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Abstract—As the use of digital images has become more
common throughout society, both the means and the incentive to
create digitally forged images has increased. Accordingly, there
is a great need for methods by which digital image alterations
can be identified. In this paper, we propose several techniques
for identifying digital forgeries by detecting the unique statistical
fingerprints that certain image altering operations leave behind
in an image’s pixel value histogram. Specifically, we propose
methods to detect the global and local application of contrast
enhancement and to detect the addition of noise to a previously
JPEG compressed image. These methods are tested through a
number of experiments, and results showing the effectiveness of
these algorithms are discussed.

I. I NTRODUCTION

In recent years, digital images have become increasingly
prevalent throughout society. Many governmental, legal, sci-
entific, and news media organizations rely on digital images
to make critical decisions or to use as photographic evidence
of specific events. This proves to be problematic, as the riseof
digital images has coincided with the widespread availability
of image editing software. At present, it is not difficult for
an image forger to alter a digital image in a visually realistic
manner. To avoid both embarrassment and legal ramifications,
many of these organizations now desire some means of iden-
tifying image alterations so that the authenticity of a digital
image can be verified. As a result, the field of digital image
forensics has been born.

One of the primary goals of digital image forensics is
the identification of images and image regions which have
undergone some form of manipulation or alteration. Because
of the ill-posed nature of this problem, no catchall method
of detecting image forgeries exists. Instead, a number of
techniques have been proposed to identify image alterations
under a variety of scenarios. While each of these methods
possess their own limitations, it has been posited that if a large
set of forensic methods are developed, it will be difficult for a
forger to create an image able to fool all image authentication
techniques [1].

Previous image forensic work has dealt with the identifica-
tion of computer generated objects within an image [2] as well
as detecting lighting angle inconsistencies [3], [4]. Classifier
based approaches have been proposed which identify image
forgeries using a variety of statistical features [5], [6],[7].
While these methods are able to test for the use of a variety

of image manipulating operations, they suffer the drawbackof
requiring training data to perform classification.

One set of digital forensic techniques aimed at detecting
image tampering has grown out of research into imaging
device identification. Forensic imaging device identification
methods attempt to determine the type of device used to
capture an image, ascertain the device manufacturer or model,
and identify the particular imaging device used. These methods
generally perform identification by estimating some device
specific parameter such as color filter array (CFA) interpo-
lation coefficients or sensor noise. Image forgery detection
techniques have been proposed which operate by locating
inconsistencies in these parameters [1], [8], or by using these
parameters to estimate a tampering filter [9], [10], [11]. While
these techniques are quite effective, they suffer the drawback
of requiring either access to the imaging device, knowledge
of the forensically significant device parameter, or accessto a
training database of images from which the device parameter
can be inferred.

It is important to note that most image altering operations
leave behind distinct, traceable “fingerprints” in the form
of image distortions. Because these fingerprints, which can
be deterministic or statistical in nature, are often unique
to each operation, an individual test to catch each type of
image manipulation must be designed. While detecting image
forgeries using these techniques requires performing a large
set of operation-specific tests, these methods enjoy the benefit
of requiring no knowledge of a device specific parameter or
training data from the device used to generate the image in
question. Instead, these methods operate on the premise that
the only information available is the image in question itself.

Prior work which identifies image tampering by detect-
ing operation specific fingerprints includes the detection of
resampling [12], double JPEG compression [13], [14], [15],
as well as the parameterization of gamma correction [16].
Methods for detecting image forgeries have been proposed
by detecting local abnormalities in an image’s signal to noise
ratio [13]. Inconsistencies in chromatic abberation [17] as well
as the absence of CFA interpolation induced correlations [18]
have been used to identify inauthentic regions of an image.
Additionally, the efficient identification of copy and move
forgeries has been studied [19], [13].

In this work, we propose a set of image forgery detection
techniques which operate by detecting tampering fingerprints



in the form of statistical artifacts left in an image’s pixel
value histogram. By identifying the forensically significant
properties of an unaltered image’s pixel value histogram, we
are able to identify the distinct fingerprints that each operation
considered leaves behind. Specifically, we propose methodsfor
detecting globally and locally applied deterministic contrast
enhancement, as well as a method the global addition of
noise to a previously JPEG compressed image. While much
of this work focuses on detecting operations which alter the
perceptual qualities of an image as opposed to its content,
detecting these types of manipulations are still forensically
significant. Operations such as contrast enhancement may be
locally applied to disguise visual clues of image tampering.
Localized detection of these operations can be used as evi-
dence of cut and paste type forgery. Additive noise may be
globally applied to an image not only to cover visual evidence
of forgery, but also in an attempt to destroy forensically
significant indicators of other tampering operations. Though
the detection of these types of operations may not pertain
to malicious tampering, they certainly throw in doubt the
authenticity of the image and its content.

