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Abstract—As the use of digital images has become more of image manipulating operations, they suffer the drawhzfck
common throughout society, both the means and the incentive to requiring training data to perform classification.

create digitally forged images has increased. Accordingly, there e get of digital forensic techniques aimed at detecting
is a great need for methods by which digital image alterations .

can be identified. In this paper, we propose several techniques 'mage t.ampfa.ring' has grown 9“t o_f resea_mh _into .irnaging
for identifying digital forgeries by detecting the unique statistical device identification. Forensic imaging device identifizat
fingerprints that certain image altering operations leave behind methods attempt to determine the type of device used to
in an image’s pixel value histogram. Specifically, we propose capture an image, ascertain the device manufacturer orlmode
methods to detect the global and local application of contrast and identify the particular imaging device used. These oush

enhancement and to detect the addition of noise to a previously I f identificati b timati devi
JPEG compressed image. These methods are tested through ggenerally perform identmcaton by estimaling some cevice

number of experiments, and results showing the effectiveness o SPecific parameter such as color filter array (CFA) interpo-

these algorithms are discussed. lation coefficients or sensor noise. Image forgery detactio
techniques have been proposed which operate by locating
|. INTRODUCTION inconsistencies in these parameters [1], [8], or by usiegdh

parameters to estimate a tampering filter [9], [10], [11]. Whi

In recent years, digital images have become increasinghese techniques are quite effective, they suffer the daalb
prevalent throughout society. Many governmental, legaih s of requiring either access to the imaging device, knowledge
entific, and news media organizations rely on digital images the forensically significant device parameter, or actess
to make critical decisions or to use as photographic evielengaining database of images from which the device parameter
of specific events. This proves to be problematic, as theofisecan be inferred.
digital images has coincided with the widespread avaitgbil |t is important to note that most image altering operations
of image editing software. At present, it is not difficult foneave behind distinct, traceable “fingerprints” in the form
an image forger to alter a digital image in a visually re@ist of image distortions. Because these fingerprints, which can
manner. To avoid both embarrassment and legal ramificatiope deterministic or statistical in nature, are often unique
many of these organizations now desire some means of idefi-each operation, an individual test to catch each type of
tifying image alterations so that the authenticity of a @i image manipulation must be designed. While detecting image
image can be verified. As a result, the field of digital imag®rgeries using these techniques requires performing ge lar
forensics has been born. set of operation-specific tests, these methods enjoy thefiben

One of the primary goals of digital image forensics isf requiring no knowledge of a device specific parameter or
the identification of images and image regions which hayeining data from the device used to generate the image in
undergone some form of manipulation or alteration. Becauggestion. Instead, these methods operate on the premise tha
of the ill-posed nature of this problem, no catchall methoghe only information available is the image in questionlitse
of detecting image forgeries exists. Instead, a number ofPrior work which identifies image tampering by detect-
techniques have been proposed to identify image altesatiang operation specific fingerprints includes the detectién o
under a variety of scenarios. While each of these methodsampling [12], double JPEG compression [13], [14], [15],
possess their own limitations, it has been posited thatdfgel as well as the parameterization of gamma correction [16].
set of forensic methods are developed, it will be difficut& Methods for detecting image forgeries have been proposed
forger to create an image able to fool all image authenticatiby detecting local abnormalities in an image’s signal tcsaoi
techniques [1]. ratio [13]. Inconsistencies in chromatic abberation [1§eell

Previous image forensic work has dealt with the identificas the absence of CFA interpolation induced correlatioB$ [1
tion of computer generated objects within an image [2] as$ wélave been used to identify inauthentic regions of an image.
as detecting lighting angle inconsistencies [3], [4]. Gifisr Additionally, the efficient identification of copy and move
based approaches have been proposed which identify iméggeries has been studied [19], [13].
forgeries using a variety of statistical features [5], [B1]. In this work, we propose a set of image forgery detection
While these methods are able to test for the use of a varieégchniques which operate by detecting tampering fingeiprin



in the form of statistical artifacts left in an image’s pixel
value histogram. By identifying the forensically signifita
properties of an unaltered image’s pixel value histogram, w
are able to identify the distinct fingerprints that each afien
considered leaves behind. Specifically, we propose mefiloods
detecting globally and locally applied deterministic gast
enhancement, as well as a method the global addition of
noise to a previously JPEG compressed image. While much
of this work focuses on detecting operations which alter the
perceptual qualities of an image as opposed to its content,
detecting these types of manipulations are still foredigica Fig. 1. Image sampling effects example.

