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Abstract- A subspace based blind channel identification al- 
gorithm is proposed here. This algorithm operates directly 
on the data  domain and therefore avoids the problems associ- 
ated with other algorithms which use the  statistical informa- 
tion contained in the  received signal directly. In the noiseless 
case, this algorithm uses the  least number of symbols that  can 
possibly be used t o  identify the channel exactly. In the  noisy 
case, simulations have shown that  almost exact identification 
can be obtained by using a few more symbols than the the- 
oretical minimum. This is orders of magnitude better than 
the other blind algorithms. Once the  channel has been iden- 
tified by using this procedure, any of the existing equalization 
techniques can be used along with it to obtain the symbols. 

I. INTRODUCTION 

Most digital communication systems are subject to intersymbol 
interference (1SI)and therefore specific identification and equaliza- 
tion procedures are needed. Classically, the channel is identified 
by sending a known training sequence. But, when the channel is 
varying, even slowly, the training sequence has to be sent period- 
ically so that the channel estimates can be updated, and this re- 
duces the effective channel rate. In contrast to this, blind channel 
identification methods do not require training sequences. Existing 
blind identification methods use the statistics of the transmitted 
sequence instead of the explicit knowledge of the sequence itself. 
Since communication channels are very likely to be nonminimum 
phase, most of the existing blind channel identification algorithms 
have used higher order statistics [lo]-[13]. A different approach 
by Tong, Xu, and Kailath [l] allows the blind identification of 
channels using only the second-order cyclo-stationary statistics. 
Recently a number of algorithms [3]-[9] have been proposed which 
also make use of this idea. 

But none of these algorithms have used the signal structure 
inherent in the oversampled channel output. In our approach we 
make full use of this structure and therefore find that it is not 
necessary to  explicitly use any statistics. For the noisy case a 
modification of this algorithm can be obtained by incorporating 
least-square techniques. By doing this we not only use the explicit 
knowledge of the transmitted symbols but also implicitly make use 
of the statistics of all orders and not just the second or third order 
statistics. This algorithm provides very good estimates and needs 
very few symbols for estimating the channel. Moreover, it is quite 
robust to  noise and therfore it can be used in practical situations. 

The received baseband signal x(.) can be written as 
CO 

~ ( t )  = skh ( t -  k T )  (1) 
k=- CO 

where Sk is an information symbol in a signal constellation s ( s 
may be an infinite set), h(.) is the discrete-time channel impulse 
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response, T is the symbol interval and n(.) is the additive noise. 
In the sequel we will assume that the impulse response h( . )  has 
finite support, i.e. h( t )  = 0 for t 2 J T ,  J E N .  

The channel identification problem requires us to estimate the 
channel impulse response h(t)  (or at  least samples of h(t)  ). Clas- 
sical channel identification procedures using a training sequence 
have the knowledge of both x ( t )  as well as the transmitted sym- 
bols {sk}. A blind channel identification algorithm on the other 
hand has to estimate the channel response h(.) given only the re- 
ceived signal x(.) .  

The organization of the paper is as follows - in Section 2, we 
derive the Basic Subspace algorithm and this forms the backbone 
of our approach. In Section 3 we derive the conditons for the 
identifiability of the channels using this method. In Section 4, we 
modify the Basic Subspace algorithm and obtain a very robust 
algorithm which works very well in practical situations. Finally 
we discuss one simulation example and the conclusions that can 
be drawn from it. 

11. THE BASIC SUBSPACE ALGORITHM 

In this section we develop the Basic Subspace algorithm. In order 
to simplify the presentation we will ignore the noise for the mo- 
ment. We assume that the impulse response has length JT and 
that the received signal is not corrupted by noise. Here the re- 
ceived signal is sampled at  J times the baud rate. I t  is easy to see 
that we obtain the following equations for 0 5 i 5 J - 1 : 

Y ( J M  - J +  i) = S M + J - z h i  + . . .  4- S M - I ~ ( J - I ) J + ~  

where y ( J n  - J + j - 1) = z(nT + Si), h ~ ~ + ~ - - l  = h(nT + I&), 
l < j < J .  