This paper is organized as follows. In Section II, we describe
the forensically significant qualities of an unaltered image’s
pixel value histogram. We describe our proposed contrast
enhancement detection techniques in Section III. Included
are methods for detecting both globally and locally applied
contrast enhancement.We develop a method for detecting the
addition of noise to a previously JPEG compressed image in
Section IV. Experiments designed to test the efficacy of each
forensic scheme as well as simulation results are discussed
after each detection method is proposed. We conclude this
paper in Section V.

II. SYSTEM MODEL AND ASSUMPTIONS

In this work, we consider digital images created by using
an electronic imaging device to capture a real world scene.
We adopt the following model of the digital capture process.
Each pixel is assigned a value by measuring the light intensity
reflected from a real world scene onto an electronic sensor over
the area pertaining to that pixel. Inherent in this process is the
addition of some zero mean sensor noise which arises due to
several phenomena including shot noise, dark current, and on-
chip amplifier noise [20]. For color images, it is often the case
that the light passes through a color filter array so that only
one color component is measured at each pixel location in this
fashion. If this is the case, the color components not observed
at each pixel are determined through interpolation. At the end
of this process, the pixel values are quantized, then storedas
the unaltered image.

When analyzing a digital image, a histogramh(l) of the
color or gray level valuesl recorded at each pixel can be
generated by creatingL equally spaced bins which span the
range of possible pixel values, then tabulating the number of
pixels whose value falls withing the range of each bin. Unless
otherwise specified, we will hereafter assume that all colorand
gray level values lie in the set of integers between 0 and 255,

Fig. 1. Image sampling effects example.

and that all pixel value histograms are calculated using 256
bins so that each bin corresponds to a unique pixel value. We
model all pixel value histograms as satisfying the following
smoothness assumption; the entries of a pixel value histogram
approximately conform to a smooth, low frequency envelope.
It is worth explicitly noting that our model assumes thath(l)
contains no isolated spikes and that ifh(l) ≫ 0, thenh(l −
1) 6= 0 andh(l + 1) 6= 0.

To justify our histogram model consider the simple case of
imaging a real world scene consisting of two distinct color
regions shown in Fig. 1. Instinctively, we might assume that
the pixel value histogram of this image would consist of
zeros everywhere except for two spikes located at the values
corresponding to the colors present in the real world scene.
Such a histogram would obviously violate our smoothness
assumption. In this scenario, the border between the color
regions does not align with the pixel boundaries on the sensor
of the imaging device. Many pixels lying along the color
border correspond to sensor areas containing both colors. The
resulting values of each of these pixels will lie in the convex
hull of the values corresponding to each of the two real
world colors. The introduction of these new pixel values will
effectively ‘smooth out’ the pixel value histogram.

Due to the complexity of real world scenes, it is exceed-
ingly unlikely that the all color borders in an image will
align directly with the pixel borders on an imaging device’s
sensor. Because of this, the effect described above should
be present in virtually all real world images. Furthermore,
additional factors contribute to the ‘smoothness’ phenomena.
The complex nature of most natural and man-made lighting
environments rarely result in a real world scene consistingof
several distinct colors with no shading. Instead, a continuum
of colors and illumination levels normally exist. Furthermore,
the presence of observational noise will slightly change the
value of several pixels during the image capture process, thus
further smoothing the histogram.

III. D ETECTING CONTRAST ENHANCEMENT

In this section, we present a set of techniques designed
to forensically detect the application of contrast enhancing
operations to an image. While the detection of gamma cor-
rection has been previously examined [16], [13], this work
assumes that the specific type of contrast enhancement which



may have been applied is known to the forensic examiner and
that the contrast enhancement mapping can be described by
a simple parametric equation. Here, we present a detection
approach which can be used to detect more general con-
trast enhancement operations and which requires no a priori
knowledge of the form of contrast enhancement potentially
applied. We begin by discussing a method for detecting the
global application of contrast enhancement [21]. We then adapt
this scheme into one which can detect the local application
of contrast enhancement and discuss how it can be used to
detect cut and past forgeries in certain scenarios. Additionally
we present a method for identifying the use of histogram
equalization, a specific form of contrast enhancement.

A. Detection of Globally Applied Contrast Enhancement

Contrast enhancement operations seek to increase the dy-
namic range of pixel values in an image. For a deterministic
globally applied contrast enhancement operationTce(l), a
nonlinear transformationf(l) is applied to each pixel valuel,
then quantization is performed so that all pixel values lie in the
allowable set. When coupled with the smoothness restriction
placed on an image’s pixel value histogram, the interaction
between the nonlinear mapping used in each operation and
quantization will leave behind a detectable statistical artifact.

