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ABSTRACT 

Space-time codes have been developed to answer the need for high 
data rates in future wireless communication systems. In this work, 
we propose a systematic code construction method that provides 
full diversity advantage for any number of transmit antennas, any 
number of encoder states, and any constellation. Our approach is 
to exploit the properties of the state transitions in the trellis to force 
the desired structure on the channel symbol difference matrix. The 
design rules do not specify the space-time codes completely, leav- 
ing room for further optimization for coding advantage. 

1. INTRODUCTION 

In wireless communications, diversity techniques are widely used 
to combat the adverse effects of the radio propagation environ- 
ment. For example, channel coding, a form of time diversity, adds 
redundancy with a certain algebraic structure that can be exploited 
to detect and correct transmission errors. Spatial diversity corre- 
sponds to redundancy in the spatial domain: building a system 
with multiple transmit and/or receive antennas can improve the 
quality of the wireless link by making use of the larger number of 
propagation paths between the transmitter and the receiver. 

Space-time (ST) trellis codes represent a combination of for- 
ward error correction, transmit diversity and modulation. Refer- 
ences [ 11 and [2] derived the performance criteria that characterize 
the ST codes with two quantities: the diversity advantage, which 
describes the asymptotic error rate decrease as a function of the 
signal to noise ratio (SNR), and the coding advantage, which de- 
termines the vertical shift of the error performance curve. The 
authors of [2] proposed design rules for two transmit antennas to 
achieve the maximum diversity advantage. They also derived a 
lower bound on the complexity of the encoder and the decoder for 
the desired diversity advantage and data throughput. This lower 
bound states that in order to achieve a diversity advantage of K 
and to transmit one B-ary source symbol per state transition, the 
encoder and the decoder must have at least N,,, = BK-' states. 

The repetition coded delay diversity scheme of [3] was the first 
systematic design rule for arbitrary number of transmit antennas. 
Using this method, ST codes achieving full diversity advantage can 
be designed for arbitrary constellations and encoders with Nmin 
states. They also introduced the idea of zero symmetry to constrain 
computer search for ST codes with more than two antennas. 

The authors of [4] transformed the design problem into binary 
domain. They proposed design methods for an arbitrary number of 
transmit antennas and an arbitrary number of states, but only for 
BPSK and QPSK constellations. Moreover, the design methods of 
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[3] and [4] for full diversity advantage uniquely determine the ST 
codes, not leaving room to improve the coding advantage. 

In this paper, we propose a systematic design method based 
on an altemative approach: we exploit the structure of the trellis to 
design ST codes that provide full diversity advantage for arbitrary 
number of transmit antennas, arbitrary power of two number of 
encoder states (as long as it satisfies the lower bound) and arbitrary 
constellations. Our method can be treated as a generalization of the 
results of [2] and [3]. The design rules for full diversity advantage 
do not specify the ST codes completely, offering the possibility to 
further optimize for coding advantage. 

The paper is structured in the following way. In Section 2, we 
will describe the system model and introduce the notation used in 
this paper. The design criteria derived in [ I ]  and [2] will be briefly 
restated in Section 3. The development of our design method will 
also be described in this section. Section 4 will provide the simu- 
lation results, and some conclusions are drawn in the last section. 

2. SYSTEM MODEL 

Consider a wireless communications system with K transmit and 
L receive antennas. The input bit stream is divided into b bit 
long blocks, forming B-ary ( B  = 2') source symbols. The ST 
encoder works as a finite state machine with N states: it takes 
the current source symbol, & (bt E {0,1, ..., B - 1)) at dis- 
crete time t ,  and govemed by this input and the current state, S 
(St E {0,1, ..., N - 1)) , it moves to the next state, St+'. During 
this state transition, the encoder outputs K B-ary channel symbol 
indices. We denote by i'"(St, b t )  the channel symbol index for an- 
tenna k , k = 0, 1, ...) K - 1, generated during the state transition 
from St when the current source symbol is bt. We will also use 
the channel symbol index vector, defined as: 

