
A TRANSFORMATION FOR COMPUTATIONAL LATENCY REDUCTION IN
TURBO-MAP DECODING

Arun Raghupathy *

Qualcomm Inc., 6455 Lusk Blvd.,
San Diego, CA-92121

ABSTRACT
The SOVA and the log-MAP are commonly used in turbo
decoding. In this paper, we propose to modify the sliding
window MAP-algorithm in [5] to reduce the computational
delay even further. We compare the simulation performance
of this low latency log-MAP algorithm with the sliding win-
dow log-MAP. We also estimate the VLSI implementation
complexities of the SOVA, the log-MAP and the proposed
low latency log-MAP.

1. INTRODUCTION
The Soft Output Viterbi Algorithm (SOVA) [2],[3] has been
commonly used in turbo decoding. One of the reasons is
that this algorithm is relatively less complex when com-
pared with the symbol-by-symbol MAP algorithm. While
the original MAP is extremely complex for use in practice,
various approximations [4] have been developed such as the
Max-Log-MAP and the log-MAP. The log-MAP is equiv-
alent to the MAP but without the implementation prob-
lems. The log-MAP uses the max* operation to update
the path metrics instead of the max operation [5] that is
used in the Max-log-MAP. The log-MAP performs better
than the SOVA at low SNR by about 0.5db in AWGN. In
fading channels it has been shown [6] that the log-MAP
outperforms the normalized SOVA [3] by about 2-3db. The
increased complexity of the log-MAP may be justified for
fading channels or AWGN channels at very low SNR. A di-
rect implementation of the MAP algorithm requires that we
store the path metrics till the end of the block. A sliding
window log-MAP algorithm that reduces the path metric
storage requirements has been proposed (See for eg. [5]).
The computation delay is also reduced using this approach.
One of the critical components in iterative decoding is the
delay in decoding. The decoding delay is made up of com-
putation delay and interleaver delay [7]. In small frame
applications [6], [7] (such as for speech) the computation
latency can be a significant fraction of the decoding delay.

In this paper, we propose to modify the algorithm in [5]
to reduce the computational delay even further. In serial
implementations (such as in [8]), the algorithm modification
that we propose also reduces the amount of memory. We
compare the simulation performance as well as the VLSI
implementation complexities of the SOVA, the log-MAP
and our low latency log-MAP algorithm.

*This work was supported in part by the NSF NYI Award
MIP9457397 and the ONR grant N00014-93-10566, and was done
while this author was at University of Maryland, College Park.

K. J Ray Liu

Electrical Engineering Department
Univ. of Maryland, College Park, MD-20742

2. LOW-LATENCY MAP ARCHITECTURE
In this section, we develop a low computation delay archi-
tecture using fast backward aquisition. In order to motivate
our approach, we use the architecture in [5] as a starting
point (the architecture corresponding to the method pro-
posed in [5] is summarized below). Fig. 1 shows the evo-
lution in time of the log-MAP algorithm as described in
[5]. In Fig. 1, L refers to the acquisition depth (i.e L M 5v,
where w is the constraint length). Three processors that op-
erate in parallel are shown in Fig. 1 - the Forward Processor
(FP), the Acquisition Backward processor (ABP) and the
Backward Processor (BP). The F P generates forward path
metrics (FPM’s) starting from trellis step k at time k + 2L.
The FPM’s are buffered for computing the log likelihood.
Starting at time k + 2L, the ABP traverses through trellis
steps k + 2L to k + L . At time k + 3L, the ABP produces
reliable backward path metrics (BPM). The BP starts with
the metrics provided by ABP and produces BPM’s corre-
sponding to trellis steps k + L through k . The backward
path metrics (BPM’s) generated by the BP and the buffered
FPM’s are combined to compute the log likelihood ratio by
a fourth processor (not shown in Fig. 1). Since the log
likelihoods are generated in reverse order, a LIFO is used
to obtain the results appropriate order. The architecture is
shown in Fig. 2(a). Each processor (FP, BP, or ABP) per-
forms an ACS-like operation as shown in Fig. 3. Each ACS
unit performs a max’ operation instead of the usual max
operation in the Viterbi algorithm. The size of the input
buffer can be found by looking at the trellis steps k + L to
k + 2L. We notice that the trellis branches from k + L to
k + 2L are needed until time k + 5L. This means we need an
input buffer size of 4L symbols. Similarly, the State Metric
Buffer (SMB) should be able to hold the L x 2” PM’s that
are generated while processing L input symbols.