A nonlinear mapping can be separated into regions where
the mapping is locally contractive or expansive. For some
distance measured(·) such as the Euclidean distance, a
mapping f is contractive if d(f(u), f(v)) < d(u, v) and
expansive if d(f(u), f(v)) > d(u, v). When followed by
quantization, the contractive regions in a contrast enhancement
mapping can cause multiple unique input pixel values to be
mapped to the same output value. This will result in the
presence of an isolated peak in the histogram of the contrast
enhanced image. Similarly, expansive regions in the contrast
enhancement mapping can cause adjacent pixel values to be
mapped one or more values apart, resulting in sudden gaps
in the histogram of the enhanced image. These effects can
be clearly seen in the top two plots of Fig. 2, which show
the histogram of an image before and after it has undergone
contrast enhancement.

Because of the smoothness restriction placed on the pixel
value histograms of digital images, the peaks and gaps present
in a contrast enhanced image’s histogram are statistical arti-
facts of contrast enhancement which can be used to perform
detection. These artifacts are particularly discernible when
examining the frequency domain representation of an image’s
histogram. For an unaltered image, the discrete Fourier trans-
form (DFT) of its pixel value histogramH(k) should be a
strongly low pass signal. The impulsive nature of the contrast
enhancement artifacts present in an altered image’s histogram,
however, will result in the presence of a significant high
frequency component inH(k). The bottom two plots of Fig.
2 show the frequency domain representations of the histogram
of a typical image before and after it has undergone contrast
enhancement.
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Fig. 2. Pixel value histogram of (a) an unaltered image and (b)the same image
after contrast enhancement has been performed, as well as the magnitude of
the DFT of (c) the unaltered image’s histogram and (d) the contrast enhanced
image’s histogram.

While we expectH(k) to be strongly low pass for unaltered
digital images, there does exist one legitimately occurring
phenomena which may violate this assumption. Consider the
case of imaging a scene containing a bright background, such
as the sky in the image shown in Fig. 3. In such a case, the
light intensities recorded at pixels corresponding to the bright
regions of the image may lie well above the cutoff for the
highest quantization level. This will cause a substantial number
of pixels to be assigned the value 255, thus creating impulsive
spike in the image’s pixel value histogram and adding a
DC offset to H(k). We refer to images which exhibit this
behavior ashigh end histogram saturated images. Similarly,
when capturing very dark scenes, a large number of pixels
may be assigned the value 0, resulting in an impulsive spike
at the low end of an image’s histogram and the addition of a
DC offset toH(k). While this phenomena, which we refer to
as low end histogram saturation, is less likely to arise due to
the presence of sensor noise, we have observed it in several
unaltered images.

We propose a detection scheme which operates by mea-
suring the strength of the high frequency portions ofH(k),
then comparing it to a threshold to determine if contrast
enhancement has been performed. To mitigate the effects of
high end and low end histogram saturation, we first obtain
a modified histogramg(l) free from saturation effects by
performing the elementwise multiplication betweenh(l) and
a ‘pinch off’ function p(l) so that

g(l) = p(l)h(l). (1)
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Fig. 3. Top: Image exhibiting high end histogram saturation.Bottom Left:
Histogram of the image’s green pixel values. Bottom Right: Magnitude of the
DFT of the image’s green pixel value histogram.

The pinch off function, defined as

p(l) =
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1 else

(2)

is designed to remove any impulsive components inh(l) which
may legitimately arise due to saturation effects, as well as
minimize the frequency domain effects of multiplyingh(l) by
p(l), which behaves similar to a windowing function. In (2),
Np is the width of the region over whichp(l) decays from 1
to 0.

We useg(l) to calculate a normalized measure of the energy
in the high frequency components of the pixel value histogram
F according to the formula

F =
1

N

∑

k

|β(k)G(k)| (3)

whereN is the total number of pixels in the image,G(k) is
the DFT ofg(l), andβ(l) is a weighting function which takes
values between 0 and 1. The purpose ofβ(l) is to deemphasize
low frequency regions ofG(l) where nonzero values do not
necessarily correspond to contrast enhancement artifacts. In
this work, we use the simple cutoff function

β(k) =

{

1 c ≤ k ≤ 128
0 else

(4)

wherec is the entry of the 256 point DFT corresponding to
a desired cutoff frequency.β(k) is zero for all values greater
than k = 128 because symmetry properties inherent in the
DFT of real valued signals make it unnecessary to measure
these values.