Define the vectors xL and s, for 0 5 i 2 J - 1 as below 

xi = [ y(2) y ( J  + 2) y ( 2 J  + i) . . ' y((M - l)J + 2)  1' 
s, = [ 5% SZ+l S z f Z  . . .  S M + z - l  1'. 

It is easy to obtain the relation 

X = S H  (3) 

where 
x =  [ XO x1 ' . '  X J - - 2  XJ-1 ] 
s =  [ so s1 ".  95-2 SJ-1 ] 

and the ICth column of H is hk, 1 5 k 5 J ,  where 

hk = [ h ~ ( ~ - i ) + b - - l  h ~ ( ~ - ~ ) + k - i  h~+k-i hk-i 1'. 
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Assuming that H is invertible we can invert this relation and we 
then see that sz E span{xo,xo, + .  ,xJ-l}. Therefore we have for 
0 5 i 5 J -  1, 

(4) sz = ~ t ) x o  -t x ( , “ ) x ~  + .. . + ~ J - l x J - 1  ( E )  

where the {A:”}, taken appropriately, form the mai,rix A = H-’. 
The vectors {s1} have a very special structure : bottom A4 - 1 

elements of sz is the same as the top M - 1 elements of s,+1. Let 
& and 7% be the bottom M - 1 and top M - 1 (dements of xi 
respectively. Then the constraint imposed by the structure of sz 
translates into the following relation. 

+ A = O  ( 5 )  

where 

with the number of block-columns being J, 0 representing a matrix 
of zeros and 

< = = [ C O  5 1  . “  [ J - 1  1 1  V’ - [  70 vi . . .  75-1 ] ( 6 )  

Therefore we know that X 6 Null(+), and if we know that + has 
a one-dimensional null space, then we can find X uniquely (upto a 
multiplication factor) and therefore H = A-’ can be determined 
from it. 

I11 I IDENTIFIABILITY 

The two assumptions under which the Basic Subspace algorithm 

H is invertible (or in, the noisy case H is well-conditioned) * has a one-dimensional null space 
The first assumption is violated in systems where H is ill- 

conditioned. In Section 4, we modify the algorithm slightly to 
take care of this. The second condition can be easily taken care of 
since it is hardly ever violated. It can be shown that the following 
theorem is true. 

Theorem 1:  For every non-trivial ’ communication system, if H 
is invertible then the probability that rh has a one-dimensional null 
space tends to 1 as the observation interval increases. The rate of 
convergence is atleast exponential if the symbols are independant. 
Theorem 1 ensures that as the observation interval increases, the 
probability of the violation of the second assumption tends to zero 
very fast and therefore even with a very small observation interval 
we can use the Basic Subspace algorithm to estimate the channel. 
similar conditions based on persistantly exciting sequences for the 
identifiability of a FIR channel have been discussed in [15]. 

will work are 

IV. THE LEAST-SQUARES SUBSPACE ALGORITHM 

In this section we will attack the important problem of the H ma- 
trix being ill-conditioned. Before that we first look at the Exhaus- 
tive LS-Search algorithm, a conceptual algorithm for solving 
the blind identification problem. In the classical idtentification pro- 
cedures which use a training sequence the problem is often solved 

‘A trivial communication system is one in which all the Future transmitted 
symbols are decided by a finite number of transmitted s:imbols and this is 
clearly not a very useful communication system! 

in this way : Assuming that the received signal is sampled at the 
baud rate, we have the following matrix equation. 