significant. Operations such as contrast enhancement may be

locally applied to disguise visual clues of image tampering

Localized detection of these operations can be used as ewid that all pixel value histograms are calculated using 256
dence of cut and paste type forgery. Additive noise may lwns so that each bin corresponds to a unique pixel value. We
globally applied to an image not only to cover visual evidenanodel all pixel value histograms as satisfying the follagvin

of forgery, but also in an attempt to destroy forensicallgmoothness assumption; the entries of a pixel value histogr
significant indicators of other tampering operations. Tgtou approximately conform to a smooth, low frequency envelope.
the detection of these types of operations may not pertdinis worth explicitly noting that our model assumes tlht)

to malicious tampering, they certainly throw in doubt theontains no isolated spikes and thatifl) > 0, thenh(l —
authenticity of the image and its content. 1) #0andh(l+1) # 0.

This paper is organized as follows. In Section I, we degcrib To justify our histogram model consider the simple case of
the forensically significant qualities of an unaltered imag imaging a real world scene consisting of two distinct color
pixel value histogram. We describe our proposed contrasgions shown in Fig. 1. Instinctively, we might assume that
enhancement detection techniques in Section Ill. Includéae pixel value histogram of this image would consist of
are methods for detecting both globally and locally appliegeros everywhere except for two spikes located at the values
contrast enhancement.We develop a method for detecting tlweresponding to the colors present in the real world scene.
addition of noise to a previously JPEG compressed imageS$nch a histogram would obviously violate our smoothness
Section IV. Experiments designed to test the efficacy of eaaBsumption. In this scenario, the border between the color
forensic scheme as well as simulation results are discussegdions does not align with the pixel boundaries on the senso
after each detection method is proposed. We conclude tbisthe imaging device. Many pixels lying along the color
paper in Section V. border correspond to sensor areas containing both colbes. T
resulting values of each of these pixels will lie in the conve
hull of the values corresponding to each of the two real

In this work, we consider digital images created by usingorld colors. The introduction of these new pixel values| wil
an electronic imaging device to capture a real world scereffectively ‘smooth out’ the pixel value histogram.

We adopt the following model of the digital capture process. Due to the complexity of real world scenes, it is exceed-
Each pixel is assigned a value by measuring the light intgnsingly unlikely that the all color borders in an image will
reflected from a real world scene onto an electronic sensar owlign directly with the pixel borders on an imaging device’s
the area pertaining to that pixel. Inherent in this procesbé sensor. Because of this, the effect described above should
addition of some zero mean sensor noise which arises duebto present in virtually all real world images. Furthermore,
several phenomena including shot noise, dark current, and additional factors contribute to the ‘smoothness’ phenmme
chip amplifier noise [20]. For color images, it is often the&a The complex nature of most natural and man-made lighting
that the light passes through a color filter array so that ondywironments rarely result in a real world scene consistihg
one color component is measured at each pixel location & tlieveral distinct colors with no shading. Instead, a contimu
fashion. If this is the case, the color components not oleservof colors and illumination levels normally exist. Furthere,

at each pixel are determined through interpolation. At the ethe presence of observational noise will slightly change th
of this process, the pixel values are quantized, then stasedvalue of several pixels during the image capture process, th
the unaltered image. further smoothing the histogram.

When analyzing a digital image, a histograni) of the
color or gray level values recorded at each pixel can be
generated by creating equally spaced bins which span the In this section, we present a set of techniques designed
range of possible pixel values, then tabulating the numlberto forensically detect the application of contrast enhagci
pixels whose value falls withing the range of each bin. Usilesperations to an image. While the detection of gamma cor-
otherwise specified, we will hereafter assume that all cafat rection has been previously examined [16], [13], this work
gray level values lie in the set of integers between 0 and 2%5ssumes that the specific type of contrast enhancement which

