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Abstract

In this paper we propose a new matrix pencil based method for estimating parameters (frequencies and damping
factors) of exponentially damped sinusoids in noise. The proposed algorithm estimates the signal parameters using
a matrix pencil constructed from measured data. We show that the performance of the estimation can be significantly
improved by the combination of our proposed matrix pencil algorithm and the structured low rank approximation of the
data matrix. Comparison of our matrix pencil method to existing matrix pencil methods as well as to polynomial
methods show thar our matrix pencil method is more accurate in estimating the signal parameters. It is found through
computer simulations that, for exponentially damped sinusoids, our matrix pencil method is less sensitive to noise and
has a lower signal-to-noise ratio (SNR) threshold. - 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit schlagen wir eine ncue Matrixpencil-Methode fiir die Schitzung von Parametern (Frequenzen und
Dimpfungsfaktoren) von exponentiell gedimpften Sinusfunktionen in Rauschen vor. Der vorgeschlagene Algorithmus
schiitzt die Signalparameter unter Verwendung eines Matrixpencils, der von gemessenen Daten konstruiert wird.
Wir zeigen, daB die Schitzgiite signifikant verbessert werden kann, indem der von uns vorgeschlagene Matrix-
pencil-Algorithmus mit der strukturicrten niederrangigen Approximation der Datenmatrix kombiniert wird. Vergleiche
unserer Matrixpencil-Methode mit existicrenden Matrixpencil-Methoden sowie mit Polynommethoden zeigen, dal
unsere Matrix pencil-Methode bei der Schitzung der Signalparameter genauer ist. Durch Computersimulationen hat sich
erwiesen, dafi unsere Matrixpencil-Methode fiir geddmpfte Sinussignale weniger rauschempfindlich ist und eine geringere
Signal -Gerduschabstandsschwelle besitzt. ¢ 1998 Elsevier Science B.V. All rights reserved.

Résuimeé

Nous proposons dans cet article une nouvelle méthode basée sur le matrix pencil pour I'estimation des parameétres
(fréquences et facteur d'amortissement) de sinusoides exponentiellement amorties noyées dans le bruit. L’algorithme
proposé estime les parametres du signal a 'aide d’un matrix pencil construit a partir des données. Nous montrons que les
performances de I'estimation peuvent étre améliorées de maniére significative par la combinaison de notre algorithme de
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matrix pencil et d'une approximation de rang réduit structurée de la matrice de données. La comparaison de notre
méthode avec les méthodes de matrix pencil existantes ainsi qu'avec les méthodes polynomiales montrent que celle-ci est
plus précisc pour Pestimation des paramétres. Il est montré a 'aide de simulations sur ordinateur que, pour des sinusoides
exponenticllement amorties, notre méthode est moins sensible au bruit et a un seuil de rapport signal sur bruit (SNR) plus

bas. > 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

High-resolution parameter estimation for expo-
nentially dampec sinusoids in the presence of addi-
tive white noise is u problem of significant interest
in many signal processing applications, such as
analysis of NMR" data, system identification, and
spectral estimation. Many approaches to high-res-
olution spectral estimation have been proposed for
stationary signals, including linear prediction (LP)
techmques [3], and signal subspace methods like
the MUSIC (multipie signal classification) algorithm
[11]. The difficulty of parameter estimation for
exponentially darmped sinusoids stems from the fact
that these signals are nonstationary. Therefore, most
of the weli-known algorithms for stationary signals
cannot bi: apphed to this kind of data directly.
Polynomial methods such as KT [7] and modified
KT (MK'T) algorithms [7.8] are effective for esti-
mating the frequencies and damping factors of
exponentially damped sinusoids in noise. However,
at low signal-to-noise (SNR) ratios, they do not
provide good estimates of signal parameters. An-
other class of effective methods for this problem is
based on “he matrix pencil

The matrix pencil method to be presented here,
like the muatrix pencil method proposed in [4-6],
represents an alternative approach which exploits
the structure of the matrix pencil of the underlying
true signal (noiselzss), instead of the structure of the
prediction equation satisfied by the measured data
as in [7,8]. In [4.6], in order to extract the true
signal from the noisy sequence. singular-value de-
composition (SVD) is applied to the full-rank data
matrix. This would result in a rank-deficient matrix

3 NMR stands for nuclear magnetic resonance, a well-known
method for siructural delermination in molecules.

which does not have the Hankel structure of the
original data matrix.

