [146]. For each segment, we
generate M mutually orthogonal spread spectrum sequences
{u1, ...,uM } with equal energy to represent the M pos-
sible symbol values in the alphabet. Each user’s finger-
print sequence is constructed by concatenating the spreading
sequences corresponding to the symbols in his/her codeword.
The fingerprint sequence is then perceptually shaped and
added to the host signal through spread spectrum embedding
to form the final fingerprinted signal.

3) Collusion Attacks
As mentioned earlier, the collusion attack is a powerful col-
laboration attack by multiple users. During a collusion attack,
a group of colluders holding differently fingerprinted versions
of the same content examine their different copies and attempt
to create a new signal that would be difficult to be linked
to any of the colluders. There are several types of collusion
attacks [129], [147]. Linear collusion attack is simply to align
the fingerprinted copies and take a linear combination of their
corresponding elements. Another collusion attack, referred to
as the copy-and-paste attack or interleaving attack, involves
users taking parts of their media signals and assemble these
parts together into a new version. Other attacks may employ
non-linear operations, for example, following order statistics
such as taking the maximum or median of the values of
corresponding components of individual copies. Considering
a simple fairness among colluders each of whom would not
want to assume higher risk of being caught than others, each
colluder would contribute a similar amount of share, for
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example, by averaging their signals, leading to the averaging
collusion attack.

Research has shown that for orthogonal fingerprinting
based on the spread-spectrum embedding, interleaving col-
lusion and many variants of order statistics based nonlinear
collusion have a similar effect on the detection of fingerprints
to the collusion by averaging and possibly followed by addi-
tive noise [148], [149]. So if the overall distortion level
introduced by collusion attacks is the same, similar detection
performance can be observed although the specific form of
collusion may be different. If the fingerprint is constructed
in modules such as through coding, the simple collusion
model of averaging plus additive noise can also approximate
many collusion attacks for systems where all code compo-
nents are spread over the hosting signal in such a way that
adversaries can only distort them as a whole and cannot
alter them individually [150]. On the other hand, for many
code based systems whereby various code segments of the
fingerprints are embedded in different parts of the hosting
signal, different collusion attacks may have different levels
of effectiveness [145]. We shall discuss more on this in the
next subsection.

It is worth mentioning that intra-content collusion may be
mounted against fingerprints by a single user by replacing
each segment of the content signal with another, seemingly
similar segment from different spatial or temporal regions
of the content [151]. This is particularly of concern in the
protection of video signals, whereby adjacent frames within
a scene appear very similar to each other. A basic princi-
ple to resist these attacks is to embed fingerprint sequences
based on the content of the video [152], so that similar
fingerprint sequences are embedded in frames or objects
with similar content and different fingerprint sequences are
embedded in frames with different content. A visual hash
of each frame may be employed to adjust the fingerprint
sequences [153].

It is relatively rare to see the notion of ‘‘anti-forensics’’
in the literature on embedded fingerprinting (unlike the
growing interests in anti-forensics in the context of non-
intrusive/intrinsic fingerprinting discussed in the earlier
section). This can be in part due to the fact that the consider-
ations of adversaries and attacks are often closely interwoven
into the problem formulation, such as collusion models. In
the next section, we shall also see the investigation into
analyzing adversaries’ behaviors in the context of embedded
fingerprinting.

B. COLLUSION RESISTANT CODED FINGERPRINTING
As reviewed above, a typical framework for code basedmulti-
media fingerprinting includes a code layer and a spread spec-
trum based embedding layer. A number of code designs have
been discussed in the literature and they achieve a varying
degree of collusion resilience and efficiency. Among then,
randomized codes, combinatorial design, and error correcting
codes are major representatives.

1) Marking Assumptions and Random Codes
An early work on designing collusion-resistant binary finger-
print codes was presented by Boneh and Shaw in 1995 [154],
which considered the problem of fingerprinting generic data
under theMarking Assumption that governs what adversaries
can and cannot do. In this work, a fingerprint consists of a
collection of marks, each of which is modeled as a position
in a digital object and can have a finite number of different
states. A mark is considered detectable when a coalition of
users does not have the samemark values in that position. The
Marking Assumption states that undetectable marks cannot
be arbitrarily changed without rendering the object useless;
however, it is considered possible for the colluding set to
change a detectable mark to any state. Under this collusion
framework, Boneh and Shaw used hierarchical design and
randomization techniques to construct c-secure codes that
are able to capture one colluder out of a coalition of up
to c colluders with high probability. Interested readers may
refer to [129] for an tutorial example on the construction of
c-secure codes.
The construction strategies of Boneh-Shaw codes offers

