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Abstract— The potential for capacity increase in multi-
antenna wireless communication systems has drawn consider-
able attention to space-time codes. However, most of the exist-
ing space-time code construction methods have assumed ideal
channel models: either quasi-static fading or fast fading. In
this work, we derive the performance criteria for space-time
coded wireless communication systems taking into account both
spatial and temporal channel correlation. We show that if the
space-time correlation matrix is of full rank, the space-time
code design problem for correlated channels can be reduced to
the code design problem for fast fading channels. Some simula-
tion results are also presented to support the theory.

I. INTRODUCTION

In wireless communications, diversity techniques have
been used extensively to improve the quality of transmis-
sion at high data rates. Space-time (ST) codes represent a
combination of transmit diversity, modulation, and possibly
forward error correction. The performance criteria for both
quasi-static channels (the channel stays constant over one
frame period) and fast fading channels (the channel changes
independently from channel symbol period to channel sym-
bol period) were derived in [1], characterizing the ST codes
with two quantities: the diversity advantage, which describes
the asymptotic error rate decrease as a function of the signal
to noise ratio (SNR), and the coding advantage, which deter-
mines the vertical shift of the error performance curve.

Most of the existing ST code construction methods have
assumed ideal channel models: either quasi-static fading or
fast fading. For the quasi-static channel model, the authors
of [1] proposed design rules for two transmit antennas to
achieve the maximum diversity advantage. Later works [2],
[11] described systematic trellis code design methods for an
arbitrary number of transmit antennas.

The first ST trellis code construction method for the fast
fading channel model was described in [3]. ST codes for 2
transmit antennas and QPSK modulation were designed us-
ing the idea of signal set partitioning. In [4], the design of
ST codes for fast fading channels was also considered. The
authors found ST codes for 2 transmit antennas and QPSK
and 8PSK modulations through computer search. A system-
atic trellis code design method for fast fading channels was
proposed in [12].

The problem of code design for correlated fading channels
was addressed in [5]. In that work, it was assumed that for
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a communication system having K transmit antennas, the
channel stays constant for K channel symbol periods. The
performance criteria for this channel model were derived,
and hand crafted ST codes were proposed for a small number
of transmit antennas. In [6], the quasi-static channel model
was adopted, and the achievable diversity level was analyzed
as a function of the spatial correlation.

In this paper, we consider the problem of characterizing
the performance of ST codes taking into account both spa-
tial and temporal channel correlation. We derive the per-
formance criteria for a channel model in which the chan-
nel changes from channel symbol period to channel symbol
period in a correlated manner, assuming that the space-time
correlation matrix is of full rank. We show that for this trans-
mission scenario, the space-time code design problem for
correlated channels can be reduced to the code design prob-
lem for fast fading channels. Moreover, we present some
computer experiments to illustrate the theoretical results us-
ing a physical propagation model.

II. SYSTEM MODEL AND NOTATION

Consider a wireless communication system with K trans-
mit and L receive antennas (the transmit antennas are in-
dexed by k, k ∈ {0, 1, . . . ,K −1}, and the receive antennas
are indexed by l, l ∈ {0, 1, . . . , L−1}). The input bit stream
is divided into bs bit long blocks, forming B-ary (B = 2bs)
source symbols. At discrete time t (t = 0, 1, . . . , T − 1),
the ST encoder takes the current source symbol, bt (bt ∈
{0, 1, . . . , B − 1}), and outputs K B-ary channel symbol
indices. We denote the channel symbol index for antenna
k at time t by ikt . The channel symbol indices are mapped
onto channel symbols (or constellation points) by the modu-
lators and transmitted through the transmit antennas. In the
sequel, c(i) will represent the constellation point correspond-
ing to channel symbol index i (For example, in case of B-ary
PSK, c(i) = exp(j2πi/B), where j =

√
−1.). All the con-

stellations are assumed to be normalized so that the average
energy of the constellation is unity (if the channel symbols
are equally likely). ck

t = c(ikt ) will denote the constellation
point output by antenna k at time t. We will also use the
channel symbol vector, defined as: ct = [ c0t , . . . , c

K−1
t ]T .