Il. SYSTEM MODEL AND ASSUMPTIONS

1. DETECTING CONTRAST ENHANCEMENT



may have been applied is known to the forensic examiner ar *
that the contrast enhancement mapping can be described ™
a simple parametric equation. Here, we present a detectic ™
approach which can be used to detect more general co
trast enhancement operations and which requires no a pric
knowledge of the form of contrast enhancement potentiall'
applied. We begin by discussing a method for detecting th °© = i@ o = =
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global application of contrast enhancement [21]. We thexpad @ ()

this scheme into one which can detect the local application
of contrast enhancement and discuss how it can be used 2
detect cut and past forgeries in certain scenarios. Additip “ #
we present a method for identifying the use of histogran

equalization, a specific form of contrast enhancement. 2
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A. Detection of Globally Applied Contrast Enhancement o ot
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Contrast enhancement operations seek to increase the ay- N
namic range of pixel values in an image. For a deterministic © @
globally applied contrast enhancement operatiin(l), a Fig. 2. Pixel value histogram of (a) an unaltered image anth@same image
nonlinear transformatiorf(/) is applied to each pixel valug after contrast enhancement has bgen_performed, as well as tretunia of
then quantization is performed so that all pixel valuesriithie ngDersT r(])ifst(g)gg;una“ered Image’s histogram and (d) thereshienhanced
allowable set. When coupled with the smoothness restriction
placed on an image’s pixel value histogram, the interaction

between the nonlinear mapping used in each operation and

guantization will leave behind a detectable statistictifaat. _
A nonlinear mapping can be separated into regions whe eWhIIe we expectti (k) to be strongly low pass for unaltered
Jlgital images, there does exist one legitimately occagrrin

he mapping is locall ntractive or expansive. For som . ; . : )
t_e apping s locally contractive or & pansive. For so gehenomena which may violate this assumption. Consider the
distance measurel(-) such as the Euclidean distance,

; ) S case of imaging a scene containing a bright background, such
mapp|_ngj is contractive if d(f(u), f(v)) < d(u,v) and as the sky i?w tﬁe image shown ingFig. 3.gln suchga case, the
expansive i d(ﬂu)’f(v)). =~ d.(u’v).' When followed by light intensities recorded at pixels corresponding to thight
quantization, the contractive regions in a contrast enfraent regions of the image may lie well above the cutoff for the
mapping can cause multiple unique input pixel values to lﬁe

mapped to the same output value. This will result in the|ghestquant|zat|on level. This will cause a substantimhber

presence of an isolated peak in the histogram of the contrgfsﬁ(zeilﬁ t?hZei;s;lger’]Sed ithel V\?;lljueeZi?S’tghurzge:rt:gg; dl ' dmi&n IS'a
enhanced image. Similarly, expansive regions in the centr b 9 P 9 9

. : . ?)DC offset to H(k). We refer to images which exhibit this
enhancement mapping can cause adjacent pixel values t

. eﬁavior ashigh end histogram saturated images. Similarly,
mapped one or more values apart, resulting in sudden gaps : !
. . . when capturing very dark scenes, a large number of pixels
in the histogram of the enhanced image. These effects G438y be assigned the value 0, resulting in an impulsive spike
be clearly seen in the top two plots of Fig. 2, which show y 9 ' 9 P P

. . . at the low end of an image’s histogram and the addition of a
the histogram of an image before and after it has undergoBa offset to H (k). While tghis phengmena which we refer to
contrast enhancement. ' '

.aslow end histogram saturation, is less likely to arise due to

Beca.use of the smppthr;ess restriction placed on the p'ﬁ% presence of sensor noise, we have observed it in several
value histograms of digital images, the peaks and gaps Mess aitered images

in a contrast enhanced image’s histogram are statistitial ar
facts of contrast enhancement which can be used to performiWe propose a detection scheme which operates by mea-
detection. These artifacts are particularly discernibleem suring the strength of the high frequency portionsibfk),
examining the frequency domain representation of an insagéien comparing it to a threshold to determine if contrast
histogram. For an unaltered image, the discrete Fouriastraenhancement has been performed. To mitigate the effects of
form (DFT) of its pixel value histogranf (k) should be a high end and low end histogram saturation, we first obtain
strongly low pass signal. The impulsive nature of the cattraa modified histogramy(l) free from saturation effects by
enhancement artifacts present in an altered image’s h&tog performing the elementwise multiplication betwek() and
however, will result in the presence of a significant high ‘pinch off’ function p(l) so that

frequency component ifi/ (k). The bottom two plots of Fig.

2 show the frequency domain representations of the histogra

of a typical image before and after it has undergone contrast

enhancement. g(l) = p()h(l). @)
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Fig. 4. Additional contrast enhancement mapping used.
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Fig. 3. Top: Image exhibiting high end histogram saturatiBottom Left:
Histogram of the image’s green pixel values. Bottom Rightghfeude of the To test the performance of our global contrast enhancement
DFT of the image’s green pixel value histogram. . . . .
detection algorithm, we first compiled a database of 341
unaltered images consisting of many different subjects and
captured under varying light conditions. These images were
taken with several different cameras and range in size from
— %cos(]\;—l) <N, 1500 x 1000 pixels to 2592 x 1944 pixels. To simplify our
P .