insight into fingerprinting both bitstreams and other data for
which each bit or unit is marked with a fingerprint component
in a non-overlapping manner. Improvement was introduced
in [155] to merge the low-level code with the direct sequence
spread spectrum embedding for multimedia and to extend the
Marking Assumption to account for random jamming.
Tardos’ Code is an alternative design to the Boneh-Shaw

code and has received growing attention in recent years [156],
[157]. Tardos’ code is a class of random binary codes,
whereby the ith bit follows a Bernoulli distribution with
parameter Pi that is a random variable itself symmetrically
distributed about 1/2. The key of Tardos’ code is to optimally
design the distribution for Pi and the decision functions to
process a colluded version of the code depending on the
matches and unmatches with a given user’s bit values.
Multimedia data have some unique characteristics differ-

ent from generic data, and a few fundamental aspects of
the Marking Assumption may not always hold when finger-
printing multimedia data. For example, different ‘‘marks’’ or
fingerprint symbols can be embedded in overlapped regions
of an image through spread spectrum techniques, and such
‘‘overlapped spreading’’ can make it impossible for attackers
to know and manipulate individual marks at will. As a result,
other collusion models, such as linear collusion by averaging,
should be considered for multimedia fingerprints. This has a
critical impact on designing fingerprint codes.

2) Anti-Collusion Codes for Multimedia via Joint
Combinatorial Designs and Embedding
Research in [144] explored the joint consideration of the
encoding, embedding, and detection of fingerprints for
multimedia, and developed a class of combinatorial the-
ory based codes, known as anti-collusion codes (ACC),
in conjunction with spread spectrum code modulation for
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FIGURE 14. 16-bit ACC codevectors for user 1, 4, and 8, and the fingerprinted 512 × 512 Lenna images for these three
users, respectively. The code can capture up to 3 colluders. Shown here is an example of two-user collusion by
averaging (user 1 and 4) and an example of three-user collusion by averaging. The two codes indicated by arrows in
the table uniquely identify the participating colluders. (Source: [129])

embedding. An anti-collusion code is a family of codevec-
tors for which the bits shared between codevectors uniquely
identifies groups of up to K colluding users, as the compo-
sition of any subset of K or fewer codevectors is unique. A
K -resilient AND anti-collusion code (AND-ACC) is such a
code where the composition is an element-wise AND oper-
ation. It has been shown that binary-valued AND-ACC exist
and can be constructed systematically using balanced incom-
plete block designs (BIBD) from combinatorial mathemat-
ics [144]. When two watermarks are averaged, the set of
locations where the corresponding AND-ACC agree and have
a value of 1 is unique with respect to the colluder set, and
can therefore be used to identify colluders. Fig. 14 shows
an example of a 16-bit ACC using BIBD construction, and
the collusion effect of two- and three- user collusion, respec-
tively. Another attempt at using the theory of combinatorics
to design fingerprints was made by [158], where projective
geometry was used to construct the codes.

3) Fingerprinting Based on Error Correcting Codes (ECC)
A group of coded fingerprinting extends Boneh and Shaw’s
framework and considers the construction of codeswith trace-
ability and affordable identification algorithms in terms of
computational complexity [159]. Fingerprint codes that can
be systematically constructed using well-established error
correcting codes (ECC) are of particular interests, and a large
minimum distance of the codes ensures that the fingerprint
codewords for different users are well separated [160]. The
two-level code construction from the aforementioned Boneh-
Shaw’s work was extended to incorporate ECC in [161],
which uses the orthogonal fingerprinting in the low level
and structured error correction code in the upper level to
improve the detection efficiency over the traditional single-
level orthogonal fingerprinting.