In this paper, we develop a new matrix pencil
method based on the algebraic structure of the
prediction matrix. In contrast to [4,6], in our
algorithm we combine the matrix pencil method
and the rank-deficient Hankel approximation of
the data matrix, which preserves the Hankel struc-
ture of the data matrix [9]. We show that the
combination of our new matrix pencil method and
the structured low-rank approximation of the data
matrix [ 1,4] outperforms the existing matrix pencil
algorithms in terms of estimation accuracy and
noise threshold. Computer simulations indicate that
this new matrix pencil algorithm has lower noise
threshold than that of the KT algorithm [7], MKT
[8], and Hua-Sarkar’s matrix pencil algorithms [4].

The rest of the paper is organized as follows. In
Section 2, we first describe the data model and then
present the new matrix pencil algorithm. Extracting
the true signal from noisy data using low-rank
Hankel approximation of the data matrix will be
discussed in Section 3, also a summary of our matrix
pencil algorithm will be presented in this section. In
Section 4, some simulation results compare the
performance of our algorithm with three other
algorithms KT [7], MKT [8], and Hua-
Sarkar’s matrix pencil method [4]. Finally, in Sec-
tion 5 we make some concluding remarks.

2. Development of the new matrix pencil algorithm

In this section, we present a new matrix pencil
algorithm for estimating the signal parameters from
a noisy exponential data sequence. Consider noisy
data y,, k =0,1,...,N — 1, consisting of M expo-
nentially damped sinusoids with additive white
Gaussian noise n,, Kk =0,1,....N — |, which can
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be described by
M )
Ve =Xx + 0 = Z L'mela'".+ jontk + ny,

m=1

k=0 ... N1 ()

where n,’s denote the noise samples. ¢, corresponds
to the amplitude of the mth sinusoid, s, = 2, + jw,,
for m=1,..., M. where «,, and w,, correspond to
the damping factors and frequencies of the mth
sinusoid, respectively. Without Joss of generality,
we assume that x,,s and s are distinct and we
assume that N > 2M.

Let M x M matrices A, be constructed as follows:

Ay Yroar 1
Vi Yie m
Al = . . . (2)
Yrem-1 - Viaam: 2

for I=0.1.....N --2M + 1. Combining Egs. (1)
and (2), we can show that

A =5"CP'S + W, 3)
where
n RSV
W, = ”1'1 ! ”t«: AL ' )
e Jlu 1 My 2'M -2

@ = diag(e™.e™. .. .c™),
C= diag(('l.‘(‘z, LUy ),
S = [r(Sl).r‘\'z), ....r{Sw)]I.

r(sy) = [Lev....e™ D]l

¢ - =

Now, let 4; and 4, ,,/=0,1,....N —2M, be
two consecutive matrices constructed as given in
Eq. (2). It is clear that all M x M matrices A;'s are

full-rank with rank M, i.e.
pl4) =M, [=0,1,....N —-2M + 1, (6)

where p{-} is the matrix rank operator. Now, let us
consider the matrix pencil {4; — pd;. }. As will be
shown in the next theorem, such a matrix pencil can
be used to estimate the signal parameters (e.g.
frequencies and damping factors) directly.

Theorem 1. Given A, and A, of the form as in
Eq. (2), where p{A,} = p{A;,} = M. If there is no
noise (i.e. n, =0 for k =0,1,...,N — 1) then for the
matrix pencil {A; — pnA;. | there exist M complex
numbers p,,, m =1, ..., M, such that

;)'{Al—umAHl}:M—l, mrl,...,M, (7)
and furthermore
Wew=¢ > m=1..M, (8)

where S, = o, + Jw,, for m=1,..., M. Therefore,
damping factors and frequencies of the exponential
data can be obtained as follows:

%y = — In(Jpgl), m=1,.... M,

9
m=1,....M. ®)

Wy = — L flm,

Proof. From Eq. (3), since we assumed there is no
noise, the matrix pencil {4, — u, 4,-,} can be
rewritten as follows:

(A~ i Apsy} = SO — 1, 1S, (10)

It was mentioned before that § and C are full-rank
matrices with rank M, therefore, rank reducing
numbers u,’s should reduce the rank of
(@' — p,®"") from M to M—1, where
Um=c¢ ", m=1,...,M, and s,’s are signal para-
meters to be estimated, ie. S, = %, + jw, for
m=1,...,M, then we have

et : 0

(I—ew =0 |y

Ay T S asul
(I —e e

Now, from the right-hand side of Eq. (11) it is
clear that @' — p,®'*' is an M x M diagonal
matrix with its mth row being equal to zero.
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Therefore.
Pl —e @' =M~ 1, m=12,...,M. (12)
The rest of the results follows directly and this

completes the proof of the theorem. [J

From another point of view we can also state
that,ifin Lq. (3) Wy = #fork =0,....N —2M + 1
{no noise) then w2 have

N —=2M + 1.
(13)

P=A'4,,, =85 "®dS [=0...

