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ABSTRACT 
The SOVA and the log-MAP are commonly used in turbo 
decoding. In this paper, we propose to modify the sliding 
window MAP-algorithm in [5] to reduce the computational 
delay even further. We compare the simulation performance 
of this low latency log-MAP algorithm with the sliding win- 
dow log-MAP. We also estimate the VLSI implementation 
complexities of the SOVA, the log-MAP and the proposed 
low latency log-MAP. 

1. INTRODUCTION 
The Soft Output Viterbi Algorithm (SOVA) [2],[3] has been 
commonly used in turbo decoding. One of the reasons is 
that this algorithm is relatively less complex when com- 
pared with the symbol-by-symbol MAP algorithm. While 
the original MAP is extremely complex for use in practice, 
various approximations [4] have been developed such as the 
Max-Log-MAP and the log-MAP. The log-MAP is equiv- 
alent to the MAP but without the implementation prob- 
lems. The log-MAP uses the max* operation to update 
the path metrics instead of the max operation [5] that is 
used in the Max-log-MAP. The log-MAP performs better 
than the SOVA at low SNR by about 0.5db in AWGN. In 
fading channels it has been shown [6] that the log-MAP 
outperforms the normalized SOVA [3] by about 2-3db. The 
increased complexity of the log-MAP may be justified for 
fading channels or AWGN channels at very low SNR. A di- 
rect implementation of the MAP algorithm requires that we 
store the path metrics till the end of the block. A sliding 
window log-MAP algorithm that reduces the path metric 
storage requirements has been proposed (See for eg. [5]). 
The computation delay is also reduced using this approach. 
One of the critical components in iterative decoding is the 
delay in decoding. The decoding delay is made up of com- 
putation delay and interleaver delay [7]. In small frame 
applications [6], [7] (such as for speech) the computation 
latency can be a significant fraction of the decoding delay. 

In this paper, we propose to modify the algorithm in [5] 
to reduce the computational delay even further. In serial 
implementations (such as in [8]), the algorithm modification 
that we propose also reduces the amount of memory. We 
compare the simulation performance as well as the VLSI 
implementation complexities of the SOVA, the log-MAP 
and our low latency log-MAP algorithm. 
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2. LOW-LATENCY MAP ARCHITECTURE 
In this section, we develop a low computation delay archi- 
tecture using fast backward aquisition. In order to motivate 
our approach, we use the architecture in [5] as a starting 
point (the architecture corresponding to the method pro- 
posed in [5] is summarized below). Fig. 1 shows the evo- 
lution in time of the log-MAP algorithm as described in 
[5]. In Fig. 1, L refers to the acquisition depth (i.e L M 5v, 
where w is the constraint length). Three processors that op- 
erate in parallel are shown in Fig. 1 - the Forward Processor 
(FP), the Acquisition Backward processor (ABP) and the 
Backward Processor (BP). The F P  generates forward path 
metrics (FPM’s) starting from trellis step k at time k + 2L. 
The FPM’s are buffered for computing the log likelihood. 
Starting at time k + 2L, the ABP traverses through trellis 
steps k + 2L to k + L .  At time k + 3L, the ABP produces 
reliable backward path metrics (BPM). The BP starts with 
the metrics provided by ABP and produces BPM’s corre- 
sponding to trellis steps k + L through k .  The backward 
path metrics (BPM’s) generated by the BP and the buffered 
FPM’s are combined to compute the log likelihood ratio by 
a fourth processor (not shown in Fig. 1). Since the log 
likelihoods are generated in reverse order, a LIFO is used 
to obtain the results appropriate order. The architecture is 
shown in Fig. 2(a). Each processor (FP, BP, or ABP) per- 
forms an ACS-like operation as shown in Fig. 3. Each ACS 
unit performs a max’ operation instead of the usual max 
operation in the Viterbi algorithm. The size of the input 
buffer can be found by looking at the trellis steps k + L to 
k + 2L. We notice that the trellis branches from k + L to 
k + 2L are needed until time k + 5L. This means we need an 
input buffer size of 4L symbols. Similarly, the State Metric 
Buffer (SMB) should be able to hold the L x 2” PM’s that 
are generated while processing L input symbols. 

