
VLSI ARCHITECTURE AND DESIGN FOR HIGH PERFORMANCE
ADAPTIVE VIDEO SCALING

Arun Raghupathy * Pohsiang Hsu, K. J Ray Liu and Nitin Chandrachoodan

Qualcomm Inc., Electrical Engineering Department,
San Diego, CA-92121 Univ. of Maryland, College Park, MD-20742

ABSTRACT
In this paper, we develop an efficient architecture for video
scaling based on the adaptive image scaling algorithm [3] ,[4].
We then develop the design of the computation units and
perform synthesis to show that the chip area required to
perform scaling from QCIF to 4CIF is about 20mm2 using
0 . 5 ~ technology.

In video applications, the data rate involved is extremely
high. When the available bandwidth is limited, the im-
age size is restricted. A high-performance real time scaling
technique that can scale an image while introducing little
distortion will allow us to transmit video data using a small
bandwidth while maintaining perceptual quality. Another
motivation for developing a good scaling algorithm is to
enable display of lower resolution images on higher resolu-
tion monitors (For eg., an NTSC format picture on HDTV
monitors). Simple scaling techniques (such as simple pixel
replication, bilinear interpolation and cubic interpolation)
cause visible effects such as jagged or blurred edges when
the images contain sharp edges or thin lines. Non-linear
model based interpolation techniques have been proposed
in [2] and [3]. However, these technique were considered
difficult to implement in practical systems because of the
complexity of the classification and the filtering require-
ments.

We develop an architecture based on the algorithm in
[3],[4]. Specifically, we consider an architecture for scaling
QCIF images to 4CIF format at 30 frames/sec. A straight-
forward architecture cannot meet the speed requirements.
We apply transformations to the data flow graph to obtain
an efficient architecture that meets the throughput require-
ments. The ASIC area requirements are then estimated
based on a synthesis starting from a Verilog description of
the computation units.

1. INTRODUCTION

2. ARCHITECTW AND DESIGN
In this section, we develop an efficient hardware architec-
ture for scaling by a factor of two in each dimension. The
algorithm for scaling of 24-bit YUV images is summarized
below. Simple bilinear interpolation is used for the U and
V components. The data flow graph for the Y component
is shown in Fig. l(b). In Fig. l(b), the 4 output pix-
els corresponding to pixel p[O,O] in the original image are

*This work was supported in part by the NSF NYI Award
MIP9457397 and the ONR grant N00014-93-10566, and was done
while this author was at University of Maryland, College Park.

being computed. In Fig. l (b) , a[-1:2,-1:2] correspond to
the orientation angles of the pixels p[-1:2,-1:2], respectively.
The filter coefficients, used in computing the 4 output pix-
els corresponding to the input pixel p[O, 01, are represented
by r[-1:2,-1:2]. The pixel memory stores the pixels of the
original image. The Sobel block computes the gradients fx
and fv in the x and y directions at p[2,2] using the pixels
within dotted lines in Fig. l(a). The angle block computes
edge orientation at p[2,2] by calculating tan-'(-fi/f,)
and quantizing the result into 8 possible orientations. The
neighborhood is classified as oriented if there is a dominant
orientation (in particular, if an orientation occurs more than
6 times within the 16 pixel neighborhood). Otherwise, the
pixel's neighborhood is classified as non-oriented. Filters
corresponding to the 8 possible orientations are pre-stored
in ROM. If the neighborhood is oriented, then the appropri-
ate oriented filter coefficients are loaded from ROM and the
interpolated pixels. If the neighborhood is non-oriented, the
Y components are interpolated bilinearly using the same fil-
tering unit (using coefficients corresponding to the bilinear
case).

l (b) , the memory
bandwidth required from the pixel memory is 9 + 16 = 25
pixels for every input pixel (or every 4 output pixels). Sim-
ilarly, the memory access rate per input pixel for the angle
memory is 15. This memory bandwidth can be reduced
by introducing some storage elements (i.e. registers) into
the Sobel, histogram and filtering units. In particular, the
memory access rate for the pixel data memory can be re-
duced to 7 per input pixel by providing storage for 9 pixels
within the Sobel operator. Similarly, the memory access
requirements for the angle memory can be reduced from 15
to 3. The pixel memory access requirements can be further
reduced to 5 by sharing data available in the Sobel unit
with the filtering unit (See [l]). Due to the structure of
the data accesses for pixels and angles, delay lines can be
used instead of random access memories. Also, since the
graph is feedforward, we can pipeline the architecture at
any feedforward cutset.

2.1. Sobel Computation
A straightforward implementation of the Sobel operator
would require 10 adders to compute f x and f,. We can
use sub-expression sharing to reduce the complexity of the
Sobel operator to 8 additions (See Fig. 4(a) where f (i , j) is
the Y component pixel value a t position (2 , j)) . The critical
path, if the data flow graph is implemented as a combina-
tional circuit, is given by 2 1-bit full adders and 1 12-bit

n o m the dataflow graph in Fig.