A design methodology involving ECC is to treat the sym-
bols contributed from other colluders as errors, and makes the

minimum distance between codewords large enough to tol-
erate the errors. The minimum distance requirement ensures
that the best match with a colluded codeword (referred to as
the descendant) comes from one of the true colluders. The
traceability code for resisting c colluders, or c-TA code in
short, is such an example [162]. Under the attack model by
interleaving collusion, a c-TA code can be constructed using
an ECC if its minimum distance D satisfies [162]

D > (1−
1
c2
)L (4)

where L is the code length and c is the colluder number.
As the distortions and attacks mounted by adversaries on the
fingerprinted multimedia data can lead to errors in detecting
fingerprint code symbols, these errors and erasures should
be accounted for and the above code parameter requirements
can be extended accordingly [146]. To tolerate more colluders
calls for an ECC with a larger minimum distance. As Reed-
Solomon codes have the minimum distance that achieves the
Singleton bound [163], it has been a popular choice in the
literature [146], [160], [162].
As we can see, because of a relatively small alphabet size

q compared to the number of users Nu and also owing to
one symbol being put in one non-overlapping media seg-
ment, ECC fingerprinting has the advantage of being able
to generate and distribute fingerprinted media in an efficient
way [153]. For example, for each frame of a video, a total
of q copies carrying q different symbol values can be gen-
erated beforehand. A fingerprinted copy for any user can
then be quickly obtained by assembling appropriate copies
of the frames together according to the fingerprint codeword
assigned to the user. The small alphabet size also keeps the
computational complexity of fingerprint detection lower than
the orthogonal fingerprinting approach [145].
The collusion resistance performance of a straightfor-

ward embedding of ECC-based fingerprint code is, however,
rather limited. Consider an ECC based fingerprinting system
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FIGURE 15. Fingerprint detection performance of simple ECC based fingerprinting as a function of colluder number and watermark-to-noise
ratio (WNR) under (a) interleaving collusion; (b) averaging collusion; and of orthogonal fingerprinting under (c) interleaving collusion.
(Source: [145])

employing a L-tuple code with minimum distance D over
q-ary alphabet to representNu users. Under the (symbol wise)
interleaving collusion, colluders can exploit the fingerprint
pattern and contribute segment by segment with each segment
carrying one symbol. In contrast, averaging collusion does not
rely on the fingerprint pattern and simply takes the average
value of each signal component, thus allowing each of the
L symbols from every user to leave some traces on the final
colluded signal. These two collusion attacks have different
effects on colluder detection, and can be analyzed based on
signal detection theory [145]. As illustrated in Fig. 15, the
studies have revealed a significantly lower collusion resis-
tance under interleaving collusion than that under averaging
collusion and that of orthogonal fingerprinting under either
type of collusion.

Such a drastic difference in the collusion resistance against
averaging and interleaving collusions of ECC based finger-
printing inspired an improved fingerprinting method incor-
porating randomization [145], for which the interleaving
collusion would have a similar effect to averaging collusion.
This was motivated by the observation that the segment-wise
interleaving collusion is equivalent to the symbol-wise inter-
leaving collusion on the code level, since each colluded seg-
ment comes from just one user; thus the collusion resilience
primarily relies on what is provided by the code layer and the
role from the embedding layer is minimal. The limited alpha-
bet size makes the chance for the colluders’ resulting finger-
print via interleaving becoming close to an innocent user’s
fingerprint so high that it would require a large minimum
distance in the code design if it is to be handled on the code
level alone. This means that either codes representing a given
number of users can resist only a small number of colluders,
or codes can represent only a small total number of users. On
the other hand, for averaging collusion, the embedding layer
contributes to defending against the collusion through the use
of a correlation detector. A solution to this problem builds
upon the existing code construction and performs additional
steps that are collectively refer to as Permuted Subsegment
Embedding [145]. With subsegment partitioning and permu-
tation, each colluded segment after interleaving collusion
most likely contains subsegments from multiple users, and

the added randomness makes it very difficult for colluders
to choose the resulting combinations at will. To correlation-
based detectors, this would have a similar effect to what
averaging collusion brings for which colluders’ effectiveness
is low, thus the overall collusion resistance of ECC based
fingerprinting can be significantly improved. This further
demonstrates the benefit from jointly considering fingerprint
encoding, embedding, and detection.