4 1 cos (w(17255+1vp)) [>255-N, (2) Festmg process, we used the green color layer o_f each of thes

images to form a set of unaltered grayscale images. Next,
else we created a set of contrast enhanced grayscale images by

applying the power law transformation

The pinch off function, defined as

p(l) =

p

Ll IS T T

is designed to remove any impulsive components(in which
may legitimately arise due to saturation effects, as well as I \”

minimizg the frequency QOmain effgcts of muItipIy?hxgl) by T(l) = 255 (255) (6)
p(1), which behaves similar to a windowing function. In (2),

N, is the width of the region over which(i) decays from 1 to the pixel values of each of the unaltered grayscale images
to 0. This process was repeated for a varietyyofialues ranging

We usey(!) to calculate a normalized measure of the energy m 0.5 to ,2'_0' and the resulting images were saved as
in the high frequency components of the pixel value histograd'tmaps. Additionally, contrast enhancement was performe
F according to the formula on the unaltered images usmg.the mapping d|splgyed in Fig.

4 so that our database would include images which had un-
1 .
Fe_ Z 1B(k)G (k)] 3) dergone a non_standard contrast enhan_cemen_t transfonmatio
N . The unaltered images were then combined with the contrast
enhanced images to form a test database of 4092 grayscale
where N is the total number of pixels in the imag€i(k) is  jmages.
the DFT ofg(l), and/3(I) is a weighting function which takes  |n order to choose an appropriate value of the cutoff
values between 0 and 1. The purposg(ff is to deemphasize parameterc for a large scale evaluation of our algorithm,
low frequency regions otz(/) where nonzero values do notye first conducted a small scale test using only unaltered
necessarily correspond to contrast enhancement artifactSimages and those that had been altered using= 0.6.

this work, we use the simple cutoff function Each image was classified as unaltered or contrast enhanced
by our detection scheme using valuescoforresponding to
1 ¢<k<128 _ _ 0 :
B(k) = 0 else (4) angular frequencies ranging frofp to 5° and with N, = 4.

The probabilities of detectiot’; and false alarmP;, were
wherec is the entry of the 256 point DFT corresponding taletermined for a series of decision threshajds/ respectively
a desired cutoff frequencyi(k) is zero for all values greater calculating the percent of contrast enhanced images tlyrrec
than k = 128 because symmetry properties inherent in thegassified and the percent of unaltered images incorrectly
DFT of real valued signals make it unnecessary to measutassified. This information was used to generate the series
these values. of receiver operating characteristic (ROC) curves disgdain

After ' has been calculated, the decision rdjg is used Fig. 5(a). The best performance was achieveddcer 112,

to classify an image as unaltered or contrast enhanced, sudtich corresponds to the angular frequerigy Furthermore,
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Fig. 5. Contrast enhancement detection ROC curves for imdgged by a power law transformation with (&)= 0.6 using several values of the cutoff
parameter, (b) 2.0 > v > 1.2, and (c)0.5 > v > 0.9 as well as the mapping displayed in Fig. 4.

our detection algorithm’s performance improved as the evalblock individually and the results can be aggregated to-iden
of ¢ was increased. This supports our assertion th@d} tify image regions which exhibit evidence of locally applie
is a strongly lowpass signal and that contrast enhancemeahtrast enhancement.
introduces into it an artificial high frequency component. In this technique, it is critical that the testing blocks are
After choosinge = 112 in accordance with the resultsof sufficient size to yield a forensically useful histogram
of our small scale experiment, we then used our contrdst contrast enhancement detection. If the blocks are too
enhancement detection scheme to classify each image in $hgall, they may not contain enough pixels for the smooth
test database as unaltered or contrast enhanced. Theiaete¢listogram model to hold valid. In order to determine which
and false alarm probabilities were then calculated for eablock sizes are sufficient to perform reliable detection and
type of contrast enhanced images in our database. A serieggdmine the effectiveness of the local contrast enhancemen
ROC curves, shown in Figs. 5(b) and (c), were generateddetection scheme, the following experiment was performed.
evaluate the performance of our detection algorithm. As came unaltered images from the test database described in
be seen in Fig. 5, our global contrast enhancement detect@gction I11-A along with the power law transformed images
scheme performed very well against each of the forms eérresponding toy = 0.5 through 0.9 were each segmented
contrast enhancement included in our test database. Itrithwdnto square blocks. This process was performed for blocks of
explicitly noting that in each case,d; of 0.99 was achieved size 200 x 200, 100 x 100, 50 x 50, 25 x 25, and 20 x 20

at a Py, of approximately 0.03 or less. pixels. Each block was then classified as contrast enharrced o
. . unaltered using our contrast enhancement detection scheme
B. Detection of Locally Applied Contrast Enhancement False alarm and detection probabilities were determined fo

