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Abstract 

A dynarnic programming optimization method is used 
to obtain the optimal rate control policy in a wireless 
network with fading channel. In a wireless network it is 
assumed that the base station is capable of transceiving 
data packets at two rates, either Rh or RI (Rh > R1). 
An optimal policy is derived which jointly minimizes 
the transmission delay and the number of rate switch- 
ings in the network. Numerical results indicate that 
by sacrificing only 1% of transmission quality in terms 
of the average delay one can achieve more than 50% 
reduction in switching load of the network. Our an- 
alytical as well as numerical results confirm that the 
optimal policy is a threshold policy. 

Keywords: Optimal Rate Control, Dynamic Pro- 
gramming, Wireless Networks. 

1 Introduction 

The increasing popularity of the wireless network ser- 
vices with limited amount of available resources calls 
for highly efficient resource allocation methods [1],[2], 
[3]. One of the major issues in wireless data networks 
is the rate allocation (or control) problem. This is es- 
pecially important in the downlink, since in a wireless 
data network most of the traffic flow is from the base 
station to mobiles, e.g. an Internet connection or a 
multimedia (voice/image/data) connection. In this pa- 
per, we investigate the rate control problem for wireless 
channels from an optimal control point of view. There 
exists some literature on obtaining the nature of opti- 
mal control policies for a wide range of related prob- 
lems [1],[3],[4]. In [2], the authors consider the problem 
of stochastic control of handoffs in a cellular networks 
and formulate an optimal policy for base station hand- 
off problem. 

In this paper, we derive some properties of a class of 
optimal rate control problem using the theory of dy- 
namic programming (DP). The general nature of the 
problem considered is as follows. In a wireless net- 
work, the base station is capable of transmitting data 
packets a t  two rates, either Rh or RL (Rh > R1). These 
two rates could correspond to two different modula- 
tion schemes such as 32-ary PSK and QPSK. The base 
station transmits the data packets over a wireless chan- 
nel to mobile users. The received SNR by the mobile 
users is subject to fluctuation due to fading and noise. 
We assume a finite state Markov model (FSM) for the 
wireless channel. The mobile constantly monitors the 
received signal to noise ratio (SNR). At each measure- 
ment instant the mobile observes the state of the chan- 
nel and determines which state of channel it belongs 
to. At each decision making instant by employing an 
optimal strategy, mobile decides whether to send a re- 
quest to the base station to switch the rate or not. For 
this purpose there is a feedback channel (assumed to 
be noise free) so the user can send its request to the 
base station. Figure 1 illustrates the block diagram of 
a system where the mobile employs an optimal strategy 
in choosing the rate in the network. 

Figure 1: Block diagram of a system where the mobile em- 
ploys an optimal strategy in chossing the data 
rate in the network. 
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The optimal policy which determines the choice of rates 
(or modulation schemes) jointly minimizes the delay in 
sending the packets and the number of rate switch- 
ings. We show that under certain conditions the opti- 
mal strategy has the form of a threshold policy. In a 
wireless network, shadowing and fading effects result in 
signal strength variations in mobile environment. This 
may cause unnecessary and frequent rate switchings 
which is highly undesirable, because it translates to 
protocol overheads to switch the rate (rate negotiation 
phase). An improperly designed rate control algorithm 
can result in an unacceptably high level of bouncing 
(resulting in high signaling costs) and/or a high proba- 
bility of forced termination. Delaying a rate switching 
as the signal strength received from the base station 
starts to deteriorate may result in lost data transmis- 
sion session. A good rate control algorithm also re- 
duces the occurrence of the involunteer termination of 
the data transmission in the network. 

The paper is organized as follows. Section 2 reviews 
some of the relevant results from the theory of dynamic 
programming. In Section 9 a finite state Markov chan- 
nel model for wireless Rayleigh fading channels is pre- 
sented. Optimal data rate control problem cast as an 
infinite horizon discounted cost dynamic programming 
problem forms the subject of Section 4. The average 
delay of transmitting the packets and expected number 
of rate switchings are discussed in Section 5. Numerical 
results are presented in Section 6. Section 7 includes 
our conclusions and remarks. 

2 Dynamic Programming 

In this section , we review some of the relevant results 
from the theory of dynamic programming [5],[6],[7]. 
which will be used subsequently to derive the nature 
of optimal policies for a class of rate control problems. 
The stochastic model of the wireless channel is such 
that the states of the underlying Markov model of the 
channel evolves according to a time invariant Markov 
transition rule independent of past and present ac- 
tions (chosen rate) taken by the mobile. Let {st}EO 
be a discrete time process. At any given time the 
state of the channel st takes its value from a countable 
state space denoted by the set of non-negative integers 
{0,1,2, ..., K - 1). In our problem this set represents 
the finite state space of the underlying Markov model 
of the channel. At each time instant t E (0,1,2 ...}, 
we are required to choose an “action” at, at E A, 
where A denotes the given set of all admissible ac- 
tions. In our rate control problem the set of admis- 
sible actions is A = {RI,  Rh) and the action is to 
choose one of these two rates. From now on we en- 
code the set of admissible actions with 0 for Rl and 
1 for Rh, therefore at E { O , l } .  Let us assume that 
the optimal action (chosen rate) taken by the mobile 