S h + n = y  (7) 

where 

s2 SJ-I  S J  

s3 ’ . .  S J  sJ+1 1 
s4 1 ’ .  S J f l  S J + 2  

Since we know the S matrix we can find the leasbsquares solution 
for the vector h which minimizes the norm-square error JISh-yl12. 
In the blind identification problem, we do not kmw the matrix S, 
because we do not know the transmitted sequence. But if the 
transmitted symbols are from a finite set (of say size 2, i.e. si = 
fl ) then we do know that the symbols {s<}gl can take one of 
2M possibilities. For each of these possibilities .we will have a S 
matrix. For each of these possible S matrices we can find the least- 
squares solutilon for h and also the corresponding error llSh - ~ 1 1 ’ .  
We can then ‘choose as our ‘best’ S, the one which minimizes the 
error and therefore our estimate of h will be the least-squares h 
corresponding to the ‘best’ S. It is easy to  show ithat the variance 
of the estimated h will converge to the Cramer-Rao bound for 
known signal and therefore this algorithm is asymptotically the 
‘best’ blind equalization algorithm one can have [2]. 

The main problem with this exhaustive-search approach is that 
we will have ?to perform the least squares estimake 2 M  times and 
this makes the practical implementation of this ;algorithm impos- 
sible. But if we could somehow get a reasonable estimate of the 
actual transmitted sequence, then we would need to  search for the 
”best” S only in the vicinity of the estimated S. This will consid- 
erably reduce the computational cost and if the estimate is very 
good (as it is when we use the Basic Subspace algorithm) then 
the computational cost may even be much lesser than the cost for 
other standard blind identification algorithms which make direct 
use of the sta,tistics of thc rcceivcd signal. 
A .  The LS-Subspace Algorithm 

Since the 13asic Subspace algorithm provides a way of directly 
finding the transmitted sequence, we will use it to estimate S .  
But the problem is that H is ill-conditioned and so we will not be 
able to use tlhe Basic Subspace algorithm. But there is a way of 
circumventing this problem as we now illustrate. 

Why is it that  in many channels the H matrix is ill-conditioned? 
The Fig.1 shows a typical channel response. The tail of the re- 
sponse is very long and has a very small magnitude. The k th  
column of H is hk, 1 5 k 5 J ,  where 

where hi = h ( F ) .  Near the tail ends the magnitude of the re- 
sponse is very small and so all the h, which are obtained by sam- 
pling the impulse response near its tails are very close to zero and 
hence to each other. As can be seen these hi’s occupy the ends of 
the vector h,. Two vectors become very “similar” to each other 
if the number of almost-equal-elements becomes much more than 
the number of different elements and therefore a matrix composed 
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of these vectors becomes ill-conditioned. It is therefore because of 
these end-elements that  the H matrix becomes ill-conditioned. If 
we can get rid of the end-elements then we could use the Basic 
Subspace algorithm (for a smaller H matrix). 

We now note that the tail of the impulse response contributes 
very little to  the actual received signal and so we can neglect its 
contribution for our purpose (though it will be used in finding the 
transmitted sequence once the full impulse response is estimated). 
If we neglect the tail, the total length of the impulse becomes 
much less than it was before. Therefore the effective length of the 
impulse response is reduced to J’T from the original J T .  For HF 
channel and mobile radio channels J’ is usually very small - about 
2 or 3. We therefore need to  sample the received signal at  J’ times 
the baud rate and perform the Basic Subspace algorithm under the 
assumption that the length of the response is only J’T. This will 
give us an estimate of the transmitted sequence s^k and an estimate 
of the shortend impulse response h,. We can then use the estimate 
of the transmitted sequence Sk to obtain a very good estimate 
of the full (unshortened) impulse response by solving the matrix 
least squares estimation problem of minimizing [ISH - YII over all 
matrices H. We could either solve of H by using the estimated S 
matrix directly or by adopting one of following search-approaches 
to improve the estimate of the S matrix and using the ‘best’ S 
matrix thus obtained. 