After F has been calculated, the decision ruleδce is used
to classify an image as unaltered or contrast enhanced, such
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Fig. 4. Additional contrast enhancement mapping used.

that

δce =

{

image isnot contrast enhancedF < ηce

image is contrast enhanced F ≥ ηce
(5)

To test the performance of our global contrast enhancement
detection algorithm, we first compiled a database of 341
unaltered images consisting of many different subjects and
captured under varying light conditions. These images were
taken with several different cameras and range in size from
1500 × 1000 pixels to 2592 × 1944 pixels. To simplify our
testing process, we used the green color layer of each of these
images to form a set of unaltered grayscale images. Next,
we created a set of contrast enhanced grayscale images by
applying the power law transformation

T (l) = 255

(

l

255

)γ

(6)

to the pixel values of each of the unaltered grayscale images.
This process was repeated for a variety ofγ values ranging
from 0.5 to 2.0, and the resulting images were saved as
bitmaps. Additionally, contrast enhancement was performed
on the unaltered images using the mapping displayed in Fig.
4 so that our database would include images which had un-
dergone a nonstandard contrast enhancement transformation.
The unaltered images were then combined with the contrast
enhanced images to form a test database of 4092 grayscale
images.

In order to choose an appropriate value of the cutoff
parameterc for a large scale evaluation of our algorithm,
we first conducted a small scale test using only unaltered
images and those that had been altered usingγ = 0.6.
Each image was classified as unaltered or contrast enhanced
by our detection scheme using values ofc corresponding to
angular frequencies ranging fromπ4 to 7π

8 and withNp = 4.
The probabilities of detectionPd and false alarmPfa were
determined for a series of decision thresholdsη by respectively
calculating the percent of contrast enhanced images correctly
classified and the percent of unaltered images incorrectly
classified. This information was used to generate the series
of receiver operating characteristic (ROC) curves displayed in
Fig. 5(a). The best performance was achieved forc = 112,
which corresponds to the angular frequency7π

8 . Furthermore,
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Fig. 5. Contrast enhancement detection ROC curves for images altered by a power law transformation with (a)γ = 0.6 using several values of the cutoff
parameterc, (b) 2.0 ≥ γ ≥ 1.2, and (c)0.5 ≥ γ ≥ 0.9 as well as the mapping displayed in Fig. 4.

our detection algorithm’s performance improved as the value
of c was increased. This supports our assertion thath(l)
is a strongly lowpass signal and that contrast enhancement
introduces into it an artificial high frequency component.

After choosing c = 112 in accordance with the results
of our small scale experiment, we then used our contrast
enhancement detection scheme to classify each image in the
test database as unaltered or contrast enhanced. The detection
and false alarm probabilities were then calculated for each
type of contrast enhanced images in our database. A series of
ROC curves, shown in Figs. 5(b) and (c), were generated to
evaluate the performance of our detection algorithm. As can
be seen in Fig. 5, our global contrast enhancement detection
scheme performed very well against each of the forms of
contrast enhancement included in our test database. It is worth
explicitly noting that in each case, aPd of 0.99 was achieved
at aPfa of approximately 0.03 or less.

B. Detection of Locally Applied Contrast Enhancement

The technique developed in Section III-A can be extended
into a method that can be used to locate regions in an
image to which contrast enhancement has been locally applied.
Locally applied contrast enhancement can be modeled as the
application of a nonlinear deterministic contrast enhancement
mapping to the values of a contiguous set of pixelsJ within an
image. Provided that the number of pixels inJ is sufficiently
large, a pixel value histogram ofJ should exhibit the same
behavior as the histogram of a globally contrast enhanced
image. The identification of localized contrast enhancement
within an image can be performed by selecting a set of pixels
J ′ comprising a region of interest, then applying the test
discussed in Section III-A to the pixel value histogram ofJ ′.

In some scenarios, a forensic examiner may wish to in-
vestigate a particular region within an image for evidence of
contrast enhancement. In such cases, the testing setJ ′ can
be specified manually. It is more likely, however, that the
entire image must be examined for evidence of local contrast
enhancement. To accomplish this, the image can be segmented
into fixed sized blocks, where each block constitutes a separate
region of interest. Detection can then be performed on each

block individually and the results can be aggregated to iden-
tify image regions which exhibit evidence of locally applied
contrast enhancement.