The transmission medium is assumed to be a flat (fre-
quency non-selective), correlated Rayleigh fading channel.
αk,l(t) will represent the path gain between transmit antenna
k and receive antenna l at time t. These path gains are
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modeled as complex, zero mean, Gaussian random variables
with unit variance, and are assumed to be known by the re-
ceiver. Based on these assumptions, after down-conversion,
matched filtering and sampling, rl

t, the received signal at re-
ceive antenna l at discrete time t, can be expressed as

rl
t =

K−1∑

k=0

√
E0

K
αk,l(t)ck

t + zl
t, (1)

where E0 is the average transmission energy per source sym-
bol (each transmit antenna transmits with E0/K average
transmit energy). The receiver noise, denoted by zl

t, is taken
from samples of independent, complex, zero mean, Gaus-
sian random variables with variance N0. The average SNR
per source symbol at receive antenna l will be defined as
SNRl = E0/N0.

Due to decoding errors, the receiver may decode a differ-
ent sequence of channel symbols. The erroneously decoded
channel symbol for transmit antenna k at time t will be de-
noted by ĉk

t , and the vector of decoded channel symbols at
time t will be given by ĉt = [ ĉ0t , . . . , ĉ

K−1
t ]T .

In the sequel, the notation diag(a1, a2, . . . , aN ) will be
used to represent a diagonal matrix with scalar elements
a1, a2, . . . , aN along the main diagonal. The entries in the
vectors, and the rows and columns of the matrices will be in-
dexed from 0. All vectors are assumed to be column vectors,
unless mentioned otherwise.

III. PERFORMANCE CRITERIA

In this section, we derive the performance criteria for
space-time correlated Rayleigh fading channels. The criteria
are based on an upper bound on the pairwise error probabil-
ity [7], derived for a general transmission scenario in which
the received signal vector can be expressed as

r =

√
E0

K
Γα+ z. (2)

In (2), Γ denotes the matrix of sent channel symbols, α
stands for the complex, zero mean, Gaussian path gain vec-
tor with correlation matrix R = E(ααH), and z denotes
the receiver noise vector consisting of complex, zero mean,
independent, Gaussian random variables with variance N0.
It can be shown [7] that the probability that the maximum
likelihood decoder erroneously decodes the channel symbol
matrix Γ̂ if Γ was sent can be upper bounded as

P (Γ̂|Γ) ≤

(2r−1
r−1

) (
E0

KN0

)−r

Πr
i=1γi

, (3)

where r and γi’s are the rank and the nonzero eigenvalues
of the matrix ∆R∆H , respectively, and ∆ is the channel
symbol difference matrix, defined as ∆ = Γ − Γ̂.

The performance criteria are obtained by evaluating (3)
when the received signal is described by (1). Toward this
end, we can define the matrices

Γk = diag(ck
0 , c

k
1 , . . . , c

k
T−1),

Γx = [ Γ0,Γ1, . . . ,ΓK−1 ],

and the row vectors

rl = [rl
0, r

l
1, . . . , r

l
T−1],

αk,l = [αk,l(0), αk,l(1), . . . , αk,l(T − 1)],

zl = [zl
0, z

l
1, . . . , z

l
T−1].

Using these quantities, the LT by 1 received signal vector

r = [r0, r1, . . . , rL−1]T

is given by (2), with the LT by KLT channel symbol matrix
Γ = diag(Γx,Γx, ...,Γx), the LT by 1 noise vector z =
[ z0, z1, . . . , zL−1 ]T , and the KLT by 1 path gain vector

α = [ α0,0, α1,0, . . . , αK−1,0, α0,1, α1,1, . . .

. . . , α0,L−1, α1,L−1, . . . , αK−1,L−1 ]T .