4) Fingerprint Multicast in Secure Streaming
As discussed earlier, there are two main issues with multime-
dia fingerprinting systems. First, collusion is a cost effective
attack, where several users (colluders) combine several copies
of the same content but embedded with different fingerprints,
and they aim to remove or attenuate the original fingerprints.
Second, the uniqueness of each copy poses new challenges
to the distribution of fingerprinted copies over networks,
especially for video streaming applications where a huge
volume of data have to be transmitted to a large number of
users. Video streaming service providers aim to reduce the
communication cost in transmitting each copy and, therefore,
to accommodate as many users as possible, without revealing
the secrecy of the video content and that of the embedded
fingerprints. The work in [164] addresses the second issue
concerning secure and bandwidth efficient distribution of
fingerprinted copies.
A simple solution of unicasting each fingerprinted copy is

inefficient since the bandwidth requirement grows linearly as
the number of users increases, and the difference between
different copies is small. Multicast provides a bandwidth
advantage for content and network providers when distribut-
ing the same data to multiple users. It reduces the overall
communication cost by duplicating packages only when rout-
ing paths to multiple receivers diverge. However, traditional
multicast technology is designed to transmit the same data
to multiple users, and it cannot be directly applied to fin-
gerprinting applications where different users receive slightly
different copies. This calls for new distribution schemes for
multimedia fingerprinting, in particular, for networked video
applications.
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FIGURE 16. User dynamics in social networks.

In spread spectrum embedding, not all coefficients are
embeddable due to the perceptual constraints on the embed-
ded fingerprints, so the values of a nonembeddable coefficient
in all copies are identical. To reduce the communication
cost in distributing these nonembeddable coefficients, a gen-
eral fingerprint multicast scheme was developed in [164]
that multicasts the nonembeddable coefficients to all users
and unicasts the uniquely fingerprinted coefficients to each
user. This scheme can be used with most spread spectrum
embedding-based fingerprinting systems. To further reduce
the bandwidth in distributing these fingerprinted coefficients,
a joint fingerprint design and distribution scheme was also
developed to multicast these shared fingerprinted coefficients
to the users in that subgroup. Such a joint fingerprint design
and distribution scheme utilizes the special structure of the
fingerprint design for higher bandwidth efficiency.

VII. BEHAVIOR/HUMAN/SOCIAL FACTORS AND
DYNAMICS IN FORENSICS
The advances of broadband networking allows efficient, scal-
able and robust distribution and sharing ofmultimedia content
over large and heterogeneous networks. The content owners,
users, as well as attackers basically form a social group or
network that interacts with each other, as illustrated in Fig. 16.
A crucial issue is to understand how users interact with and
respond to each other, and analyze the impact of human
factors on information forensics. Such an understanding pro-
vides fundamental guidelines to better the design of multi-
media systems and networking, and to offer more secure and
personalized services. Therefore, protecting digital contents
is no longer a traditional security issue with a single adver-
sary. The global nature of the Internet has enabled a group of
attackers (colluders) to work together and collectively mount

attacks to remove their fingerprints or traces of evidences.
These attacks, such as the multiuser collusion discussed in the
previous section, pose serious threats to intellectual property
rights. Analysis of the strategies, capabilities and limitations
of attackers is an indispensable and crucial part of multimedia
forensics research.

A. BEHAVIOR MODELING AND FORENSICS
In multimedia fingerprinting, different players have different
goals and they influence each otherŠs decisions and per-
formance. During collusion, attackers form a unique social
network: they share the reward from the illegal usage of
multimedia as well as the risk of being captured by the digital
rights enforcer. An agreement must be reached regarding how
to distribute the risk and the reward before collusion rela-
tionship can be established. However, each colluder prefers
the agreement that favors his or her payoff the most, and
different colluders have different preferences. To address such
a conflict, a critical issue is to decide how to fairly distribute
the risk and the reward. In addition, even if all colluders agree
on how to distribute the risk and reward, some colluders might
be selfish and wish to break away from their fair-collusion
agreement. They might cheat to their fellow attackers during
the negotiation process in order to minimize their own risk
and maximize their own payoff. On the other hand, to protect
their own interest, other colluders may want to identify selfish
colluders and exclude them from collaboration. It is important
to understand how colluders negotiate with each other to
achieve fairness of the attack and study the cheating and
cheat-proof strategies that colluders may adopt to maximize
their own payoff and protect their own interest.
To maximize their own payoff, users should observe and

learn how others play the game and adjust their own strategies
accordingly. For example, to maximize the traitor-tracing
capability, the digital rights enforcer should explore and uti-
lize as much knowledge about collusion as possible when
designing the fingerprints and identifying the colluders. Here,
analyzing the colluder dynamics, especially the investigation
on how attackers achieve fairness of collusion, provides the
digital rights enforcer with important insights on how to probe
and use such side information about collusion. Therefore,
another important issue in behavior modeling is to understand
the techniques that users can use to probe information about
how others play the game, study how they adjust their strate-
gies accordingly to maximize their own payoff, and analyze
the impact of side information onmultimedia social networks.