In this technique, it is critical that the testing blocks are
of sufficient size to yield a forensically useful histogram
for contrast enhancement detection. If the blocks are too
small, they may not contain enough pixels for the smooth
histogram model to hold valid. In order to determine which
block sizes are sufficient to perform reliable detection and
examine the effectiveness of the local contrast enhancement
detection scheme, the following experiment was performed.
The unaltered images from the test database described in
Section III-A along with the power law transformed images
corresponding toγ = 0.5 through 0.9 were each segmented
into square blocks. This process was performed for blocks of
size 200 × 200, 100 × 100, 50 × 50, 25 × 25, and 20 × 20
pixels. Each block was then classified as contrast enhanced or
unaltered using our contrast enhancement detection scheme.
False alarm and detection probabilities were determined for
each value ofγ at all block sizes by calculating the percent of
incorrectly classified unaltered blocks and the percent of cor-
rectly classified contrast enhanced blocks respectively. Aset
of ROC curves, shown in Fig. 6 were then generated showing
the detector performance for each block size considered.

The ROC curves shown in Fig. 6 indicate that local contrast
enhancement can be reliably detected using testing blocks
sized least100 × 100 pixels. At a Pfa of approximately
5%, a Pd of at least 95% was achieved using200 × 200
pixel blocks and aPd of at least 80% was achieved using
100×100 pixel blocks for each form of contrast enhancement
tested. These results improved markedly when the contrast
enhancement applied was stronger than the relatively mild
power law transformation usingγ = 0.9. In such cases, a
Pd of roughly 98.5% and 96% was achieved with aPfa

of aproximatley 5% for blocks sized200 × 200 pixels and
100 × 100 pixels respectively. It should also be noted that
testing blocks sized25 × 25 pixels and smaller appear to
contain an insufficient number of pixels to perform reliable
contrast enhancement detection.

In many situations, the detection of locally applied contrast
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Fig. 6. ROC curves obtained using different testing block sizes for images
altered by a power law transformation withγ = 0.5 (top), γ = 0.7 (middle),
andγ = 0.9 (bottom).

enhancement is of greater forensic significance than the detec-
tion of its globally applied counterpart. One common scenario
of particular importance is when contrast enhancement is
coupled with cut and paste forgery. During cut and paste
forgery, a forger creates a composite imageIf using two
separate imagesI1 and I2. To accomplish this the forger
replaces a set of pixelsJ1 in I1 with a contiguous set of
pixels J2 corresponding to an object inI2. If I1 and I2

were captured under different lighting environments, as is
often the case, it may be necessary for the forger to perform
contrast enhancement onJ2 in order to make the composite
image appear realistic. In such a scenario, the identification of
localized contrast enhancement can be used to detect cut and
paste forgery as well as identifyJ2.

Fig. 7 shows an example of both a forged image generated
in this manner, as well as the results of using our local contrast
enhancement detection scheme to identify the inauthentic
region. The forged image, shown in Fig. 7(c), was created
from the images shown in Figs. 7(a) and 7(b) using Adobe

Photoshop. This image was then segmented into100 × 100
pixel blocks and our detection algorithm was used to identify
blocks which contained contrast enhanced image regions. Figs.
7(d)-(f) show the results of performing localized contrast
enhancement detection on the red, green, and blue color layers
of the forged image. The blocks outlined in red represent
local contrast enhancement detections and in each case contain
pixels that correspond to the inauthentic object.

IV. D ETECTING ADDITIVE NOISE IN PREVIOUSLY JPEG
COMPRESSEDIMAGES

In this section we discuss the problem of detecting noise
which has been globally added to an image that has previously
undergone JPEG compression. At first glance, the addition of
noise to an image may seem like a fairly innocuous operation.
It can be used, however, to disguise visual clues of forgery or
in an attempt to mask statistical artifacts left behind by other
image altering operations. While prior work has dealt with the
detection of locally added noise by estimating the variations
in an image’s signal to noise ratio (SNR) [13], this method
fails when noise has been added to the entire image. Here,
we present a method of noise detection that does not rely on
estimating an image’s SNR. We begin by discussing a simple
operation which factors heavily into our detection method,
continue by discussing a hypothesis testing scenario which
relates to our problem, then finally proceed to develop a test
for detecting additive noise in images which have previously
undergone JPEG compression.

A. Scale and Round Operation

Consider the effect of the following operation, which we
shall refer to as thescale and round operation,

v = round(cu) (7)

whereu, v ∈ Z andc is a fixed scalar. We defineUc(v) as the
set ofu values mapped to each distinctv value by (7), where

Uc(v) = {u|v = round(cu)}. (8)

The cardinality of this set, denoted by|Uc(v)|, depends on the
values of bothc and v. It can be proven that ifc = p

q
such

thatp, q ∈ Z are relatively prime,|Uc(v)| is periodic inv with
period p. To see why this is so, consider first the following
two lemmas:

Lemma 1: Given a ∈ Z andb ∈ R

a = round(b) ⇔ a + k = round(b + k),∀k ∈ Z. (9)