The correlation matrix R has KLT rows and KLT columns,
and it is assumed to be of full rank (i.e. its eigenvalues are
real and positive). Defining the matrix

Γ̂k = diag(ĉk
0 , ĉ

k
1 , . . . , ĉ

k
T−1),

the erroneously decoded channel symbol matrix, Γ̂, can be
expressed similarly to Γ, resulting in the LT by KLT chan-
nel symbol difference matrix ∆.

Assume that for τ time instants t0, t1, . . . , tτ−1, the sent
and the erroneously decoded channel symbol vectors are dif-
ferent, i.e. ct − ĉt �= 0 for t ∈ {t0, t1, . . . , tτ−1}, and for
the rest of the time instants, they are the same. Therefore,
the sent and decoded channel symbol vectors correspond-
ing to the times t �∈ {t0, t1, . . . , tτ−1} will produce all zero
rows and columns in the ∆ channel symbol difference ma-
trix. These rows and columns can be eliminated from the
analysis in the following way. For each t �∈ {t0, t1, . . . ,
tτ−1}, rows t, t+ T, t+ 2T, . . . , t+ (L− 1)T and columns
t, t + T, t + 2T, . . . , t + (KL − 1)T are removed from the
matrix ∆, producing a new Lτ by KLτ channel symbol dif-
ference matrix, ∆′. ∆′ has a structure similar to Γ, but the
matrices Γk are replaced with

∆′k = diag(ck
t0 − ĉk

t0 , c
k
t1 − ĉk

t1 , . . . , c
k
tτ−1

− ĉk
tτ−1

).

Note that ∆′ has full row rank.
In addition, rows and columns t, t + T, t + 2T, . . . , t +

(KL − 1)T must also be removed from R, resulting in the
KLτ by KLτ matrix R′. Since only all zero rows and
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columns have been deleted from ∆, the nonzero eigenval-
ues of ∆R∆H and ∆′R′∆′H are the same. It is shown in
the Appendix that the relation

r∏

i=1

γi = det(∆′R′∆′H) ≥ det(Λmin(Lτ)) det(∆′∆′H)

(4)
holds, where Λmin(Lτ) is a Lτ by Lτ diagonal matrix with
the Lτ smallest eigenvalues of R along the diagonal. Since
R is positive definite, det(Λmin(Lτ)) is strictly positive.
Moreover, ∆′ has full row rank, so det(∆′∆′H) is also
strictly positive. Consequently, the matrices ∆R∆H and
∆′R′∆′H are both of rank Lτ . Combining (3) with (4), and
recognizing that

det(∆′∆′H) =
τ−1∏

i=0

||cti
− ĉti

||2L,

where ||x|| =
√

xHx, we arrive at the upper bound

P (Γ̂|Γ) ≤
(

E0
KN0

)−Lτ (2Lτ−1
Lτ−1

)

· 1
det(Λmin(Lτ))

τ−1∏
i=0

||cti
− ĉti

||−2L. (5)

The performance criteria now can be formulated to mini-
mize the maximum value of P (Γ̂|Γ):

1. Design for diversity advantage (distance criterion):
The minimum number of time instants when the correct and
the decoded channel symbol vectors are different (the min-
imum value of τ ) taken over all possible correct and erro-
neously decoded channel symbol vector sequences must be
maximized.

2. Design for coding advantage (product criterion): The
minimum of the norm products

δ =
τ−1∏

i=0

||cti
− ĉti

||2

taken over all possible correct and erroneously decoded
channel symbol vector sequences must be maximized.

Note that the these performance criteria are the same as
the performance criteria proposed for fast (independently)
fading channels [1]. This is not surprising since in case of
independent fading, the matrices R, R′ and Λmin(Lτ) be-
come identity matrices, and (5) simplifies to a form similar
to the upper bound derived in [1].