The technique developed in Section III-A can be extend&®ch value ofy at all block sizes by calculating the percent of
into a method that can be used to locate regions in Hiforrectly classified unaltered blocks and the percentoof ¢
image to which contrast enhancement has been locally applieectly classified contrast enhanced blocks respectivelgeA
Locally applied contrast enhancement can be modeled as @&¥OC curves, shown in Fig. 6 were then generated showing
application of a nonlinear deterministic contrast enhareet the detector performance for each block size considered.
mapping to the values of a contiguous set of pixelgithin an The ROC curves shown in Fig. 6 indicate that local contrast
image. Provided that the number of pixelsJns sufficiently enhancement can be reliably detected using testing blocks
large, a pixel value histogram of should exhibit the same sized least100 x 100 pixels. At a Py, of approximately
behavior as the histogram of a globally contrast enhancg®, a P; of at least 95% was achieved usig0 x 200
image. The identification of localized contrast enhancamepixel blocks and aP; of at least 80% was achieved using
within an image can be performed by selecting a set of pixel80 x 100 pixel blocks for each form of contrast enhancement
J' comprising a region of interest, then applying the tedested. These results improved markedly when the contrast
discussed in Section IlI-A to the pixel value histogramJéf enhancement applied was stronger than the relatively mild

In some scenarios, a forensic examiner may wish to iRower law transformation using = 0.9. In such cases, a
vestigate a particular region within an image for evidente & of roughly 98.5% and 96% was achieved withig,
contrast enhancement. In such cases, the testing’sean Of aproximatley 5% for blocks sized00 x 200 pixels and
be specified manually. It is more likely, however, that th€00 x 100 pixels respectively. It should also be noted that
entire image must be examined for evidence of local contrdesting blocks sized5 x 25 pixels and smaller appear to
enhancement. To accomplish this, the image can be segmeg@@ain an insufficient number of pixels to perform reliable
into fixed sized blocks, where each block constitutes a s¢garcontrast enhancement detection.
region of interest. Detection can then be performed on eachn many situations, the detection of locally applied cositra



Photoshop. This image was then segmented if{® x 100
pixel blocks and our detection algorithm was used to idgntif
blocks which contained contrast enhanced image regiogs. Fi
7(d)-(f) show the results of performing localized contrast
enhancement detection on the red, green, and blue colaslaye
of the forged image. The blocks outlined in red represent

—Blocksize = 200

- - - Blocksize = 100 local contrast enhancement detections and in each casarcont
o2 T Beceze =201 pixels that correspond to the inauthentic object.
——Blocksize = 20
o' 0 07 os os 1 IV. DETECTINGADDITIVE NOISE IN PREVIOUSLY JPEG
Pra COMPRESSEDIMAGES

In this section we discuss the problem of detecting noise
which has been globally added to an image that has previously
undergone JPEG compression. At first glance, the addition of
noise to an image may seem like a fairly innocuous operation.
It can be used, however, to disguise visual clues of forgery o
in an attempt to mask statistical artifacts left behind hiyeot

iSIEEEﬁEiiSS image altering operations. While prior work has dealt wité th
o2 ez e |l detection of locally added noise by estimating the varigtio
0 ——Blocksize = 20 in an image’s signal to noise ratio (SNR) [13], this method
0 0.2 0.4 0.6 0.8 1

fails when noise has been added to the entire image. Here,
we present a method of noise detection that does not rely on
— estimating an image’s SNR. We begin by discussing a simple
s operation which factors heavily into our detection method,
continue by discussing a hypothesis testing scenario which
relates to our problem, then finally proceed to develop a test
for detecting additive noise in images which have previpusl

—Blocksize = 200] | undergone JPEG compression.
- - -Blocksize = 100

02 Rz A. Scale and Round Operation

- Blocksize = 25
o et Consider the effect of the following operation, which we
‘ TPy ‘ shall refer to as thecale and round operation,
v = round(cu) ()