Our algorithm modification is motivated by the fact
that we need the output of the ABP only after L instants
(i.e. at the end of the acquisition phase). We are not in-
terested in the intermediate values generated by the ABP.
This means that if we are able to process 2 trellis stages at a
time (by applying a kind of “look-ahead”), then the acqui-
sition phase of the ABP can be reduced. This is shown in
Fig. l(b) as the “look-ahead’’ ABP (LA-ABP). The com-
putation latency is reduced to half the previous value. The
FPM storage requirements are also reduced as shown in Fig.
2(b). But, in order to process 2 steps at one time the ABP
becomes more complicated (as shown in Fig. 4). A larger
“look-ahead factor (greater than 2) will make the imple-

0-7803-5471 -0/99/$10.0001999 IEEE

IV-402

mentation of the LA-ABP still more complex and therefore
practically infeasible. It is obvious that the critical path
of the architecture in Fig. 4 is double that of Fig. 3. In
order to reduce the critical path of this ACS architecture,
it can be shown that we can approximate the computation
of max* (a, b, c, d) in Fig. 4 with no perceptible loss in per-
formance. The approximate method is shown in Fig. 5 and
is explained below (See 111 for details). We can re-write the
output in Fig. 4 as

max* (a, b, c, d) = max*(max* (a, b) , max*(c, d))
= max(max*(a,b),max*(c, d))

+ h (l + ezp(-Imax*(a,b) - max*(c,d)l))
M max(max*(a,b), max*(c, d))

+ ln (l+ ezp(-lmax(a,b) - max(c,d)l))
(1)

The first term can be re-written and approximated as

max* (a, b) >= max* (c , d)
max* (c, d) > max* (a, b)

max* (a, b) if max(a, b) >= max(c, d)
max*(c, d) if max(c, d) > max(a, b)

max(max*(a,b),max*(c,d)) =
max* (a, b)
max* (c , d)

if
if

(2)
= {

We refer to the modified algorithm as the approximate low
latency log-MAP. The simulation results in Fig. 6 show
that the approximation that we applied to simplify the LA-
ABP has no perceptible effect on performance. We used
the rate 1 /2 turbo code in [9] with generators 37,21. Four
iterations of turbo decoding were used. An AWGN channel
was assumed. An interleaver of size 256 bits (similar to the
non-uniform interleaver in [9]) was used in the turbo code.
The SOVA results were based on the normalized SOVA
(we observed that the un-normalized SOVA was worse than
the normalized SOVA by about 0.1-0.2db). The other two
curves show the log-MAP and the approximate low latency
log-MAP discussed above. Clearly, the log-MAP algorithms
perform better than the normalized SOVA by about 0.4db.

3. VLSI DESIGN AND CONCLUSION
For log-MAP algorithms, a parallel state ACS implemen-
tation and a parallel likelihood computation leads to two
difficulties. The memory bus width between the FP and
the SMB is large (since 2“ x L PM’s are generated by the
FP in parallel and have to be written into the SMB). Also, a
parallel likelihood computation means that we have to find
the m a * of 2” values (which can be very complex). For log-
MAP algorithms a serial implementation (as in [8]) is usu-
ally more efficient (See [l]). The low latency approximate
log-MAP that we have proposed differs from the log-MAP
implementation only in the ABP and the size of the input
and state memory buffers. The SOVA implementation is
similar to [9]. Based on synthesis and layout starting from a
Verilog description of the computation units (and estimates
of the memory area required for buffers and interleavers/de-
interleavers), the results summarized in Table 1 were ob-
tained (See [l] for details). In short, a parallel log-MAP
was about 3 times more complex than the SOVA. The par-
allel low latency log-MAP that we proposed was about 1.5
times as expensive than the log-MAP. The results for serial
implementations in Table l(co1umn 2) show that the serial
log-MAP (or the low-latency log-MAP) is about 1.3 times
as expensive as the SOVA.