In the above derivation, the matrix R was assumed to
have full rank. If the magnitudes of the correlation val-
ues E

[
αk1l1(t1)α

∗
k2l2

(t2)
]

diminish fast enough as |k1 −
k2|, |l1 − l2|, and |t1 − t2| increase, this assumption will
be true. This corresponds to the condition that the magni-
tude of the correlation decays fast enough as the transmit

and receive antenna separation and the time separation in-
crease. If this condition holds, the space-time code design
problem for correlated channels can be reduced to the code
design problem for fast fading channels. Moreover, the cor-
relation only causes coding advantage loss, and it is possible
to achieve full diversity advantage. Here we define full diver-
sity as the level of diversity achievable by a communication
system having K transmit and L receive antennas operating
in fast (independent) fading environment. However, if this
condition is not satisfied, the correlation matrix may become
rank deficient, causing loss of diversity advantage. In this
case, the analysis can be performed by deleting more rows
and columns from R and ∆.

IV. SIMULATION RESULTS

To illustrate the above analytical results, we performed
some computer simulations. In this section, we present the
bit error rate curves of the ST trellis codes of [3], [4] and [12]
designed for fast fading channels, and the ST trellis codes of
[8] designed for quasi-static fading channels. All of these
codes have very good performance in fast fading environ-
ment [12]. The symbol N will denote the number of encoder
states.

The source symbols were transmitted in frames of length
130, and the Viterbi algorithm with decoding depth of 20
state transitions was used to decode the received signals. For
the fast fading channel model, the path gains between the
transmit and the receive antennas were independent, com-
plex, zero mean, Gaussian random variables with unit vari-
ance at each discrete time instant.

In the correlated fading case, the path gains were gener-
ated according to the statistical model described in [13]. The
base station (BS) was the transmitter and the mobile termi-
nal (MT) was the receiver. Both the BS and the MT were
assumed to have a uniform, linear array of isotropic anten-
nas, and the MT was surrounded by a ring of scatterers. The
model parameters were: dB - BS antenna separation, dM -
MT antenna separation, D - distance between the BS and the
MT, R - radius of the scatterer ring, Ns - number of scat-
terers, β - direction of the BS antenna array, γ - direction of
the MT antenna array, σ - direction of the MT movement, v
- the magnitude of the MS speed, fc - the carrier frequency
(or λc - the carrier wavelength), and Ts - the channel symbol
period.

The ith (i = 0, 1, . . . , Ns − 1) scatterer was at an an-
gle θi from the middle point of the MT antenna array. For
each frame, the scatterer angles were randomly generated in
the range [−π, π] with uniform distribution. The effect of
scatterer i was modeled as multiplication of the incident sig-
nal by a scattering coefficient Si. The scattering coefficients
were modeled as independent, complex, zero mean, Gaus-
sian random variables with variance 1/Ns.

During the simulations, we used the following parameter
values: D = 1km, R = 20m, Ns = 20, β = 3π

4 rad,
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γ = π
4 rad, σ = 3π

4 rad, and v = 70km/h. Three cases were
considered: (a) high correlation (Ts = 50µs, fc = 900MHz,
dB = 5λc, dM = 0.6λc), (b) low correlation (Ts = 500µs,
fc = 2GHz, dB = 25λc, dM = 5λc), and (c) fast fading (no
correlation). Note that the value of dM is significant only if
the MT has multiple receive antennas.

Figure 1 depicts the performance of the ST code designed
by the method described in [12] for 2 transmit antennas and
QPSK constellation (K = 2, B = 4, N = 4) with 1 receive
antenna. The bit error rate curves for the same code with 2
receive antennas are shown in Figure 2. Both curves demon-
strate that the spatio-temporal correlation has a significant
impact on the performance. Moreover, it can be observed
that in the low correlation case, the bit error probability curve
becomes approximately parallel to the fast fading bit error
probability curve at high SNR. Therefore, they achieve the
same diversity level, validating our analysis.

Figure 3 compares the performance of the ST trellis codes
from [3], [4], [12] and[8] constructed for a 2 transmit antenna
system and QPSK modulation (K = 2, B = 4, N = 4)
with 1 receive antenna. It is observed that all codes have
essentially the same performance, with the ST code from [8]
being a little better in the high correlation case and being a
little worse in the fast fading case. Note that the ST code of
[12], the result of a systematic code design method, achieves
the same performance as the ST code of [4], which was found
by exhaustive search.