Lemma 2: Givenu, v ∈ Z andc = p
q

such thatp, q ∈ Z are
relatively prime

v = round(cu) ⇔ v + p = round(c(u + q)) (10)

Proof : By Lemma 1,v = round(cu) implies thatv + p =
round(cu + p). The right hand side of this equation can be
rewritten as

v + p = round(cu + p)

= round(cu + p
q
q)

= round(c(u + q)). �
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Fig. 7. Cut and paste forgery detection example showing (a) original imageI1, (b) original imageI2, (c) composite imageIf , (d) red layer blockwise
detections, (e) green layer blockwise detections, and (d) blue layer blockwise detections. Blocks detected as contrast enhanced are highlighted and boxed.

Now using Lemma 2, we can state that for allu ∈ Uc(v),
there exists somẽu ∈ Uc(v + p), namely ũ = u + q, which
implies that|Uc(v)| = |Uc(v+p)|. This proves that the number
of u values mapped to eachv value is periodic with period
p. We will make use of this property when developing our
additive noise detection scheme.

B. Hypothesis Testing Scenario

When a color image is compressed as a JPEG, each pixel
in the original image is first transformed from the RGB to
the YCbCr color space using a linear transformation. Next,
each color layer is segmented into blocks, and the discrete
cosine transform (DCT) of each block is computed. The DCT
coefficients are quantized by dividing each coefficient by its
corresponding entry in a quantization matrix, then rounding
the result to the nearest integer value. Finally, the resulting
sequence of quantized DCT coefficients is rearranged and
losslessly compressed.

Decompression is performed by first losslessly decoding the
stream of quantized DCT coefficients and reconstituting it into
blocks. The DCT coefficients are dequantized by multiplying
each quantized DCT coefficient by its corresponding entry
in the quantization matrix. Next, the inverse DCT (IDCT) is
performed on each block of dequantized DCT coefficients,
resulting in a set of pixels where each pixel is in the YCbCr
color space. It is important to note that even though these
values are not integers, they are still elements in a countable
set due to the fact that the dequantized DCT coefficients are
integers and the IDCT is a fixed linear transformation. Finally,
the pixels are converted back to the RGB color space.

Several steps in this process are forensically significant to
the detection of the addition of noise to an image that has been

previously JPEG compressed. To develop a test to determine
if noise has been added to such an image, let us first consider
the following simplified hypothesis testing scenario.

Given the observation random variabley ∈ R
m, we wish

to differentiate between the following two hypotheses:

H0 : y = Tx

H1 : y = Tx + n.
(11)

whereT ∈ R
m×m is a known, invertible linear transformation,

n ∈ R
m is an independent random variable representing

additive noise, andx ∈ Z
m is a random variable whose

probability mass function (PMF) is unknown but satisfies
the smoothness restriction placed upon image pixel value
histograms in Section II. In this scenario, we can viewy as a
pixel in the RGB color space,x as the same pixel in the YCbCr
color space, andT as the linear transformation between
the YCbCr and RGB color spaces. It should be noted that
using traditional Bayesian techniques, we cannot differentiate
between the two hypotheses because the distribution ofx is
unknown. Nonetheless, a means of differentiating between the
hypotheses can still be achieved by examining the effect of
applying the mapping

z = round(cT−1y) (12)

to y, where the constantc = p
q

is such thatp, q ∈ Z are
relatively prime.

Under hypothesisH0, z can be written as

z = round(cT−1(Tx))

= round(cx),
(13)
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Fig. 8. Examples of normalizedzk histograms corresponding to hypothesis
H0 where no noise has been added (left) and hypothesisH1 to which unit
variance Gaussian noise has been added (right). In both cases the scaling
parameter was chosen to bec =

6

7
.

therefore thekth entry ofz can be expressed using the formula

zk = round(cxk). (14)

We can see that (14) is of the same form as (7), therefore the
number of distinctxk values mapped to eachzk value will
occur in a fixed periodic pattern. Because an unequal number
of xk values are mapped to eachzk value and the PMF of
xk is smooth in the sense defined in Section II, a discernible
periodic pattern will be present in the envelope of the PMF
of zk. Furthermore, the results of Section IV-A state that the
period of this pattern is completely determined by our choice
of c. This phenomenon can be clearly observed in the example
shown in Fig. 8, where a set of periodically spaced spikes are
present the histogram ofz1 under hypothesisH0.

Under hypothesisH1, we find that the PMF ofzk exhibits
a different behavior. Wheny is subjected to the mapping
described in (12),z can be rewritten as

z = round(cT−1(Tx + n))

= round(cx + cT−1n).
(15)

By defining the matrixW as the inverse ofT such that

T−1 = W =







W1,1 · · · W1,m

...
.. .