These channel symbol indices are mapped onto channel symbols 
(or constellation points) by the modulators and transmitted through 
the transmit antennas. In the sequel, c(i) will represent the con- 
stellation point corresponding to channel symbol index i. (For 
example, in case of B-ary PSK, c(i)  = e x p ( j 2 ~ i / B ) ,  where 
j = a.) All the constellations are assumed to be normalized so 
that the average energy of the constellation is one (if the channel 
symbols are equally likely). c(ik(St, b t ) )  will denote the constel- 
lation point output by antenna k when the current state is S and 
the current input is bt. In vector notation: 

c(St1bt) = [ c(i0(St,bt)),c(i'(St1bt)), ...,c(i"-'(St,bt))]'. 
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The transmission medium is assumed to be flat (frequency 
nonselective), quasi-static Rayleigh fading channel. The quasi- 
static property means that the channel remains constant over a cer- 
tain time, called the frame period, and changes independently from 
one frame to the other. 

Furthermore, some additional assumptions are made. First, the 
receiver has knowledge of the path gains between the transmit and 
the receive antennas. They are modeled as independent, complex, 
zero mean, circularly symmetric Gaussian random variables with 
unit variance. Second, the receiver is perfectly synchronized with 
the transmitter. 

At the receiver side, the received signals at each receive an- 
tenna are demodulated, and the ST decoder produces the decoded 
bit stream. The receiver noise is modeled as independent, com- 
plex, zero mean, circularly symmetric Gaussian random variables. 

3. DESIGN FOR DIVERSITY ADVANTAGE 

Assume that the previously decribed transmitter sends T (T > 
K )  B-ary source symbols to the receiver. The ST encoder, while 
encoding the data, goes through the following sequence of states: 

so bo, s1 % sz b2, . . . bT-? ST-1 bT-? ST. 

In words, the encoder starts in SO, takes the first input b-tuple, 
bo, moves to S I ,  and so on. As a result of this state transition se- 
quence, the encoder produces the channel symbol vector sequence: 

c(So, bo) ,  c(S1, b i ) ,  . . . , c ( S ~ - i , b ~ - i ) .  

The above vector sequence can be arranged into a K by T matrix, 
C :  

c = [ C(So, bo) ,  C (  S i ,  b i ) ,  . . . , C (  ST-1, br-  1 )  1. 
The decoder, due to decoding errors, goes through a different 

sequence of states, 

b' b' b' blT-2 
SA -3 s', 1, s; 2, . . . + s;- 

producing the erroneously decoded source symbol sequence { 6 }  
and the K by T channel symbol matrix (2': 

C' = [ c($,  bb) ,  .(Si, b ; ) ,  . .  . , C(S&-1, bk-1)  1. 
We can define B, the channel symbol difference matrix as: 

B = C - C' and a K by K matrix A as: A = BBH. The de- 
sign criteria [ 1],[2] for the earlier described channel model were 
derived to minimize the probability that the decoder erroneously 
decodes C' if C was sent: 

1. Design for full spatial diversity (rank criterion): The matrix 
A (or equivalently, the matrix B) must be of full rank for any 
distinct C and C' matrices. 

2. Design for coding advantage (determinant criterion): The 
minimum determinant of A taken over all distinct C and c ma- 
trices must be as large as possible. If the minimum determinant is 
y, then a coding advantage of Kfi has been achieved. 

The design criteria described above do not provide a system- 
atic method to construct ST trellis codes. In what follows, we pro- 
pose design rules that guarantee that the resulting ST code achieves 
full spatial diversity. 

In the ST encoder, B channel symbol index vectors are as- 
signed to each state, according to the branches emanating from 
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Fig. 1. Example ST code for 3 antennas, QPSK 

that state. The current source symbol selects one of them, and the 
kth (k = 0,1,  ..., K - 1) index of the chosen vector determines 
the constellation point for antenna k. Figure 1 depicts an example 
ST code for 3 antennas and QPSK constellation (K = 3, N = 
16, b = 2). In this case, if the current state is state 2 and the value 
of the current source symbol is 3 (binary 1 l), the ST encoder se- 
lects the 3rd channel symbol index vector; [3,3, Op, and moves to 
state 11. The Oth, 1st and 2nd antennas will transmit the channel 
symbols corresponding to the indices 3,3 and 0, respectively. 

Assume that the encoder has N = RBK+p-l  states with R = 
2', B = 2 b ,  b > 0 ,  p 2 0 and 0 5 r < b. Any power of two 
N 2 Nmin can be put in this form. The state transition of the 
encoder at time t is given by: 

St = (BSt-1 + bt-1) mod N .  