B. FAIRNESS DYNAMICS
Taking the view point of users who take part in collusion, we
see that by contributing their own resources and cooperating
with each other, colluders are able to access extra resources
from their peers and thus receive rewards. Each user aims
to maximize his or her own payoff and different users have
different (and often conflicting) objectives. To address this
conflict, an important issue is to investigate users’ strategies
to achieve a notion of fairness [165].

VOLUME 1, 2013 191



C. STAMM et al.: Information Forensics

FIGURE 17. Two solutions of collusion in scalable multimedia fingerprinting.

Colluders receive rewards from the illegal usage of multi-
media content, for example, the profit from the unauthorized
redistribution of copyrighted materials. They also take the
risk of being captured by the digital rights enforcer, which
can be considered as the colluders’ ‘‘cost’’ by participating
in collusion. The notion of equal-risk absolute fairness is
widely adopted in the literature, where all colluders agree
to share the same risk and have equal probabilities of being
detected. When all colluders receive fingerprinted copies of
the same resolution, a simple average of all copies with equal
weights reduces the energy of each contributing fingerprint
by the same ratio, and it as well ensures the equal risk of all
attackers.

When colluders receive fingerprinted copies of different
resolutions, it is much more complicated to guarantee the
equal risk of all colluders, especially when colluders wish
to generate a colluded copy of higher resolution. For the
example with three colluders, Alice, Bob and Carl, who
receive fingerprinted copies of different resolutions, a pos-
sible solution of collusion was shown in Fig. 17(a), where the
colluded copy includes all three layers. Here, the colluders
average the three base-layer copies that they have with equal
weights 1/3; for the enhancement layer 1, they average the
two copies from Bob and Carl with equal weights 1/2; and the
colluded copy’s enhancement layer 2 equals to that in Carl’s
copy. Therefore, in the colluded copy, the three fingerprints
corresponding to the three attackers have the same energy
in the base layer, while the enhancement layers contain only
Bob and Carl’s fingerprints and not the fingerprint identifying
Alice. It is obvious that among the three, Carl has the largest
probability of being caught and Alice takes the smallest risk.
Consequently, the collusion in Fig. 17 (a) does not achieve
equal-risk fairness.

Fig. 17(b) shows another possible solution, where the col-
luded copy contains the base layer only. Here, the colluders
average the three copies of the base layer with equal weights
1/3. In this example, the fingerprints corresponding to the
three attackers have the same energy in the colluded copy
and, therefore, the three attackers have the same probability of
being detected. Although the collusion in Fig. 17(b) ensures
equal-risk fairness, the attacked copy has a low resolution.

FIGURE 18. The intra-group and the inter-group collusion attacks.

Now the question is: when there is a difference in the
resolution of fingerprinted copies due to network and device
heterogeneity, how can colluders establish fair multiuser col-
lusion that guarantees the collective equal risk among all
attackers while still generating an attacked copy of high
resolution? A possible solution is shown in Fig. 18. In the
base layer of the colluded copy, the three copies are assigned
different weights β1, β2 and β3, respectively. Similarly, the
enhancement layer 1 in the colluded copy is the average of
Bob and Carl’s copies with weights α1 and α2, respectively.
The colluders simply copy the enhancement layer 2 in Carl’s
copy to the colluded copy. To achieve fairness of collusion,
Alice, Bob and Carl select the collusion parameters {αk , βl}
such that they have the same probability of being detected.

C. GAME-THEORETIC MODELING OF COLLUDER
DYNAMICS
Equal-risk absolute fairness only considers each colluder’s
risk and ensures that all colluders have the same probability of
being detected. During collusion, colluders not only negotiate
how to distribute the risk but also bargain how to share the
rewards from the illegal usage of multimedia. In addition,
rather than absolute fairness, colluders may prefer other ways
to distribute the risk and the reward. For example, some
colluders may want to benefit more from collusion by taking
a higher risk of being detected. In [166], [167], this com-
plex dynamics was modeled as a bargaining problem where

192 VOLUME 1, 2013



C. STAMM et al.: Information Forensics

colluders negotiate with each other to resolve the conflict,
and game theory [168] was used to analyze this negotiation
process.