for the time slot [t , t  + 1) is denoted by at. Therefore, 
at-1 denotes the optimal action taken by the mobile 
for the previous time slot [t - 1,t). Now let us define 
the aggregate state of the system as (st,at-l) which 
takes values in (0,1,. . , K - 1) x (0,l) .  Suppose that 
for time slot [t , t  + 1) the mobile chooses the optimal 
action (rate) at while the aggregate state of the sys- 
tem is ( s t ,  at-1). Then we incur an instantaneous cost 
R(st, at-1, a t ) ,  which is a mapping from the finite space 
R : (0,1,2 ..., K - 1) x (0 , l )  x (0 , l )  t) R, where R 
denotes the set of real numbers. The optimal policy 
7r is a mapping from the aggregate state space to the 
action space, i.e. T : {O,1,2 ..., K -  1) x (0, 1) e { O ,  I}. 
Given the evolution of the aggregate state of the sys- 
tem { s t , a t - l ) ~ o ,  we are interested in the solution of 
the following problem: 
Choose { a t ) g o  such that 

03 

v=(% i) L? qQ) [E m s t ,  at-l,at>l, (1) 
t=O 

is minimized, where Er denotes the expectation under 
the policy T.  With a-1 being arbitrary, the initial state 
SO = i ,  and 0 < /3 5 1 is the discount factor. This 
problem is called an infinite horizon discounted cost 
problem. The above cost reflects the fact that while 
choosing the action at at time slot [t,t + l), we would 
like to take into account the effect of this action on the 
future behavior of the system. 

An important subclass of policies, which are of par- 
ticular interest, is the class of stationary policies. If 
the mapping rule Tt does not depend on time t ,  the 
mapping is said to be a time-invariant mapping or a 
stationary policy. If a stationary policy 7r is employed, 
then the sequence of the states evolved in time forms 
a Markov chain and the evolution of states in time is 
called a Markov decision process (MDP) [5],[6],[7]. 

3 Markov Model for Wireless Channels 

The multipath effect in a wireless network results in 
the fluctuation of the received signal envelope that is 
Rayleigh distributed. The p.d.f. of a random variable 
distributed according to a Rayleigh distribution is il- 
lustrated in Figure 2. 

This channel is known as Rayleigh fading channel. Any 
partition of the received SNR into a finite number 
of intervals forms a finite state channel model. Let 
A0 < A1 < A z - . .  < AK = 00 be the thresholds of 
the received SNR. Then the Rayleigh fading channel is 
said to be in state IC, k = 0 ,1 , .  + .  , K - 1, if the received 
SNR is in the interval [Ak,  A k + l )  [8]. To calculate the 
transition probabilities pij  we make the following as- 
sumption: pij  = 0, li - j l  > 1. The Markov model 
for a multipath fading wireless channel is illustrated in 
Figure 3. 
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Figure 2: PDF of a random variable distributed according 
to a Rayleigh distribution. 
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ki ,K-2 

Figure 3: K-state noisy channel with Markov transitions 
modeling a Rayleigh fading Channel. 

4 Optimal Data Rate Control 

In this section we introduce a cost function which cap- 
tures the desired trade-off between data transmission 
quality and switching cost, in an appropriate balanced 
manner for the optimal rate control (allocation) prob- 
lem. In order to have a reasonable cost-per-stage R, 
each time the mobile unit switches between two rates 
rate Rl, and Rh this should be penalized by a cost as- 
sociated with rate switching. Let C, denote the cost of 
the rate switching. On the other hand a reward do (or 
dl)  encourages the mobile unit to switch the rate in or- 
der to minimize the transmission delay in the network. 
Therefore do and dl should correspond to transmission 
delay associated with the respective rate (or equiva- 
lently respective modulation). Associated with each 
modulation scheme there is a P, probability of symbol 
error versus SNR curve. The probability of symbol er- 
ror for M-ary PSK modulation for high SNR is given 

(2) 
7r 

by [91 
P e M ( Y s )  = 2 Q ( f i s i n ~ )  

Where ys is symbol SNR and Q(.)  is the &-function. 
Using the probability of symbol error, Pe, we can define 
a quantity which reflects the transmission delay asso- 
ciated with the corresponding modulation scheme. We 
use first order approximation of transmission delay do 

where G is a constant, k1 (ko)  is the number of bits per 
symbol and Pel (P,o) is the symbol error probability for 
rate Rh (Ill). In Figure 4, these two functions d l  and 
do are plotted for 32-ary PSK and QPSK modulations. 

250 30 A 

-10 -5 0 5 10 15 20 25 30 35 
SNR 

Figure 4: A function of transmission delay for 32-ary PSK 
and QPSK modulations. 