By unfolding the recursion, for 1 5 t. 5 K + p - 1, St can be 
expressed as: 

t - 1  

St = Bt (Somod(RBK+P-t-l)) + Bt-l-mbm. (1) 

Without loss of generality, we can assume that the first de- 
coding error occurs at state SO, so the correct and erroneous paths 
diverge at SO. As a consequence, we have So = Sh and bo # bb. 
From Equation (I) ,  we can conclude that for arbitrary p 2 0 and 
0 5 r < b, the shortest length error path is at least K long (i.e. 
for t = 1 , 2 ,  . . . , K - 1, St # S;). The paths diverging at SO can 
merge only at SK or later. 

For now, we are concerned only about the first K long segment 
of all error paths of length K or larger immediately after the first 
error event has occured. Our goal is to construct the K by K 
channel symbol difference matrix B1, defined as 

m=O 

Bi = [ c(S0, bo)  - c ( S ~ ,  bb), . . . 
. . .  ,C(SK-l,bK-l)-C(Sk-l,b;(-l)], 
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in such a way that it is of full rank for any possible correct and 
erromeous paths through the trellis. Our method is to make & 
upper triangular with nonzero diagonal elements. As we go state 
transition by state transition in the trellis from & to S K ,  the design 
rules will force the desired structure on the B1 matrix. 

The SO -+ SI state transition is special since both the correct 
and the erroneous paths start at the same state. The goal is to set the 
0th entry of the 0th column of BI to a nonzero value and to zero 
out the rest of the entries in that column. This can be achieved by 
the following conditions that form the first half of the design rules: 

(1 a) The 0th indices of the channel symbol index vectors at the 
same state must be different. 

(1 b) The remaining indices of the channel symbol index vec- 
tors at the same state must be the same. 

In our example, assume that the 4 = 0 (top) path is the correct 
path and the bb = 3 (bottom) path is the erroneously decoded path. 
The channel symbol index vectors [0,3,  0IT and [3,3, OIT have 
different 0th indices, but the 1st and 2nd indices are the same; 
therefore, the 0th column of the B1 matrix will be [l + j ,  0, OIT .  

FortherestofthestatetransitionsSt -+ St+l,t = 1,2, ..., K -  
1, the objective is to set the tth entry of the tth column of B1 to 
a nonzero value and to zero out all the entries below the tth entry 
in that column. The method will be explained with the aid of the 
definitions given below: 

Defnition I : A level t group is a collection of all possible 
destination states that can be reached from a given SI starting state 
at state transition t for any bo, bl , . . . , bt-1 input sequence. 

Defnition 2 : A subgroup of a level t group is a collection 
of all possible destination states that can be reached from a given 
SO starting state through a given 4 starting branch in the trellis at 
state transition t for any 61, b2, . . . , bt-1 input sequence 

Based on Equation (1) and the above definitions, we can es- 
tablish the following facts for t = 1 ,2 ,  . . . , K - 1: 

1. Any level t group starts at state m such that m mod Bt = 0 
and consists of Bt consecutive states. 

2. Any subgroup of a level t group starts at state m such that 
m mod Bt-' = 0 and consists of Elt-' consecutive states. 

3. Every level t group consists of B disjoint subgroups. 
4. Because both the correct and the erroneous paths start from 

the same state (SO = SA), St and Sl belong to the same level t 
group. 

5. Since bo # bb, St and Si belong to different subgroups of 
the same level t group. 

The first 3 facts describe the relationship between the encoder 
states and the groups and subgroups at different levels. In the case 
of the ST code of Figure I ,  the level 1 groups consist of 4 consec- 
utive states, starting at state 0 , 4 , 8  and 12. The subgroups consist 
of only one state. The only level 2 group is comprised of all the 
16 states, and its subgroups are made up of 4 consecutive states, 
starting at state 0 , 4 , 8  and 12. 

Fact 4 states that if the mth indices of the channel symbol 
index vectors at states belonging to any level t group are the same, 
then the mth entry of the tth column of B1 will be zero since, 
at state transition t ,  both the correct and the erroneous paths go 
through states that belong to the same level t group. For example, 
if we take a look at the SI + Sz state transition in Figure 1, state 
8 and 11 belong to the same level 1 group, and the 2nd indices of 
the channel symbol index vectors [0, 0, 1IT and [I, 2, 1IT are the 
same. As a consequence, the 1st column ofthe B1 matrix becomes 
[l - j ,  2,OIT. 