From Eq. (12}, w2 can see that the eigenvalues of
P are the dhagonal clements of @ due to the pro-
perty of similarity transformation. Therefore, from
Eq. (5}, the eigenvalues of 4; '4,,, are equal to
e e forall{=0....,N - 2M + 1. But in
the presence of noise. the W)'s in Eq. (3) will not be
zero anymore and A, "4, ; is not simply equal to
P =8 '®S Therefore, in the presence of measure-
ment roise. first we have to clean the data sequence
Vi k= 0,1, N = 1. from noise s¢ that the noise
effect can he minim zed

3. Low-rank Hankel approximation

As il was pointed out before, in the presence of
measurement noise, we have to reduce the noise
effect before we apply the matrix pencil algorithm
to the exponential data. For this purpose we con-
struct an /. x L dare matrix R with L =[ N/27 as
follows:

Yo i o 'L
1 2 o Yi
R = i . ) ) . (14)
YL Ay? Yor -z

It should be pointed out that the duta matrix R is
constructed exactly in the same manner as the
matrices A4, in Eq. (2), except that R is now instead
L x L. 1tis clear that the data marrix R has a Hankel
structure. If there is no noise, R is a rank-deficient
matrix with rank M (ie. p{R] = M). But in the
presence of measurement noise it is full-rank with
rank L (L = M). Using SVD to approximate R with

alow-rank matrix of rank M like in [4] (Where M is
the number of exponential signals) will result in
a matrix which is not Hankel anymore. It was
shown in [8,1] that in the process of approximating
R with a low-rank matrix if we preserve the Hankel
structure of the matrix it will result in a better
approximation of the true exponential data. In the
following, we present the algorithm for rank-defi-
cient Hankel approximation of R.

Rank-deficient Hankel approximation algorithm:

Initialization: R'°! = R and r = 0 (r is the iteration

index)

1. Compute SVD(R") = uDV™.

2. Obtain R = [y, ]]{;2o = Zf: N

3. Find a Hankel matrix R"! to minimize
“?m — R‘!F, Le.

R = [0 + i, (15)
where

alrl 1 -
yiJrj:r_2n+m=i+j.()gn.msl,~lyn.ma (16)

i

in which I';; is the number of the elements in
matrix R satisfying n +m =i + j in Eq. (16).

4. Repeat steps 1, 2 and 3 till the rank of R" = M
(where M is the number of signals).

Now, the sequence y,, k=0,1,...,N — 1, given
by Eq. (16) is used to construct M x M matrices as
given in Eq. (2),

.‘A'r ,1A'1*M71
. o Pras
i, = Yi+1 Viem (17)
ﬁI+M—1 _fl+2AM-'2
for[=0,1,...,N —2M + 1. Then, we have
A =8"CP'S + W, =D, + W, (18)

forI=0,1,...,.N —2M + 1, with §, C and & are
defined as in (5) and D, = §'C®'S. To estimate the
signal parameters we have to construct the following
matrices:

P =A "4, =D + W) "Dy, + W), (19)
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The first-order approximation of A4, '=
(D, + W)~ !is given by

A ' xD - DIWD (20)

From Eg.(20) and noting that P =D, 'D;,, =
S @S, we can rewrnte Eq. (19) as follows:

BxP+ A 'W,, - D ‘WP,
[=01,....N = 2M + 1. 1)

From {21} it is clear that P, and P do not have the
same eigenvalues. 1t has been shown that we can
compute signal parameters directly {rom the eigen-
values of P, but in the presence of noise we can only
access P;'s rather than P. Therefore, we will get
a poorer estimate of signal parameters by consider-
ing only one of Ps. To improve the accuracy of
parameter estimation, we construct a new matrix,
P, from rhe linear combination of £;'s as follows:

iz

N-2V -~

P= 5 P, (22)
1=10

where ;s are the weighting factors. To make the

estimate P unbiased we must ensure that

N-2M- 1

Z =L (23)
=0
From Eqs. (23) and (21). we can rewrite Eq. (22) as
N-IM+1

P=P+ N W (24)