B. Approaches f o r  Performance Improvement  

Once we have a first estimate of the transmitted symbols we can 
then use a number of methods to improve our estimate of sk and 
hence obtain a very good estimate of the impulse response h. The 
following are some of the proposed methods. 

B.l LS-Subspace Algorithms with Error Correction 

Using the shortened impulse response h, we can find the esti- 
mates P i  of the vectors si. These vectors are then thrown into the 
symbol set S by hard-limiting. But since the vectors si have over- 
lapping elements, we have the problem of choosing the right value 
in case the overlapping elements of & do not coincide. Assume that 
the symbol set has only two elements, ie. S = fl .  If we use the 
arithmetic average of the estimates B i  we will get zeros in places 
where the estimates do not match. If there are d such places then 
the correct estimate (atleast in those d positions) is clearly one of 
the 2d possible sequences (with f l  in the zero-positions). We can 
therefore apply the LS-search algorithm to this smaller search area 
and since we would expect d to be quite small the LS-search algo- 
rithm is quite practical. Therefore the first step in all the versions 
in the sequel is compensating for these inherently self-detected er- 
rors. These represent something analogous to receiving an erasure 
- we know that there is an error in that position and so it doesn’t 
take too much effort to correct it. Let the estimate after correct- 
ing for the erasures be the sequence { i k } .  Now we can incorporate 
different levels of sophistication into the algorithm depending on 
the purpose for which it is needed. The following are some of the 
levels of sophistry that we propose. 

Level 1 We need not make any correction at  all. Just use the 
arithmetic average of the two estimates for {SA} to construct 
the matrix S and find the LS estimate for h. We do not 
search for the ‘best’ LS estimate. We just use the S matrix 
that we obtain ’. The advantage is that this has a small com- 
putational cost. This will be useful in applications in which 
computational cost is a much bigger criteria as compared to 

‘It may have a few zeros but that does not matter since there are very few 
zeros anyway! 

the accuracy. But at  any rate even here the accuracy of the 
estimate is much better than the conventional algorithms. 

Level 2 We can just correct the erasures by the procedure al- 
ready discussed. This will increase the computational cost 
a little but increases the accuracy of the estimate. We 
will henceforth refer to this algorithm as the Erasure- 
Correct ing LS-Subspace Algori thm or the ERC-LS- 
Subspace Algorithm. 

Level 3 We can introduce one more level of correction by cor- 
recting for single errors. For this we search for the LS- 
minimum over the space of all matrices S for which the cor- 
responding sequence {sk} differs from the estimate {a,} in at 
most one position. By this procedure we can find the best LS 
estimate if it lies within a distance of a single bit from the 
erasure-corrected estimate. 

Level 4 We can generalize Level 3 by correcting for n-errors. 
For this we will have to expand the search area to cover all 
the matrices S for which the corresponding sequence {sk} 
differs from the estimate { i k }  in at most n positions. 

We can avoid the high computational cost associated with the 
last method by adopting the following method which is by far 
the best method we have come across both in maintaining a low 
computational cost as well as in achieving an estimate almost as 
good as the exhaustive search LS algorithm. By ‘first estimate’ we 
shall mean the sequence obtained by correcting for the eraures 
i.e. the sequence obtained in Level 2. 

1. First let the search area be all the sequences which differ 
from the ‘first sequence’ in one position. 

2. Find the ‘best’ sequence in this area. 
3. If this sequence is the same as the ‘first sequence’ then stop 

and decide that this is the ‘best’ estimate. 
4. If this sequence is not the same as the ‘first sequence’ then 

replace the ‘first sequence’ by this sequence and start all over 
again from step 1. 

From our simulations we have found that this algorithm works 
exceptionally well in practical situations. We have done done ex- 
haustive simulations using this algorithm and we have found that 
in terms of accuracy, number of symbols needed for the estimate, 
robustness to noise and computational complexity this algorithm is 
very good. Our simulation example documents and supports this 
fact. We will call this algorithm the Error-Correcting Least 
Square  Subspace algori thm or the EC-LS-Subspace algo- 
rithm. 