...
Wm,1 · · · Wm,m






, (16)

we can now express thekth entry of z as follows:

zk = round



cxk +
m

∑

j=1

cWk,jnj





= round





m
∑

j=0

cjsj



 ,

(17)

where c0 = c, cj = cWk,j , s0 = xk, and sj = nj for
j = 1, . . . ,m. Now, letting rj = round(cjsj), zk can be
approximated as

zk ≈

m
∑

j=0

round (cjsj) + dk

=

m
∑

j=0

rj + dk,

(18)

where dk is an independent random variable modeling the
error induced by moving the summation outside of theround
operation. Using this approximation, we can express the PMF
of zk, denoted byfzk

, as

fzk
(zk) ≈ (fr0

∗ · · · ∗ frm
∗ fdk

)(zk). (19)

Because eachrj is generated by performing the scale and
round operation onsj , a periodic signal will be present in
the envelope of the PMF ofrj . If the set of scaling constants
cj are such that the periodic components introduced share no
common period, then the convolution of the PMFs in equation
(19) will effectively smooth out the PMF ofzk. This will result
in the absence of the periodic signal present in the envelope
of the PMF ofzk under hypothesisH0, as can be seen in Fig.
8.

Differentiating between the two hypotheses now becomes
only a matter of detecting the presence of a signal of known
period embedded in the PMF ofzk. The PMF ofzk cannot be
directly observed, however, because the PMF ofx is unknown.
Instead, the PMF ofzk can be approximated by a normalized
histogram ofzk values computed from a set of observations
of y. Detection of the periodic signal present in the histogram
of zk values can be accomplished using the frequency domain
approach which we describe in Section IV-C.

C. Additive Noise Detection in Images

The detection of additive noise in a previously JPEG
compressed image will differ slightly from the simplified
hypothesis testing scenario previously described. In reality, a
pixel y in the RGB color space lies in the set{0, . . . , 255}3,
while a pixelx in the YCbCr color space lies in a countable
subset ofR3. When a pixel in the YCbCr color space is
mapped back to the RGB color space during decompression, it
must be projected into the set of allowabley values according
to the equation

y = truncate(round(Tx)) (20)

where the operationtruncate(·) maps values of its argument
less than 0 to 0 and values greater than 255 to 255. By
defining Q(Tx) = truncate(round(Tx)) − Tx, we can
properly formulate the detection of this noise as the following
hypothesis testing problem:

H0 : y = Tx + Q(Tx)

H1 : y = Tx + Q(Tx) + n.
(21)

This problem is similar in form to the simplified hypothesis
test in (11) and can be solved using a refinement of the
previously developed methods.

By choosing a rational constantc = p
q

and applying the
operationz = round(cT−1y) to each pixel in the image, the
hypothesis testing problem outlined in (21) becomes

H0 : z = round(cx + e)

H1 : z = round(cx + e + cT−1n),
(22)

wheree = cT−1Q(Tx). Defining W = T−1 and dk as an
independent random variable modeling the error summation



outside of theround operation as in Section IV-B, thekth

entry of z can be approximated under each hypothesis as

H0 : zk = round(cxk + ek)

≈ round(cxk) + round(ek) + dk

H1 : zk = round
(

cxk + c

3
∑

j=1

Wk,jnj + ek

)

≈ round(cxk) +

3
∑

j=1

round (cWk,jnj)

+ round(ek) + dk.

(23)

To differentiate between these hypotheses, we exploit differ-
ences in the PMF ofzk under each hypothesis.

Under hypothesisH0, the PMF ofzk can be approximated
as the convolution of the PMFs ofround(cxk), round(ek),
and dk. Because the variances of the termsround(ek) and
dk are typically small, the termround(cxk) the dominates
the behavior of the PMF ofzk and a periodic signal will be
present in its envelope, as can be seen in Fig. 9. It should
be noted that while the effects of termsround(ek) and dk

are minimal, they do produce a slight smoothing effect on the
PMF of zk. By contrast, the results of Section IV-B dictate
that underH1, this periodic signal will absent from the PMF
of zk. This phenomenon can be also be observed in Fig. 9,
which shows thez1 histograms of both an unaltered image and
one to which unit variance Gaussian noise has been added.

Detecting the addition of noise to a previously JPEG
compressed image can now be reformulated as detecting the
presence of a signal of known period in the envelope of the
PMF of zk. While this PMF is unknown and cannot be directly
observed, it can be approximated by creating a normalized
histogramhzk

(l) of zk values computed from each pixel in
the image to be tested.