Our algorithm modification is motivated by the fact 
that we need the output of the ABP only after L instants 
(i.e. at the end of the acquisition phase). We are not in- 
terested in the intermediate values generated by the ABP. 
This means that if we are able to process 2 trellis stages at a 
time (by applying a kind of “look-ahead”), then the acqui- 
sition phase of the ABP can be reduced. This is shown in 
Fig. l(b) as the “look-ahead’’ ABP (LA-ABP). The com- 
putation latency is reduced to half the previous value. The 
FPM storage requirements are also reduced as shown in Fig. 
2(b). But, in order to process 2 steps at one time the ABP 
becomes more complicated (as shown in Fig. 4). A larger 
“look-ahead factor (greater than 2) will make the imple- 
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mentation of the LA-ABP still more complex and therefore 
practically infeasible. It is obvious that the critical path 
of the architecture in Fig. 4 is double that of Fig. 3. In 
order to reduce the critical path of this ACS architecture, 
it can be shown that we can approximate the computation 
of max* (a, b, c,  d)  in Fig. 4 with no perceptible loss in per- 
formance. The approximate method is shown in Fig. 5 and 
is explained below (See 111 for details). We can re-write the 
output in Fig. 4 as 

max* (a, b, c,  d )  = max*(max* (a, b ) ,  max*(c, d ) )  
= max(max*(a,b),max*(c, d ) )  

+ h ( l  + ezp(-Imax*(a,b) - max*(c,d)l)) 
M max(max*(a,b), max*(c, d ) )  

+ ln ( l+  ezp(-lmax(a,b) - max(c,d)l)) 
(1) 

The first term can be re-written and approximated as 

max* (a, b) >= max* (c ,  d)  
max* (c, d )  > max* (a, b )  

max* (a, b )  if max(a, b )  >= max(c, d )  
max*(c, d) if max(c, d )  > max(a, b )  

max(max*(a,b),max*(c,d)) = 
max* (a, b) 
max* (c ,  d )  

if 
if 

(2) 
= {  

We refer to the modified algorithm as the approximate low 
latency log-MAP. The simulation results in Fig. 6 show 
that the approximation that we applied to simplify the LA- 
ABP has no perceptible effect on performance. We used 
the rate 1 /2  turbo code in [9] with generators 37,21. Four 
iterations of turbo decoding were used. An AWGN channel 
was assumed. An interleaver of size 256 bits (similar to the 
non-uniform interleaver in [9]) was used in the turbo code. 
The SOVA results were based on the normalized SOVA 
(we observed that the un-normalized SOVA was worse than 
the normalized SOVA by about 0.1-0.2db). The other two 
curves show the log-MAP and the approximate low latency 
log-MAP discussed above. Clearly, the log-MAP algorithms 
perform better than the normalized SOVA by about 0.4db. 

3. VLSI DESIGN AND CONCLUSION 
For log-MAP algorithms, a parallel state ACS implemen- 
tation and a parallel likelihood computation leads to two 
difficulties. The memory bus width between the FP and 
the SMB is large (since 2“ x L PM’s are generated by the 
FP in parallel and have to be written into the SMB). Also, a 
parallel likelihood computation means that we have to find 
the m a *  of 2” values (which can be very complex). For log- 
MAP algorithms a serial implementation (as in [8]) is usu- 
ally more efficient (See [l]). The low latency approximate 
log-MAP that we have proposed differs from the log-MAP 
implementation only in the ABP and the size of the input 
and state memory buffers. The SOVA implementation is 
similar to [9]. Based on synthesis and layout starting from a 
Verilog description of the computation units (and estimates 
of the memory area required for buffers and interleavers/de- 
interleavers), the results summarized in Table 1 were ob- 
tained (See [l] for details). In short, a parallel log-MAP 
was about 3 times more complex than the SOVA. The par- 
allel low latency log-MAP that we proposed was about 1.5 
times as expensive than the log-MAP. The results for serial 
implementations in Table l(co1umn 2) show that the serial 
log-MAP (or the low-latency log-MAP) is about 1.3 times 
as expensive as the SOVA. 

22.78 10.45 
68.13 13.18 

12.56 

Table 1: Summary of Area Estimates at 0 . 8 ~  for the SOVA, 
Log-MAP and Low-Latency Log-MAP 

We can conclude that improved performance is obtained 
by using a log-MAP decoder (at the cost of increased com- 
plexity). In practice, we need to  take into account the na- 
ture of the channel (AWGN or fading) while choosing be- 
tween SOVA and log-MAP. Amongst log-MAP algorithms, 
if computational delay is a critical parameter (for example 
in speech applications large delays cannot be tolerated), 
then the approximate low latency MAP algorithm that we 
proposed should be used. In particular, when the frame 
size is small (for eg. 256), our algorithm reduces the overall 
latency by 12.5% when compared with the algorithm in [5] 
(the computational latency was reduced from L M 30 in [5] 
to L/2) with almost no cost in terms of BER (See [l] for 
details). 
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Figure 1: (a) Evolution in time of the original log-MAP algorithm (b) Evolution in time of the modified log-MAP algorithm 
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Figure 2: (a) Overall architecture of log-MAP (b) Architecture using acquisition look ahead 
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Figure 3: ACS architecture for log-MAP 
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Figure 4: ACS architecture for acquisition backward processor in modified log-MAP 
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Figure 5: Approximate ACS architecture for acquisition backward processor in modified log-MAP 
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Figure 6: (a) Comparative performance of SOVA, log-MAP 
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