In this game-theoretic framework, colluders first define the
utility (payoff) function π , which is a function of a colluder’s
risk as well as the reward that he or she receives from collu-
sion. A natural definition of the utility function is the expected
payoff that a colluder receives by participating in collusion.
For colluder u(i), his or her utility can be given by

π (i)
= −P(i)s L

(i)
+ (1− P(i)s )Rw(i) (5)

where P(i)s is his or her probability of being detected, L(i) is
colluder u(i)’s loss if he or she is captured by the fingerprint
detected, and Rw(i) is the reward that u(i) receives if he or
she successfully escapes being detected. Each colluder tries
to maximize his or her own utility function during the nego-
tiation process.

Without loss of generality, we use a two-layer multimedia
fingerprinting example to demonstrate how colluders bargain
during collusion. We assume that there are a total of 250 col-
luders, among which 80 attackers receive the low-resolution
copies and the rest have the high-resolution version. For sim-
plicity, we consider a scenario where colluders who receive
fingerprinted copies of the same resolution agree to share the
same risk and have equal utilities. Therefore, colluders who
receive the low-resolution copies act as a single player in the
game and they have the same utility πb; while colluders who
have the high-resolution copies act as a single player during
the bargaining process and they have the same utility πbe.
The second step in the bargaining process is to find the

feasible set S = {(πb, πbe) ∈ R2
} of the game, where for

every (πb, πbe) ∈ S, it is possible for colluders to act together
and obtain the utilities πb and πbe, respectively. For the above
mentioned colluder game, Fig. 19 shows the feasible set,
which is the curveAB plus the line BC. Note that if colluders
select a solution that corresponds to one point on the line BC,
then they can always find another solution that gives the same
πbe but a larger πb. Therefore, in a bargaining situation like
this, colluders would always like to settle at a Pareto-Optimal
point, where no one can further increase his or her utility
without decreasing others’. In Fig. 19, the Pareto-Optimal set
includes solutions that correspond to the points on the curve
AB.

Depending on their definition of fairness and their objec-
tives of collusion, colluders select different collusion strate-
gies. For example, with equal-payoff absolute fairness, col-
luders select the point where πb = πbe and let all attackers
have the same utility. Colluders can also select the collusion
parameters to maximize the minimum utility that a colluder
can receive by participating in collusion, that is,

π∗ = max
β

min{πb, πbe} (6)

where β is the collusion parameter in Fig. 18. This solution
guarantees that by participating in collusion, a colluder can
receive at least π∗ utilities. The maxsum solution maximizes

FIGURE 19. An example of the feasible set and different solutions of the
colluder game. The X axis is the utility of colluders who receive the
high-resolution copies, andthe Y axis is the utility of colluders who
receive the low-resolution copies.

the sum of all attackers’ utilities if they cooperate with each
other during collusion. Another popular solution in game
theory is the famous Nash Bargaining Solution (NBS), which
aims to achieve proportional fairness. It divides the addi-
tional utility between the two players in a ratio that is equal
to the rate at which this utility can be transferred [168].
Mathematically, the Nash Bargaining Solution maximizes

g(πb, πbe) =
(
πb − πb∗

) (
πbe − πbe∗

)
,

where πb∗ = min
β
{πb} and πbe∗ = min

β
{πbe}. (7)

Different collusion strategies correspond to different points
in the Pareto-Optimal set. In the example shown in Fig. 19, the
equal-payoff absolute fairness and the maxmin strategies give
the same result, while the maxsum and the Nash Bargaining
solutions favor colluders who receive the high-resolution fin-
gerprinted copies more.

D. RELATED WORKS
Among the collusion attackers, it is necessary to give each
other correct information about their own resources to achieve
fairness. However, the assumption of fair playmay not always
hold. Although they might agree so, some users might be
selfish and wish to maximize their own payoff. To achieve
this goal, they might break away from their agreement and
cheat to other users during the bargaining process. To improve
the overall system performance, it is important to study the
cheating and cheat-proof dynamics among users and inves-
tigate the selfish colluders’ cheating strategies, and design
cheat-proof mechanisms. In [169], multiuser collusion is used
as an example to understand the colluders’ cheating and
cheat-proof strategies and study the ‘‘traitor-within-traitor’’
problem. It formulated the dynamics among attackers and
understand their behavior to minimize their own risk and
protect their own interests. It also explored some possible
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strategies that a selfish colluder can use to minimize his or
her probability of being caught. It was shown that processing
his or her fingerprinted copy before multiuser collusion helps
a selfish colluder further lower his or her risk, especially when
the colluded copy has high resolution and good quality. The
optimal precollusion processing strategies were considered
for selfish colluders to minimize their risk under the quality
constraints.