The last fact can be interpreted as follows: if the mth indices 
of the channel symbol index vectors at states belonging to differ- 
ent subgroups of the same level t group are different, then the mth 
entry of the tth column of B1 will be nonzero since, at state tran- 
sition t ,  the correct and the erroneous paths go through states that 
belong to different subgroups of the same level t group. To con- 
tinue the example with the SZ -+ S3 state transition, state 0 and 
13 belong to different subgroups of the same (only) level 2 group. 
The 2nd indices of the channel symbol index vectors [0, 0, Or and 
[0,1,  3IT are different, so the 2nd column ofthe matrix B1 will be 

Putting the previously described pieces together, we can state 
the second half of the design criteria: 

(2a) For t = 1,2, . . . , K - 1, the tth indices of the channel 
symbol index vectors at states belonging to the same subgroup of 
any level t group must be the same, and they must be different 
from the tth indices of the channel symbol index vectors at states 
belonging to any other subgroup of that group. 

(2b) For t = 1 ,2 , .  . . , K - 2, the ( t  + l)st,  (t + 2)nd ,..., 
( K  - 1)st indices of the channel symbol index vectors at states 
belonging to the same level t group must be the same. (Note that 
criterion (2b) is omitted fort  = K - 1.) 

Having made the matrix B1 full rank, the final task is to show 
that the channel symbol difference matrix B corresponding to the 
transmission of all T source symbols is also of full rank. The 
matrix B can be decomposed as: 

[O,  1 - j ,  1 + jlT. 

where B1 is as defined above and Bz is a K by (T - K )  matrix. 
Since Bz is arbitrary, this description includes the cases when the 
correct and the decoded paths diverge and merge several times. 
From linear algebra, it is well known that if B1 is of full rank, 
then B is also of full rank. Consequently, the design rules will 
produce codes that provide full diversity advantage. 

4. SIMULATION RESULTS 

To illustrate the performance of the codes designed using the above 
described method, we show some simulation results. The simu- 
lated communication system had one receive antenna. The source 
symbols were transmitted in frames of length 130, and the Viterbi 
algorithm with decoding depth of 20 state transitions was used to 
decode the received signals. For each frame, the path gains be- 
tween the transmit antennas and the receive antenna were modeled 
as independent, complex, zero mean, circularly symmetric Gaus- 
sian random variables with unit variance. 

Since the frame error probability depends on the length of the 
frame and it does not seem very informative, we present probabil- 
ity of bit error curves as functions of the average signal to noise ra- 
tio (SNR) per source symbol at the receive antenna. In the sequel, 
the expression coding gain will refer to the difference (in dB) of 
transmit energies to achieve the same probability of bit error value. 

The repetition coded delay diversity of [3] is a special case of 
our design rules. Figure 2 shows the performance of this scheme 
for different number of transmit antennas ( K  = 2 , 3 , 4  and N = 
4,16,64, respectively) and QPSK modulation ( b  = 2). It can be 
observed that the codes indeed provide different spatial diversity 
advantages since the steepness of the bit error rate curves is differ- 
ent. 
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with finite decoding depth from working properly. Moreover, the 
definition of coding advantage [2] is based on an upper bound on 
the &(z) Gaussian tail probability function, and this bound is not 
tight at low SNR. The minimum determinant of the delay diversity 
scheme is 71 = 0.2010, and the minimum determinant of our ST 
code is 2 = 0.6863, so the relative coding advantage becomes 
K& = 1.51. The simulation also shows that the perfor- 

mance improvement is more pronounced: at higher S N R ,  more 
than 1 dB coding gain can be achieved. 

5. CONCLUSION 

Having observed the group/subgroup structure of the state transi- 
tions, we proposed systematic design rules for ST trellis codes that 
achieve full spatial diversity. The simulation results demonstrate 
that the remaining freedom in the design space can be used to im- 
prove the performance. As the size of the constellation increases, 
the additional optimization for coding advantage becomes more 
important. 
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Fig. 3. ST codes for 4 antennas, QPSK 
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