Fig. 6. ROC curves obtained using different testing blodesifor images
altered by a power law transformation with= 0.5 (top), v = 0.7 (middle),

and~ = 0.9 (bottom). whereu,v € Z andc is a fixed scalar. We defiré.(v) as the

set ofu values mapped to each distinctvalue by (7), where
U.(v) = {u]v = round(cu)}. 8)
enhancement is of greater forensic significance than thﬂ:det.l.he cardinality of this set, denoted Hy, (v)|, depends on the

tion of its globally applied counterpart. One common scenar. values of bothe andv. It can be proven that it = 2 such
of particular importance is when contrast enhancement s
E atp, g € Z are relatively prime|if.(v)| is periodic inv with

coupled with cut and paste forgery. During cut and pasper|odp To see why this is so, consider first the following
forgery, a forger creates a composite imabe using two Wo lemmas:

separate imageg$; and I,. To accomplish this the forger Lemma 1: Givena c Z andb € R

replaces a set of pixeld; in I; with a contiguous set of '

pixels J, corresponding to an object id,. If [; and I a =round(b) & a+ k =round(b+ k),Vk € Z. (9)

were captured under different lighting environments, as is

often the case, it may be necessary for the forger to perfo

contrast enhancement ofi in order to make the composite

image appear realistic. In such a scenario, the identifioaif v = round(cu) < v+ p = round(c(u +¢q))  (10)

localized contrast enhanc.eme.nt can be used to detect cut ang, s - By Lemma 1,0 = round(cu) implies that + p =

paste forgery as well as identitf,. round(cu + p). The right hand side of this equation can be
Fig. 7 shows an example of both a forged image generatggyritten as

in this manner, as well as the results of using our local estr

enhancement detection scheme to identify the inauthentic

region. The forged image, shown in Fig. 7(c), was created = round(cu + £q)

from the images shown in Figs. 7(a) and 7(b) using Adobe = round(c(u + q)). |

Lemma 2: Givenwu,v € Z andc = p such thatp, ¢ € Z are
Fg]anvely prime

v + p = round(cu + p)



Fig. 7. Cut and paste forgery detection example showing (@inal image /1, (b) original imagelz, (c) composite imagd, (d) red layer blockwise
detections, (e) green layer blockwise detections, and I(d layer blockwise detections. Blocks detected as canénalsanced are highlighted and boxed.

Now using Lemma 2, we can state that for alE U.(v), previously JPEG compressed. To develop a test to determine
there exists somé € U.(v + p), namelya = u + ¢, which if noise has been added to such an image, let us first consider
implies that|i/. (v)| = |U.(v+p)|. This proves that the numberthe following simplified hypothesis testing scenario.
of v values mapped to each value is periodic with period  Given the observation random varialec R™, we wish
p. We will make use of this property when developing outo differentiate between the following two hypotheses:

additive noise detection scheme.
. . . Hy:y=Tx
B. Hypothesis Testing Scenario (12)

. . . Hy:y=T .
When a color image is compressed as a JPEG, each pixel Ly xtn

in the original image is first transformed from the RGB tQuhereT € R™*™ is a known, invertible linear transformation,
the YCbCr color space using a linear transformation. Next, ¢ R™ is an independent random variable representing
each color layer is segmented into blocks, and the discrgigditive noise, andk € Z™ is a random variable whose
cosine transform (DCT) of each block is computed. The DCropability mass function (PMF) is unknown but satisfies
coefficients are quantized by dividing each coefficient Iy ithe smoothness restriction placed upon image pixel value
corresponding entry in a gquantization matrix, then rougdimjstograms in Section Il. In this scenario, we can vigwas a
the result to the nearest integer value. Finally, the r@mult pixel in the RGB color space; as the same pixel in the YCbCr
sequence of quantized DCT coefficients is rearranged aglor space, andT' as the linear transformation between
losslessly compressed. the YCbCr and RGB color spaces. It should be noted that
Decompression is performed by first losslessly decoding tnging traditional Bayesian techniques, we cannot difféaén
stream of quantized DCT coefficients and reconstitutingtit i petween the two hypotheses because the distribution isf
blocks. The DCT coefficients are dequantized by multiplyingnknown. Nonetheless, a means of differentiating betwien t

each quantized DCT coefficient by its corresponding entpynotheses can still be achieved by examining the effect of
in the quantization matrix. Next, the inverse DCT (IDCT) igpplying the mapping

performed on each block of dequantized DCT coefficients,
resulting in a set of pixels where each pixel is in the YCbCr z = round(cT'y) (12)
color space. It is important to note that even though these
values are not integers, they are still elements in a coletatp y, where the constant = § is such thatp,q € Z are
set due to the fact that the dequantized DCT coefficients agdatively prime.
integers and the IDCT is a fixed linear transformation. Fjnal  Under hypothesiddy, z can be written as
the pixels are converted back to the RGB color space.