B.2 The LS Iteration Algorithm 

Once we have a sufficiently good estimate of the transmitted 
symbols, we can employ various error correcting mechanisms to im- 
prove the performance. Below we discuss another method which 
attempts to improve the performance of the LS-Subspace algo- 
rithm iteratively. 

Note that we have to solve for the S and the H matrices and 
they are related by 

S H + N = Y  

where N and Y represent the noise and received matrices. Our aim 
is therefore to minimize the error, [ISH - YII over all the possible 
matrices S and H. It is therefore a joint minimization problem over 
a two-dimensional matrix space . It might therefore be possible to 
solve it iteratively, by finding the minimum over a one-dimensional 
matrix space at  each step. 

We have an estimate of the S matrix obtained from the Basic 
Subspace algorithm. The idea is that we can solve for the least 
squares H by using the estimated S and then obtain a ‘better’ 
estimate of the S matrix from the equation S = YHt. We can 
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thcn repeat this procedure iteratively until1 a good estimate for W 
is obtained. A simulation study of this algorithm showed that this 
method is not as good as the 132-LS-Subspace algorithm. 

V. A SIMULATION EXAMPLE 

For our simulation we used ithe same channel which was used in 
the simulation example of [l] and the impulse response i:j shown in 
the Fig. 1. The source symbols were drawn from a BPSK signal 
constellation with a uniform distribution. We implemented both 
- our algorithms and the algorithm by Tong et a1 [l] and made a 
comparative study. 

A simulation of 100 independent trials was conducted for each 
algorithm under the same siimulation scenario. Fig.2a, Fig.Pb, 
Fig.2~ and Fig.2d show the 100 estimates for the EC-LS-Subspace 
algorithm, ERC-LS-Subspace algorithm, the LS-Iteration algo- 
rithm and the algorithm by Tong et al. [l] each estimate using 
only 30 symbols. Fig.3a a,nd Fig.3b show the 100 estimates for 
the EC-LS-Subspace algorithm and Tong’s algorithm ,when each 
estimate is based on 100 symbols. These graphs show clearly that 
even if the number of symbols used for each estimate increases, the 
EC-LS-Subspace algorithm performs much better than Tong’s al- 
gorithm. Fig.4a, Fig.4b, Fig.4~ and Fig.4d show the 100 estimates 
for the EC-LS-Subspace algorithm for SNR = 20,15,10 and 5 dB 
respectively. 

To obtain a performance measure of the channel estimation, the 
normalized root-mean-square error (NRMSE) of the estimator is 
defined by 

where M is the number for independent trials (100 in our ca,se), and 
& ( i )  is the estimate of the cha.nne1 from the Zt” trial. Fig.5a shows 
the NRMSE’s of the different algorithms versus SNR in a series of 
100 independent runs using 35 symbols for each estim,tte. Fig.5b 
shows the NRMSE’s of the EC-LS-Subspace algorithm versus SNR 
in a series of 100 independent runs using different numtlers of sym- 
bols for each set in the series. These plots show that unlike Tong’s 
algorithm, the subspace algorithms do not have a cut-of SNR 
below which the performance decreases rapidly. Moreover it can 
be seen that the subspace algorithms converge to a much smaller 
NRMSE than Tong’s algorithm. Initially, with an increase in the 
number of symbols, the performance of the EC-LS-Subspace algo- 
rithm improves but the rate of this increase decreases ;and beyond 
35 symbols the improvement in performance is not very significant 
since it’s performance is already very close to that of the conven- 
tional least squares algorithm. 