—t

t=0

where W, = 4, 'W,., — D, "W,P. We would like to
choose weighting factors ;. such that |P—P|, is
minimized. Now. we are interested in the solution
of the following minimization problem:

min [P — P,
N 2M ]
subject o Y

1=0

=1 =0 (25)

For the sake of convenience let us consider the
solution of this problem for the scalar random
variables first. In such case. P and P are two scalar
random variables and W, is a sequence of scalar
Gaussian noise with variance o>, Then, the weight-
ing factors -, the solution of the minimization
problem posed in Eq. (25). are inversely proportional
to the variance of the noise sequence ¢~. This claim

Table 1
New matrix pencil algorithm

Step | From the given data sequence y, construct the data
matrix R given by Eq. (14).

Step 2 Apply the rank-deficient Hankel approximation algo-
rithm described in Section 3 to R.

Step 3 Use the sequence j;, given by (16) to construct M x M
matrices A, given by Eq. (17).

Step 4 From matrices A, (Step 3) construct matrices P, given
by (19).

Step 5 From Egs. (22) and (26). construct I3

Step 6 Estimate signal parameters from the eigenvalues of
the matrix P constructed in Step 5.

can be proved easily for scalar random variables;
however, the minimization problem -posed in
Eq. (25) involves random matrices resulted from
low rank Hankel and also other approximations.
The closed-form solution for this case is uninfor-
matively complex. Therefore, we use the fact from
the scalar case that the weighting factors 7;’s should
be inversely proportional to the variance of the
elements of the noise matrix W;. The variance of the
noise elements w, (after the Hankel approximation
process) is proportional to /L + 1 — |L —n| for
n=0.1,...,N — 1. After normalizing the weighting
factors, in our simulations we have chosen y,’s as

L [det(A)*™(L + 1 — |L — 1))
NI et AL + 1~ 1L -

(26)

From Egs. (26) and (22) we can compute P and
the signal parameters (frequencies and damping
factors) can be estimated from the eigenvalues of P.
It should be pointed out that in our algorithm the
order of the model has to be determined in advance.
There are various effective methods for this purpose
suggested in [2,3,10,12]. A summary of our new
matrix pencil algorithm for estimating the para-
meters of exponentially damped sinusoids is given
in Table 1.

Remarks
e The convergence of the above iteration for
Hankel approximation can be proved using the
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therefore, the composite mapping algorithm can
be used to reduce the noise effect from the mea-
sured exponential data. The same results hold for

theory of composite mapping [1]. In [1], it has
been shown that the exponential data satisfy the
hypotheses of composite mapping theorem, and

!
®)
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70 + 70 F
50 | 60 F
50 b 50 |
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Fig. 1. The MSE of (a) w,. (b) 2,. (¢) w5, (d) 2, for KT. MK T, Hua Sarkar’s matrix pencil and the new matrix pencil algorithms when
sp= =01 421052, 53 == 0.2 4 j270.42 and N = 25.
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damped sinusoids because they form a subset of
exponential signals.

e The error generated in the low-rank Hankel
approximation process is a decreasing and
bounded function. Qur observations confirm that
for most of the cases. it practically reaches its
final value in 3-5 iterations.

e It is worth mentioning that our matrix pencil
algorithm has the same order of complexity as
the KT algorithm [7] and Hua-Sarkar’s matrix
pencil algorithm [4]. As a matter of fact extra
computations in our matrix pencil algorithm
come ‘rom the Haakel approximation part (Step

2 in Table 1, which requires several SVDs until
the algorithm converges. But for most practical
cases of interest the Hankel approximation typi-
cally converges within a few iterations. For the
results we have reported in this paper we per-
formed only three iterations in the Hankel ap-
proximation algorithm and we still got very good
results. Therefore, the order of the complexity in

our algorithm remains the same as that of the KT
algorithm [7] and Hua—Sarkar’s matrix pencil

method [4].

4. Computer simulation results

In this section, we will demonstrate the perfor-
mance of the new matrix pencil algorithm using
two examples drawn from [7].