Because of its periodic nature, detection of the signal
present inhzk

(l) underH0 is particularly well suited for the
frequency domain. To facilitate this, we obtain a frequency
domain representationGzk

(b) of the histogram ofzk values
free from any possible high or low end histogram saturation
effects. This is accomplished by definingGzk

(b) as the DFT
of gzk

(l), which we calculate using the equation

gzk
(l) = hzk

(l)p(l) (24)

wherep(l) is the pinch off function denoted in (2). The signal
we wish to detect will produce, if present, a peak inGzk

(b)
centered at theb value corresponding to its fundamental
frequency or an integer multiple thereof. The presence or
absence of this peak under each hypothesis can be clearly
seen in the example shown in Fig. 9.

To test for the presence of the peak inGzk
(b), we compare

the value ofGzk
(b) at the expected peak locationb∗ to its

surrounding values. This is done using the following test
statistic

S = min

{

Gzk
(b∗)

1
|B1|

∑

j∈B1
Gzk

(j)
,

Gzk
(b∗)

1
|B2|

∑

j∈B2
Gzk

(j)

}

(25)
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Fig. 9. Example showing an unaltered image (top left), its normalized z1

histogram (middle left), and the magnitude of the DFT of itsz1 histogram
(bottom left), as well as an altered version of the image to which unit variance
Gaussian noise has been added (top right), its normalizedz1 histogram
(middle right), and the magnitude of the DFT of itsz1 histogram (bottom
right). In both cases, the scaling parameter was chosen to bec =

3

4
.

whereB1 andB2 are sets of contiguous indices ofGzk
lying

above and belowb∗ respectively. These sets should not include
indices directly adjacent tob∗, because DFT windowing effects
may result in higher values ofGzk

(b) around the peak if it is
present. Additionally, the smoothness restriction placedupon
the histogram of pixel values in our image model implies that
Gzk

(b) will be strongly low pass in nature. This property
suggests that to achieve better differentiability,c should be
chosen such that it introduces a high frequency signal into
hzk

(l).
A decision ruleδn is then used to to determine the presence

or absence of the peak inGzk
(b), and thus the presence or

absence of additive noise in the image. This is accomplished
by comparing the value ofS to a predefined thresholdT as
follows:

δn =

{

noise hasnot been added ifS < T

noise has been added ifS ≥ T .
(26)

To test the performance of our additive noise detection al-
gorithm, we compiled a set of 277 unaltered images consisting
of a variety of different scenes. These images were taken
using four different digital cameras, each from a different
manufacturer, and were saved as JPEG compressed images
using each camera’s default settings. A set of altered images
was created by decompressing each image and globally adding
white Gaussian noise of unit variance to each pixel value.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
fa

P
d

Fig. 10. Additive noise detection ROC curve for images altered by adding
unit variance Gaussian additive noise.

These altered images were then saved as bitmaps, along
with decompressed versions of the original images, creating
a testing database of 554 images. Next we used our additive
noise detection test to determine if noise had been added to
each image in the database. When creating the histogram of
zk values, we chosek = 1 which corresponds to using the
luminance or “Y” component of each pixel. The parameterc

was chosen to take the valuec = 7
11 leading to an expected

peak location ofb∗ = 71. The sets ofB1 andB2 were chosen
to beB1 = {61, . . . , 68} andB2 = {74, . . . , 81}.

Detection and false alarm probabilities were determined
by calculating the percentages of correctly classified images
to which noise had been added and incorrectly classified
unaltered images respectively. Using this data, an ROC curve
showing the performance of our additive noise detection
algorithm is displayed in Fig. 10. APd of approximately 80%
was achieved at a false alarm rate less than 0.4%. When the
Pfa was held less than 6.5%, thePd increased to nearly 99%.
These results indicate that our detection scheme is able to
reliably detect additive noise in previously JPEG compressed
images.

V. CONCLUSION

In this paper, we propose a set of digital forensic techniques
which identify image alterations by detecting the unique tam-
pering fingerprints these alterations leave in an image’s pixel
value histogram. We characterize the forensically significant
properties of an image’s pixel value histogram and provide a
justification for their presence. We identify globally applied
contrast enhancement by detecting the high frequency compo-
nent that it introduces into an image’s pixel value histogram.
We extend this technique into a method for detecting locally
applied contrast enhancement and demonstrate its usefulness
in detecting cut and paste type forgeries. We detect the global
addition of noise to an image by determining the presence of a
specific periodic component in a histogram of values obtained
by applying a specific nonlinear mapping to the image’s pixel
values. Simulation results indicate that each of these forensic
methods are able to detect with a high degree of accuracy
the application of the image altering operation for which they
were designed.
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