Several steps in this process are forensically significant t z = round(¢T~*(Tx)) (13)
the detection of the addition of noise to an image that has bee = round(cx),



where dj; is an independent random variable modeling the
error induced by moving the summation outside of thend
operation. Using this approximation, we can express the PMF
s of zx, denoted byf.,, as

Fa(zk) = (frg %o fr,, * fa,)(2k)- (19)

R Because each; is generated by performing the scale and
round operation ors;, a periodic signal will be present in
Fig. 8. Examples of normalized, histograms corresponding to hypothesidhe envelope of the PMF of;. If the set of scaling constants
Ho where no noise has been added (left) and hypothEsido which unit  ¢; are such that the periodic components introduced share no
variance Gaussian noise has been added (right). In botls ¢hsescaling common period then the convolution of the PMFs in equation
parameter was chosen to be= %. . ! . .

(29) will effectively smooth out the PMF af;,.. This will result
in the absence of the periodic signal present in the envelope

therefore the:" entry ofz can be expressed using the formul%c the PMF ofz;, under hypothesigly, as can be seen in Fig.

2z, = round(cxy,). (14) Differentiating between the two hypotheses now becomes
: ly a matter of detecting the presence of a signal of known

W hat (14 f th f 7), theref ‘ .
e can see that (14) is of the same form as (7), therefore fpﬂ%rlod embedded in the PMF of. The PMF ofz;, cannot be

number of distinctz;, values mapped to each, value will ) .
occur in a fixed periodic pattern. Because an unequal numl?érrealy observed, however, because the PMi &f unknown.

of ;. values are mapped to each value and the P of |2 2ot 1PN B 20 8 R e atons
X IS smooth in the sense defined in Section Il, a discernibl 9 2k mpute . .
y. Detection of the periodic signal present in the histogram

periodic pattern will be present in the envelope of the PM + - values can be accomplished using the frequency domain
of z,. Furthermore, the results of Section IV-A state that th% Z}anch which we descriEe in Sectiog N-C q y
period of this pattern is completely determined by our cloic P '

of c¢. This phenomenon can be clearly observed in the exam@e Additive Noise Detection in Images
shown in Fig..8, where a set of periodically spaced spikes arethe detection of additive noise in a previously JPEG
present the histogram af under hypothesig,. ~ compressed image will differ slightly from the simplified

Under hypothesig?;, we find that the PMF ot;. exhibits  pynothesis testing scenario previously described. Irityea
a d|ff_erent_ behavior. Whery is subjected to the mapping pixel y in the RGB color space lies in the s, .. ., 25513,
described in (12)z can be rewritten as while a pixelx in the YCbCr color space lies in a countable

7 = round(cTﬁl(Tx—ﬁ—n)) subset ofR3. When a pixel in the YCbCr color space is

(15) mapped back to the RGB color space during decompression, it

must be projected into the set of allowallevalues according
By defining the matrixXW as the inverse ofl' such that to the equation

= round(cx + ¢T " 'n).

Wip o Winm y = truncate(round(Tx)) (20)

-1 . . .
T =w=|: g o (16)  \where the operationruncate(-) maps values of its argument

Wi - Wim less than 0 to O and values greater than 255 to 255. By
defining Q(Tx) = truncate(round(Tx)) — Tx, we can
properly formulate the detection of this noise as the foilmyv
hypothesis testing problem:

Hy:y=Tx+ Q(Tx)

we can now express the” entry of z as follows:

m
2z, = round | cxp + E Wi jn;

j=1 21
. 17) Hy:y=Tx+Q(Tx) +n. (21)
= round chsj , This problem is similar in form to the simplified hypothesis
j=0 test in (11) and can be solved using a refinement of the

previously developed methods.