Fig.6 describe the comput,ational Complexity of the different al- 
gorithms under different running conditions. Fig.6a shows the plot 
of the number of floating point operations (FLOPS) used in the 
matlab program as a function of the nuniber of symbols used for 
the estimate for each of the algorithms. Fig.6b shows the same 
plot for the EC-LS-Subspace algorithm for different SNR’s. These 
plots give us a general idea of the complexity of each algorithm. 
The algorithms were not optimized for the number of  operations 
and so the estimates shown are well-above the actual complexity. 

VI. CONCLUSIONS 

Blind Identification and Equalization is very useful in many 
communication systems. Traditionally blind identification algo- 
rithms need a large observation interval to obtain it reasonable 
cstimate of the channel. This is because they have used higher or- 
der statistics for making their estimates. Even a cyclo-stationary 

second order statistics basecl approach by Tong, Xu itnd Kailath 
[l] needs a very large obeservation interval as compared to identifi- 
cation algorithms which use training sequences. This h.as therefore 
prevented an effective use of blind equalizrtion algorithms in com- 
munication systems. 

We have therefore proposed a new method for blind identifica- 
tion using subspace and least-square techiniques. B:y exploiting 
the inherent struct,ure in the received signal and using thie ability 
to correct errors we are able to obtain a fast identificatioa proce- 
dure which uses very few symbols, slightly more than >what i s  used 
in identification prlocedures with training sequences. The proposed 
method leads to a very accurate estimate (much bett#er than any 
of the previous algorithms) of the impulse response with a much 
smaller sample size (comparable to estimation procedures using 
a training sequence) than any other blind identification algorithm 
proposed till now. Moreover, the computational complexit,y of this 
algorithm is also lower than other algorithms. This is especially 
true for smaller observation intervals and equivalent performance 
levels. Furthermoire the algorithm performs very welll even under 
small SNR’s and so it can be used in practical. applications which 
use rapidly varying channels with very low SNR. The main features 
of our algorithm a,re summarized below: 

1. This algorithm needs very few symbols. 111. our siinulation 
example for instance, we need 30 symbols as compatred to a 
100 symbols in Tong’s algorithm [l] and infact ‘our estimate 
of the impulse response with 30 symbols is much better than 
Tong’s estimate with 100 symbols. This implies that it can 
be used in a wide range of applications which have rapidly 
changing channels. 

2. The computational cost of the Basic Subspace algorithm is 
quite small and even with the extra additions for the least 
squares approach, the complexity is significant1,y lower than 
other blind equalization techniques. This is especially true 
for observation intervals of practical interest. 

3. The algorithm provides a wide range of choice;s to the user 
and the user can choose between different levels of compu- 
tational costs, accuracy levels and length of the e:;tirnation 
period depending on his or her need. 

4. The performance of th.is algorithm is very close t,o the asymp- 
totically ‘best’ algorithm, i.e. the least squares algorithm. 

5. Since the received signal is oversampled, it has a better im- 
munity to noise and interference [l], [Id]. 

6. The algorithm works directly on the data doma.in and SO the 
problems associated with other algorithms whkh are based 
on explicitly computing the statistics are not encountered. 

7. The Basic Subspace algorithm (although not the Ls- 
Subspace algorithm) can be used to estimate the channel even 
when nothing i s  known about the transmitted sequence. This 
will be useful in applications when the signal is received from 
an unknown transmitter. 
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Fig. 4.  100 estimates of the channel for (a) SNR=20 dB (b) SNR=15 
dB (c) SNR=10 dB and (d) SNR=5 dB for the EC-LS-Subspace 
Algorithm. In all cases the number of symbols used for each esti- 
mate=30. 
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Fig. 5. NRMSE versus SNR. 100 independent runs were used for 
estimates and (a) Each estimate of the channel used 35 symbols 
All estimates are for the EC-LS-Subspace Algorithm 
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Fig. 6. Number of FLOPS per estimate versus number of symbols 
used for each estimate. (a) Different Algorithms, SNR=30 dB (b) 
Different SNR’s for the EC-LS-Subspace Algorithm 
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