The bit error rate curves for 3 transmit antennas and QPSK
modulation (K = 3, B = 4, N = 16) with 1 receive antenna
are depicted in Figure 4. The ST code given in [12] is com-
pared to the ST code described in [8]. The performance of
the two codes is almost identical, and the bit error curves
for the fast fading channel model and for the low correla-
tion channel model are approximately parallel at high SNR.
The ST code of [8], also found by computer search, performs
slightly better in the high correlation case, which is expected
since this code was designed for quasi-static channels.

V. CONCLUSION

We derived the performance criteria for correlated
Rayleigh fading channels, assuming that the space-time cor-
relation matrix has full rank. The obtained performance cri-
teria imply that in this case, the space-time code design prob-
lem for correlated channels can be reduced to the code design
problem for fast fading channels. Moreover, the maximum
achievable diversity is the same as the achievable diversity
over fast (independently) fading channels, and the channel
correlation only causes coding advantage loss.

APPENDIX

For simplicity, we assume that R is p by p, R′ is m by m,
and ∆′ is n by m, with p ≥ m ≥ n. In our case, p = KLT ,
m = KLτ and n = Lτ . Let us denote the positive and
real eigenvalues of R by λ1 ≥ λ2 ≥ . . . ≥ λp. Using

the singular value decomposition, ∆′ can be expressed as
∆′ = X[Σ 0]YH , where X is an n by n unitary matrix, Y
is an m by m unitary matrix, Σ is an n by n diagonal ma-
trix with the singular values along the diagonal, and 0 is an
n by (m − n) zero matrix. The matrix R′ admits the spec-
tral decomposition R′ = UΛ′UH

, with an m by m unitary
matrix U, and a diagonal matrix Λ′ = diag(λ′

1, λ
′
2, . . . λ

′
m).

The quantities λ′
1 ≥ λ′

2 ≥ . . . ≥ λ′
m are the real eigenval-

ues of R′. We can define Z, the m by m unitary matrix,
as Z = YHU, and partition Z into an n by m matrix Z1,

and an (m − n) by m matrix Z2 as Z =
[
Z1
Z2

]
. The matrix

Q = ZΛ′ZH will have the same eigenvalues as R′. If Q
is partitioned as Q =

[
Q11 Q12
Q21 Q22

]
, where Q11 = Z1Λ′Z1

H

is an n by n principal submatrix of Q, ∆′R′∆′H can be
expressed as

∆′R′∆′H = XΣQ11ΣHXH . (6)

Since ∆′ has full row rank, the matrix Σ has full rank. Using
Fisher’s inequality [9], it can be easily verified that Q11 also
has full rank. Moreover, all matrices on the right hand side of
(6) are n by n. As a consequence, we have the relationship

det(∆′R′∆′H) = det(Q11) det(ΣΣH) det(XXH)

= det(Q11) det(∆′∆′H). (7)

To obtain a lower bound on det(Q11), we use Cauchy’s in-
terlacing theorem [10] (also known as the inclusion principle
[9]), stated as follows: Let Q be an m by m Hermitian matrix
with real eigenvalues λ′

1 ≥ λ′
2 ≥ . . . ≥ λ′

m. Furthermore,
let Q11 be an n by n (m ≥ n) principal submatrix of Q,
with real eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn. Then we have

λ′
i ≥ µi ≥ λ′

m−n+i, for i = 1, 2, . . . , n.

Moreover, since R′ is a principal submatrix of R, we can
apply Cauchy’s interlacing theorem to obtain

λi ≥ λ′
i ≥ λp−m+i, for i = 1, 2, . . . ,m.

Therefore, if we form the diagonal matrix Λmin(n) from
the n smallest eigenvalues of R (i.e. Λmin(n) =
diag(λp−n+1, λp−n+2, . . . , λp)), we obtain the bound

det(Q11) ≥ det(Λmin(n)). (8)

Note that (8) also shows that Q11 has full rank. Finally, com-
bining (7) with (8) yields (4).
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