Another work [170] investigated human behavior dynam-
ics in multimedia social networks with side information. Side
information is information other than the colluded multime-
dia content that can help increase the probability of detection.
It showed that the statistical means of the detection statistics
can help the fingerprint detector significantly improve the
collusion resistance. It then investigated how to probe the side
information and model the dynamics between the fingerprint
detector and the colluders as a two-stage extensive game
with perfect information. By modeling the colluder-detector
behavior dynamics as a two-stage game, it found the equi-
librium of the colluder-detector game using backward induc-
tion. Additionally, it showed that the min-max solution is a
Nash equilibrium which gives no incentive for anyone in the
multimedia fingerprint social network to deviate. This work
demonstrated that side information can significantly help
improve the system performance so that it is almost the same
as the optimal correlation-based detector. This result opens up
a new paradigm in fingerprinting system research: given any
fingerprint code, leveraging side information can improve the
collusion resistance. It also provided the solutions to reach
optimal collusion strategy and the corresponding detection,
thus lead to a better protection of the multimedia content.

As we understand now that each user wants to maximize
his or her own payoff, and they negotiate with each other
to achieve fairness and address this conflict. However, as we
discussed before, some selfish users may cheat their peers and
manipulate the system to maximize their own payoffs. Cheat
prevention is a critical requirement inmany social networks to
stimulate user cooperation. It is of ample importance to design
monitoring mechanisms to detect and identify misbehav-
ing users and to design cheat-proof cooperation stimulation
strategies. Using video fingerprinting as an example, the work
in [171] analyzed the complex dynamics among colluders
during multiuser collusion, and explored possible monitoring
mechanisms to detect and identify misbehaving colluders
in multiuser collusion. It considered two types of colluder
networks to investigate the impact of network structures on
misbehavior detection and identification. One has a central-
ized structure with a trusted ringleader, while the other is a
distributed peer-structured network. The work showed how to
accurately identify selfish colluders without falsely accusing
others even under attacks. It also evaluated their robustness
against framing attacks and quantified the maximum number
of framing colluders that they can resist.

The work in [172] considered human factors from a social
networking viewpoint, and provided an overview on how to
effectively model, analyze, and perform behavior forensics.

Various examples of media security and content protection
are illustrated in a tutorial manner.

VIII. FINAL THOUGHTS AND FUTURE DIRECTIONS
From the above discussion, the concepts of information foren-
sics have found their way into many applications, ranging
from tampering detection, to origin tracking and provenance,
to space-time localization. In addressing information foren-
sics questions, the research community so far has mainly
relied on empirical testing by individual research groups
to demonstrate and compare performances of some specific
techniques, often with a small-scale dataset put together in an
ad-hoc way. There is little understanding of how to quantita-
tively address fundamental performance tradeoffs and limits,
for no ‘‘theory on forensics’’ has been established yet.
It is essential to establish fundamental theories governing

the science of forensics. These include introducing the notion
of ‘‘forensicability’’ for devices, channels, and processing
systems along an information processing chain. Detection
theory, classification theory, and machine learning theory
can be utilized to formalize the foundation of forensic anal-
ysis for different configurations and combinations of such
a chain of processing. Theories on forensicability can pro-
vide the community an unprecedented yet very fundamental
understanding toward what individual or combinations of
device/channel/processing can or cannot be inferred forensi-
cally and why, and what fundamental performance limits are.
There is a need to develop a clear definition what foren-

sicability should be and establish a theoretical notion of
forensicability from both detection and estimation theory and
pattern recognition points of view. Furthermore, there is a
need to apply performance analysis to representative forensic
scenarios, develop a validation framework, and investigate
fundamental performance limits. Such fundamental research
will foster systematic development of the young field of
information forensics.
As we have seen, to perform forensic analysis, one must

start with discovering some traces of evidence. We have
reviewedmany examples of invisible traces of evidence left in
multimedia signals and documents as they go through various
operations and devices, and these intrinsic fingerprints have
shown strong promise to provide powerful forensic evidence
regarding the history and provenance of digital content. But
how useful and trustworthy are these forensic traces? Can we
measure these quantities and their certainty or uncertainty?
Take component forensics, which was discussed in