By choosing a rational constant= § and applying the
operationz = round(cT~'y) to each pixel in the image, the
hypothesis testing problem outlined in (21) becomes

wherecy = ¢, ¢; = Wi jr so = T, and s; = n; for
j = 1,...,m. Now, letting r; = round(c;s;), z can be
approximated as

2 Z round (¢;js;) + dg Hp : z = round(cx + e) (22)
j=0 (18) H; : z =round(cx + e + ¢T " 'n),
- er + di, wheree = ¢T~!'Q(Tx). DefiningW = T~! andd;, as an

independent random variable modeling the error summation

<.
Il
=)



outside of theround operation as in Section IV-B, thg!"
entry of z can be approximated under each hypothesis as

Hy : z, = round(cxg + ex)
~ round(cxy) + round(eg) + di

3
Hy:z, = round(c;zc;C + CZ Wi jnj + ek)
i=1 (23)
3
~ round(czy) + Z round (W jn;)
j=1
+ round(eg) + dy.

h, 0
h, 0

To differentiate between these hypotheses, we exploiemdiff
ences in the PMF of;, under each hypothesis.

Under hypothesidi,, the PMF ofz; can be approximated
as the convolution of the PMFs abund(cxy), round(eg), o o
and dj,. Because the variances of the termsind(e;) and
dy are typically small, the ternmround(czy) the dominates
the behavior of the PMF of; and a periodic signal will be

present in its envelope, as can be seen in Fig. 9. It sho. * j\ JL J o J
50 éﬂﬂ 150

G, ®
G, ®

be noted that while the effects of termsund(ex) and dy
are minimal, they do produce a slight smoothing effect ontk  °
PMF of z;. By contrast, the results of Section IV-B dictate

; FPRSRTSR ; Fig. 9. Example showing an unaltered image (top left), its niized z;
that under,, this periodic signal will absent from the I:)MFhistogram (middle left), and the magnitude of the DFT of4is histogram

of z,. This phenomenon can be also be observed in Fig. Bottom left), as well as an altered version of the image tachinit variance
which shows the; histograms of both an unaltered image an@aussian noise has been added (top right), its normalizedistogram

one to which unit variance Gaussian noise has been adck_:.é[niddle right), and the magnitude of the DFT of its histogram (bottom
fight). In both cases, the scaling parameter was chosen to:b%

Detecting the addition of noise to a previously JPEG
compressed image can now be reformulated as detecting the
presence of a signal of known period in the envelope of th . . .
PMF of z;. While this PMF is unknown and cannot be directl;‘/\(lanerejg1 and B, are sets of contiguous indices 6, lying

. . . . agove and below* respectively. These sets should not include
observed, it can be approximated by creating a normalizeq,. . . . )
. . “."Indices directly adjacent b, because DFT windowing effects
histogramh, (1) of z, values computed from each pixel in

the image to be tested. may result in higher values &¥,, (b) around the peak if it is

Because of its periodic nature, detection of the sign [esent. Additionally, the smoothness restriction plagpdn

. ) . . e histogram of pixel values in our image model implies that
present inh,, (1) under Hy is particularly well suited for the G..(b) will be strongly low pass in nature. This property

frequency domain. To facilitate this, we obtain a frequencQ’uggests that to achieve better differentiabilityshould be

domain representat_mﬁ:zk_(b) of the hlstogr'am ofz; values . chosen such that it introduces a high frequency signal into
free from any possible high or low end histogram saturatl% )
Zk .

effects. This is accomplished by definidg,, (b) as the DFT
of g., (1), which we calculate using the equation

(] 50 100 150
b

A decision rule),, is then used to to determine the presence
or absence of the peak i@, (b), and thus the presence or
9z (1) = hz, (Dp(1) (24) absence of additive noise in the image. This is accomplished

) . _ . . by comparing the value of to a predefined thresholdl as
wherep(l) is the pinch off function denoted in (2). The signalgiiows:

we wish to detect will produce, if present, a peakdn, (b)
centered at theb value corresponding to its fundamental :{ noise hasot been added iS5 <7 (26)
frequency or an integer multiple thereof. The presence or noise has been added St>T.

absence of this peak under each hypothesis can be clearl
seen in the example shown in Fig. 9.

To test for the presence of the peakahy, (b), we compare
the value ofG,, (b) at the expected peak locatidri to its
surrounding values. This is done using the following te
statistic

¥o test the performance of our additive noise detection al-
gorithm, we compiled a set of 277 unaltered images congistin
of a variety of different scenes. These images were taken
SL%sing four different digital cameras, each from a different
manufacturer, and were saved as JPEG compressed images
using each camera’s default settings. A set of altered image
g = min{ Gz, (b7) ’ G2, () } (25) Wwas created by decompressing each image and globally adding
ﬁzjegl G, (J) |3712|Zj632 G (4) white Gaussian noise of unit variance to each pixel value.
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Fig. 10. Additive noise detection ROC curve for images attelg adding
unit variance Gaussian additive noise.
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