Example 1. The purpose of the first example is to
demonstrate the performance of the new matrix
pencil algorithm for spectral estimation. The
simulated data are generated as follows:

for k =0.1,...,24, (27)

where the number of signals M =2, s =

—a; +j2nf; with o« =0.1, f; =0.52, a;, = 0.2,
> =042, n, is complex white Gaussian noise with
zero mean and variance o°. The signal-to-noise

yk = e.\',k + e.s:k + nk

80 - 80 . : : . v
70 + 0F
60 | 60 -
50 + 50 }
g a0 | g wl
] /2 E;
8 a0f A —— CR bound g8 30t —— CRbound
A -~ -~ HS algorithm ‘ ---- HS algorithm
HA A ~-— New Matrix Pencil ! —-— New matrix pencil
2 ; )/ :' — -~ HS & cleaned Data 20 | I ——-~ HS & cleaned Data_| |
il i
U S 10t I ]
( ,‘ " / /l
// // ’
ok ot 4 ]
e / ”
qo b " : L -10 s . . , :
0 10 20 30 40 50 60 0 10 20 30 40 50
(b SNR (dB)

(@ SNR (dB)

algorithms when s, == — 0.1 + j2r0.52, 5. =

Fig. 2. The MSE of (a) <. (b) @, for Hua Sarkar’s matrix pencil with and without preprocessing the data and the new matrix pencil
= .2 +j2r0.42 and N = 25.
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ratio (SNR) is defined as

L0 )

/J

The MSEs of wy. %,. w, and =, for the KT
algorithm [7], MKT [8], Hua-Sarkar’s matrix
pencil method [6.4], and the new matrix pencil
algorithm. using the average of 500 trails, are shown
in Fig. 1. Fig. 1{a) shows that the noise threshold
associated with a smaller damping factor is lower

Table 2
The true and estimated poles of the transfer lunction H{(z)

than that associated with a larger damping factor
as given in Fig. l(c). Fig. 1{a) shows that when
estimating w, the noise threshold of the new matrix
pencil algorithm is about 12dB lower than that of
the KT algorithm and is about 8dB lower than
those of MKT and Hua-Sarkar’s matrix pencil
algorithms. Also Fig. 1(c) shows that when estima-
ting w, the noise threshold of the new matrix pencil
algorithm is about 10 dB lower than that of the KT
algorithm and is about 5dB lower than those of
MKT and Hua—Sarkar’s matrix pencil algorithms.

Estimated poles

True poles Method SNR = 30dB SNR =20dB

= 0.2913 1+ 10.856K KT Mean — 0.2880 + jO.9080 — 0.3448 + j0.8720
alg. Sud. 1498 x 107+ 8.583x 1072
MKT Mecan —0.2915 + j0.8970 —0.2917 £ j0.8976
alg. Std. 3.762%x 10°° 3376x10 *
New Mean - 0.2914 + j0.8964 —0.2914 + j0.8959
alg. Std. 1.048 x 1077 1.088 x 10+

0.1014 4 j0.9579 KT Mean 0.0987 + j0.9510 0.0657 + j0.9392
alg. Std. 171310 ° 1.406 x 1072
MKT Mean 0.1015 + j0.9577 0.1015 + j0.9571
alg. Std. 4311 x10°° 4556 %1077
New Mean 0.1014 +j0.9580 0.1014 + j0.9578
alg. Std. 5.800% 10 7 6.292x107°

0.2959 1 j0.9292 KT Mean 0.2979 +j0.9232 0.2845 + j0.9183
alg Std. 2784 %1077 3.858x 1073
MKT Mean 0.2960 + j0.9291 0.2959 +;0.9287
alg Std. 1.992x 10 ° 1.607x 107°
New Mean 0.2959 +j0.9292 0.2960 1 j0.9292
alg Std. 229510 7 2211 x10°°

0.5630 1 jO.8019 KT Mean 0.5620 + jO.8175 0.5339 + j0.8442
alg Std. 1.827x 107# 8.359 %107
MRKT Mean 0.5629 + j0.8023 0.5626 + j0.8045
alg Std. 1.059x 107° 9.462 x 103
New Mean 0.5629 + j0.8018 0.5629 + j0.8020
alg Std. 2224x10 °© 2233x10 7