The final cost-per-stage function R is defined as follows: 

q s t ,  at-1, at )  
- at-1 # at 
- { F:l)at-l(do(st) - & ( s t ) )  at-l = at 

(4) 
NOW the problem at hand is to solve the following min- 
imization problem 

M 

for every (s, i) in {0,1,2, ...7 K - l} x (0, l} and policy 
7r. Now using the state transition probabilities pij we 
define the following quantity 

Then the DP equation for the problem at hand is sim- 
ply 
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or equivalently, 

Vn(% i) 

(8) 
= min C, + pV,-l (s, i @ I), 

( - V ( d o ( S )  - dl(S)) +PVn-ds, i )}  
{ 

where @ denotes modulo two addition. Moreover, the 
optimal policy 7r* is a Markov stationary policy which 
selects to switch in state (s, i )  if and only if 

c + PVn4 (s ,  i @ 1) I (-qi(d0(s) - dl ( s ) )  + PV,-l(S, i) 
(9) 

An important observation regarding the solution of the 
discounted DP problem given by (7) is that it can be 
interpreted as the fixed point of a well defined operator 
such as T where TV = V .  Motivated by the form of 
the dynamic programming equation (7), we associate 
R-valued mappings T p  and Tup, U = 0 , l  defined on 
(0,1,2,  ..., K - 1) x (0 , l )  by setting 

(h”cp,i) = CPS,4~,i) (10) 
s‘ 

and 

for ( s , i )  E ( O , l ,  2, ..., K - l} x (0 , l ) .  Next, we intro- 
duce the operator T by setting 

(Tucp)(s, i> = R(s, i ,  U )  + P(Tv)(s, U )  

(Tv)(s ,  i) = u=o,1 min (Tup)(s, i) 

(11) 

(12) 

for every p. This operator permits a rewriting of the 
dynamic programming equation as V = TV,  so that V 
is identified as the unique fixed point of the operator 
T .  

A rate switching policy 7r is said to be a threshold policy 
with threshold functions ri i = 0,1, if it is a Markov 
stationary policy such that 

n*(s,O) = 1 iff z (s )  2 70, (13) 

7r*(s, 1) = O iff Z ( S )  5 TI (14) 
and 

where z(s)  = do(s) -d l ( s ) ,  for every s E {0,1,2,  ..., K -  
1). 

Proposition 1: Under the model assumptions, the 
optimal rate allocation (control) policy T* is a thresh- 
old policy with threshold functions rt : (0, 1,2,  ..., K - 
1) -+ R, i = 0,1,  which are uniquely determined and 
T? < r$ for all s in {0,1,2,  ..., K - 1). 
Proof: Please refer to [3]. 

5 Average Delay and Rate Handoffs 

Once a rate control (allocation) policy (be it optimal or 
not) has been selected, it is of interest to compute the 

average delay of transmitting the packets over the wire- 
less channel and the expected number of rate switchings 
that the mobile experiences while the optimal policy is 
in effect. These two quantities constitute good mea- 
sures of the effectiveness of a rate control policy. 

We define the average delay D, of the policy n to be 
the the mean value of the delay of the selected rate 
to receive the packets from the base station under the 
policy 7r during the packet transmission, namely 

1 00 

a r ( s , i )  = q z  C P t ( I t d , ( s t )  + (1 - It)do(st) Lo 
(15) 

where It is a Bernoulli random variable with It E {0, l}, 
and Pr(It = 1) = 1 - Pr(It = 0) = Pr(nt = 1). On 
the other hand, the expected number of rate switchings 
under the policy n is defined by 

00 

S,(S, i) = E:,i Ptl[at-i # at] ] (16) Lo 
where 1(.) is the indicator function. Both D, and S, 
can be written as discounted cost functions. For any 
Markov stationary policy 7r, and in particular for any 
threshold policy, this fact can be exploited for numeri- 
cal purposes by interpreting D, and S, as fixed points 
for suitably defined contraction mappings. 

6 Numerical Results 

In this section, we use numerical methods to find the 
solution to the optimization problem posed in (5). 
It is demonstrated that the optimal policy is indeed 
a threshold policy. This corroborates the results of 
Proposition 1. 

In our simulations, RI corresponds to a QPSK modu- 
lation and Rh corresponds to 32-ary PSK modulation. 
The numerical techniques are employed to find the op- 
timal policy for two cases, C, = 0, and C, = 45. Figure 
5 illustrates how the rate switching cost C, affects the 
optimal thresholds TO and r1. These optimal thresholds 
along with the transmission delay curves, do and dl , are 
plotted all in the same figure for comparison purposes. 
The effectiveness of the optimal policy is assessed by 
comparing the average delay D, and expected number 
of rate switchings S, for different values of the switch- 
ing cost C,. Figure 6 illustrates how D, and S, behave 
while switching cost C, varies. 

7 Conclusions 

In this chapter we studied the problem of optimal rate 
control in wireless networks. A stochastic optimization 
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Figure 5: Optimal thresholds 70 and TI with C, = 0 (top), 
C, = 45 for switching between Rh and Rl over 
a wireless Rayleigh fading channel. 

technique based on dynamic programming method is 
used to obtain the optimal policy. Using the results 
from the theory of dynamic programming, it is shown 
that, the optimal policy for rate control problem is in 
the form of a threshold policy - a property of signifi- 
cance interests both from the analytical and implemen- 
tation points of view. 
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