Section III, as an example. The fact that we can infer the
algorithms and their parameter settings inside a device simply
from the device outputs also motivates us to ask a series of
fundamental questions: Is it possible to extend the developed
methodology to perform forensic analysis on other important
components as well? If there are multiple components, can
we identify them all together? For a chain of processing
components inside, are they equally identifiable from the
output? Or is there any fundamental identifiability limit due
to the order of processing? Can identifying multiple com-
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ponents improve the accuracy and confidence in the overall
forensic conclusion? If so, how should we perform forensic
fusion from the results of multiple components? How much
performance improvement can one expect and what is the
performance limit if one can perform semi non-intrusive
forensics with controlled inputs? Some preliminary effort was
made along this line by formulating ‘‘forensicability’’ using
parameter estimation and pattern classification theories [175],
[176]. Still, there is a very limited theoretical foundation for
the emerging field of information forensics to answer many
fundamental questions listed above. As such, the research
community needs to confront the challenges to build a solid
theoretical foundation for the further advancement.

Furthermore, it is necessary to consider all possible uses of
forensic technologies. As we have seen in Section III, compo-
nent forensic techniques can make use of device fingerprints
to learn which processing algorithms and parameters are used
by digital devices. In addition to serving as useful tools for
verifying the authenticity of a signal, these techniques can
also potentially be used to reverse engineer a digital device.
For the applications that require the protection of proprietary
signal processing algorithms inside digital devices, it is crit-
ical to develop countermeasures to prevent the undesired use
of forensics by other parties.

One potential solution to this problem lies in anti-forensics.
Since anti-forensic operations are capable of fooling forensic
techniques, it is possible to protect against forensic reverse
engineering by integrating anti-forensic operations into a dig-
ital device. Proof-of-concept explorations of this idea have
been made recently in the case of digital cameras [80], [173].
These are being motivated by component forensic techniques
described in Section III that are capable of identifying and
estimating the color interpolation algorithms used by different
digital cameras. Since such interpolation algorithms are often
proprietary, camera manufacturers may wish to prevent other
parties from reverse engineering these techniques using com-
ponent forensics. By incorporating an anti-forensic module
into a camera’s processing pipeline (including for example,
nonlinear filtering, resizing to alter an image’s sampling grid,
and/or perturbation in a camera’s interpolation parameters),
component forensic techniques can be potentially subverted,
although care must be taken to balance the tradeoff between
anti-forensic protection and visual quality.

Additionally, as technology progresses, new digital devices
and signal processing techniques continue to emerge. To keep
pacewith the rapid advancement of technology, it is necessary
to identify the forensic fingerprints that these new processing
techniques and devices leave behind. For example, com-
pressive sensing has recently emerged as a new method for
acquiring and reconstructing sparse signals at rates below the
Nyquist rate. Although sparse signals acquired by compres-
sive sensing can in theory be perfectly reconstructed, many
signals in practice are not perfectly sparse or are corrupted
by noise. The unique distortions introduced into these signals
can be used as fingerprints of compressive sensing [174].
Since such intrinsic fingerprints of compressive sensing can

be mistaken by existing forensic techniques as that of regular
compressions, identifying compressive sensing is a critical
step in tracing a signal’s processing history [174]. Further-
more, as compressive sensing is integrated into new devices,
identifying the use of compressive sensing may become an
important step in determining which device captured a digital
signal. This is just one example illustrating the importance
of identifying forensic traces left by new and emerging tech-
nologies.
We also see a recent trend in drawing synergy between

intrinsic and extrinsic techniques through building a ‘‘foren-
sic hash’’ [177], [178]. Sending a hash in a file header or
through a secondary channel can be viewed as an extrin-
sic technique in a broad sense, and the hash conventionally
provides a binary integrity decision on the data being trans-
mitted. This is no longer sufficient once a data stream may
be transcoded in various ways. As reviewed in this paper,
while significant progress has been made into developing
intrinsic forensic techniques, the computational complexity
to address a broad range of forensic questions is still quite
high in general. The forensic hash framework aims at utilizing
a strategically designed compact string and an associated
decision mechanism to go beyond traditional hashes’ binary
integrity answer. This can help address forensic questions
more efficiently and accurately than intrinsic approaches
alone. One demonstration in [179] is to construct an align-
ment component of the hash to facilitate the determination of
complex geometric changes between an image under question
and the original ground-truth. This approach works hand-in-
hand with additional hash components to identify texture or
object changes and possibly reconstruct the original version
of the image. More generally, the cross fertilization between
conventionally distinct classes of solutions may open up new
opportunities for advancing information forensics in the years
to come.
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