0.9815 + jo.1: 17 KT Mean 0.9853 + j0.1089 0.9798 + 3;0.1219
alg. Std. 2.120% 1073 1.763 x 10" 2
MKT Mean 0.9816 +j0.1117 0.9821 +30.1114
alg. Std. 1.894 x 10" ¢ 18T x10°°
New Mean 09815 +j0.1118 0.9815 +j0.1117
alg. Std. 5858 x 1077 4988 x 107°
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It was mentioned before that to reduce the noise
effect. in our algorithm we have preprocessed the
noisy data to minimize the noise effect (Step 2 in
Table 1 by performing rank-deficient Hankel ap-
proximation. In order to see the effect of this
preprocessing on the performance of the original
Hua-Sarkar matrix pencil algorithm, we also em-

ployed the preprocessed data in the Hua-Sarkar

matrix pencil method. Fig. 2 shows that this pre-

processing indeed improves the performance of

the H-S matrix pencil algorithm also. Neverthe-

371

less, even in this case our new matrix pencil algo-
rithm outperforms it with 2-5dB lower noise
threshold.

Example 2. We want to estimate the poles and
zeros of a linear system from noisy samples of the
impulse response. The transfer function of the linear
system is

—k

Blz) 1+ Y-z (29)

H(z) =

Az) 1+ 3%

40, T T T T T T T T T

MAGNITUDE (dB)

MAGNITUDE (dB)

-30 H ; . i i .30 i H i H i H i i B
0 0.05 01 0.2 0.25 0.3 0.45 0.5 0 [ 2] 0.18 0.2 0.25 03 0.4 045 05
FREQUENCY FAREQUENCY
e} 1]
40 T T T T T T T T T 40 T T Y T T T T T Y
gob-f i b A i 30
20f i {20
g 8
w 10} 1 B 10
[=]
£ g
z z
g 0 4 8 of-
<
ES E:
T B 4 e
-20 .
30 i s RPN . i R ) ; i i i i
[} 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 s [ 0.05 0.1 0.1 0.2 0.25 03 0.38 04 0.45 [+X]
FREQUENCY FREQUENCY

Fig. 3. (a) Magnitude of H{z). (b) estimuted magnitude of Az) using KT algorithm. {c) estimated magnitude of H(z) using MKT
algorithm, (d) estimated magnitude of Fiz) usimg the new algorithm. SNR = 30dB.
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where the poles of the transfer function are shown
in Table 2. The magnitude of H(e'”) is shown in
Fig. 3(a), which has two nulls at «» == 4 /4, respec-
tively. The first forty real-valued samples of noise-
corrupted impulse response are observed. The noise
is a real white Gaussian process with zero mean
and variance ¢* determined by a SNR defined by

/N 39 h TPAY
SNR = 10} log| Ln=olhtn) )

5

Nea*

In this example. the KT algorithm, the MKT
algorithm. and the new ma:rix pencil algorithm are
employed to estimate the poles of the system to get
A(z). Once ,;1(2) is obtained. Bizi can be estimated
using Shunks” metaod [7]. which first generates
a sequence f, by
fin) = 2 IL'—-} an
and then cstimates b, for k =0, 1,2 by minimizing
the error
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The magunitude of the transfer function was esti-
mated in ten independent trials using KT, MKT
and the new matrix pencil algorithms, respectively.
Fig. 3(b-d) shows the results. Table 2 shows the
mean and variarce of the estimated poles of the
transfer function using KT, MKT and the new
matrix pencil algorithms. From Fig. 3 and Table 2,
it is clear that the new matrix pencil algorithm
outperforms the K7 and MKT algorithms.

5. Conclusions

In this paper a n2w matrix pencil algorithm for
estimating the parameters (frequencies and damping
factors) of exponentially damped sinusoids in noise
ts proposed. The proposed algorithm estimates the
signal parameters by constructing a matrix pencil
from the measured exponential data. We have
shown that a better estimate can be obtained by
combining the proposed matrix pencil and the

structured low-rank Hankel approximation of the
data matrix. Comparisons of our matrix pencil
method with the polynomial methods and other
matrix pencil methods show that our proposed
matrix pencil method is more accurate in estimating
the signal parameters.

Computer simulations indicate that, for expo-
nentially damped sinusoids, our matrix pencil
method is less sensitive to noise than the polynomial
methods and existing matrix pencil methods. Simu-
lations also confirmed that our new matrix pencil
algorithm has a lower signal-to-noise ratio (SNR)
threshold than those algorithms.
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