22.78 10.45
68.13 13.18

12.56

Table 1: Summary of Area Estimates at 0 . 8 ~ for the SOVA,
Log-MAP and Low-Latency Log-MAP

We can conclude that improved performance is obtained
by using a log-MAP decoder (at the cost of increased com-
plexity). In practice, we need to take into account the na-
ture of the channel (AWGN or fading) while choosing be-
tween SOVA and log-MAP. Amongst log-MAP algorithms,
if computational delay is a critical parameter (for example
in speech applications large delays cannot be tolerated),
then the approximate low latency MAP algorithm that we
proposed should be used. In particular, when the frame
size is small (for eg. 256), our algorithm reduces the overall
latency by 12.5% when compared with the algorithm in [5]
(the computational latency was reduced from L M 30 in [5]
to L/2) with almost no cost in terms of BER (See [l] for
details).

4. REFERENCES

A. Raghupathy, “Low Power and High Speed A1,go-
rithms and VLSI Archite ctures for Error Control Cod-
ing and Adaptive Video Scaling,” Ph.D Thesis, Univer-
sity of Maryland, College Park, Dec. 1998.
J. Hagenauer, E. Offer, and L. Papke, “Iterative decod-
ing of binary block and convolutional codes,” IEEE
Runs. on Info. Theory, vol. 42, pp. 429-445, Mar.
1996.
L. Papke, P. Robertson, and E. Villebrun, “Improved
decoding with the SOVA in a parallel concatenated
(turbo-code) scheme,” in IEEE Int. Conf. on Comnau-
nications, pp. 102-106, June 1996.
P. Robertson, P. Hoeher, and E. Villebrun, “Op-
timal and sub-optimal maximum a posteriori algo-
rithms suitable for turbo decoding,” European Trans.
on Telecomm., vol. 8, pp. 119-125, Mar.-Apr. 1997.
A. J. Viterbi, “An intuitive justification and simplified
implementation of the MAP decoder for convolutional
codes,” IEEE J. Selected Areas in Comm., vol. 16,
pp. 260-264, Feb. 1998.
M. Valenti and B. Woerner, “Performance of turbo
codes in interleaved flat fading channels with estimat,ed
channel state information,” in IEEE Vehicular Tech.
Conf., pp. 66-70, IEEE, May 1998.
P. Jung, “Comparison of turbo-code decoders applied
to short frame transmission systems,” IEEE J . Selected
Areas in Communications, vol. 14, pp. 530-537, Alpr.
1996.
S. S. Pietrobon, “Implementation and performance of
a turbo/MAP decoder,” Intl. J. of Satellite Commu-
nications, vol. 16, pp. 23-46, Jan.-Feb. 1998.
C. Berrou and A. Glavieux, “Near optimum error cor-
recting coding and decoding: Turbo codes,” IEJYE
Trans. Comm., vol. 44, pp. 1261-1271, Oct. 1996.

IV-403

trellis
steps
k+4L

k+3L

k+2L

k+L

k time
k+2L k+3L k+4L k+5L k+6L

(a)

- time

Figure 1: (a) Evolution in time of the original log-MAP algorithm (b) Evolution in time of the modified log-MAP algorithm

L
symbols

Calculate
likelihood

I

...

U2
symbols
each

acquisition

Calculate
likelihood

Figure 2: (a) Overall architecture of log-MAP (b) Architecture using acquisition look ahead

PM = T * (a , b) + - - - -

PM

I
BM

Figure 3: ACS architecture for log-MAP

IV-404

BM

L / - 1

Figure 4: ACS architecture for acquisition backward processor in modified log-MAP

PM

PM

PM

PM

P
approx-max ta,h,c,d)

v -
Figure 5: Approximate ACS architecture for acquisition backward processor in modified log-MAP

100

1 0 2
U
m

1
I

1.5 2 2 5
EWNa m dB

Figure 6: (a) Comparative performance of SOVA, log-MAP

100

1 0-1

10

1 I5
EbMo in dB

10.'
0 5

and modified log-MAP (b) Fixed Point Performance

IV-405