0-7803-547 1 -0/99/$10.0001999 IEEE

IV-406

(corresponding to the output precision of 12-bits assuming
8-bit inputs) carry propagate adder (CPA). If the through-
put of the system is not constrained by the Sobel operator,
we can fold the data flow graph so that we use only 4 adders
and reuse the adders over 3 clock cycles. Folding reduces
the adder complexity in half at the cost of some registers
and additional control.

2.2. Orientation Angle Computation
The most obvious approach to compute the quantized ori-
entation is to compute the ratio fz/fv at an appropriate
precision and follow that by a ROM table lookup. The an-
gles 4% = 11.25' + 22.5' x i; i = 0,1,. . . 7 correspond to the
transition levels and the angles 7% = 22.5" x i; i = 0,1, . . . 7
correspond to the reconstruction levels of the quantization
of tan-'(- fz/f,). For a 2" error in the specification of the
transition levels, we need to choose the precision so that we
can represent the difference tan(11.25'+2')-tan(11.25') =
0.036 (i.e. a precision of atleast 5 bits after the decimal
point). This requires that the divider provide an output of
12+5 = 17 bits (or, a ROM look-up of 217 = 128K words of
size 3 bits each). This leads to high hardware complexity.

The CORDIC processor in angle accumulation mode [5]
can be used to find the angle 0 = t an - ' (Y /X) correspond-
ing to the initial point with coordinates (XI Y) . The angle
is found by applying a series of shift and add operations on
the initial coordinates (X , Y) . Note that the angle can be
represented as a sequence of ptls (the angle is accumulated
as z (i + l) = z (i) -p%u(i) where u(i) = 2-'(*)). If we want to
define the quantization regions with an accuracy of 2", when
using the shift sequence s (i) = i we need atleast 6 stages
of CORDIC followed by a look-up table (addressed by the
vector pt ; i = 0,1, " . , n - 1). The look-up table has 26
words of size 3 bits. This procedure can be modified to per-
form the required computation using 5 stages followed by a
look-up table of size 24 words of 3 bits. For example, we can
write 78.75' M tan-'(2') + (tan-'(2-') + t ~ n - ' (2 - ~)) +
(t ~ n - l (2 - ~) + tan-' (T4)). Similarly, we can express other
transition angles using s (i) = 0,2,3,3,4; i = 0,1,2,3,4
(See [l] for details). Using appropriate control to decide
whether to add or subtract at each stage, we can obtain
the required quantized orientation angle. The complete ar-
chitecture is shown in Fig. 2(a). This signal flow graph can
be folded onto a single CORDIC-like processor to obtain
an area efficient implementation or can be directly imple-
mented as a combinational circuit.

2.3. Histogramlike Computation
We need to find the dominant orientation in the neighbor-
hood as well as the number of times that orientation occurs.
One efficient approach is the folded architecture shown in
Fig. 3. The contents of the orientation angle registers are
compared with the 3 bit-counter output every clock cycle.
The outputs of the comparators are fed to a (16,4) com-
pressor to obtain the total number of pixels that have the
same orientation corresponding to the 3-bit counter con-
tents. The dominant orientation and maximum count reg-
isters are both initialized to zero. Also, during each cycle
the output of the (16,4) compressor is compared with the
previous contents of the maximum count register. If the
present output of the (16,4) compressor is larger than the
previous contents of the maximum count register, both the

maximum count and dominant orientation registers are up-
dated. The maximum count register is updated with the
output value from the (16,4) compressor, while the domi-
nant orientation register is updated with the present 3-bit
counter contents. Therefore, after 8 cycles the desired his-
togram data is obtained in the maximum value register <and
dominant orientation registers.

2.4. Oriented and Non-oriented Filtering
It was found (See [l]) based on an analysis of the required
oriented filters and the resultant magnitude of quantization
errors that 11 bits are sufficient to represent the filter coef-
ficients. Clearly, the fastest implementation would require
16 multipliers (corresponding to the number of pixels in
the neighborhood) per output pixel. This means a total of
48 multipliers. Since the filters corresponding to different
orientations are different, general purpose (not fixed coeffi-
cient) multipliers are required. It would be too expensive
to have such a large number of multipliers on a single chip.
We need to apply some transformation so that the multi-
plier hardware can be reused. One approach is to fold the
computation required for each output pixel onto a smaller
number of multiply-accumulate (MAC) units (the folding
factor can be determined based on the throughput require-
ments). The architecture for computing one interpolated
Y component output is shown in Fig. 2(b). The partial
sums of the filtering operation are accumulated in carry
save form. The final addition is performed after the 16
MAC'S have been completed.

3. SYSTEM DISCUSSION A h 9 VLSI DESIGN
We consider here a design that can scale from QCIF (144
rows by 176 columns) to 4CIF (576 rows by 704 rows) at 30
frames per second. As suggested in [4], performing the scal-
ing in 2 steps (i.e. from QCIF to CIF and then from CIF
to 4CIF) rather than a direct scaling leads to better pler-
formance. The system architecture is shown in Fig. 4(b).
Four input delay lines are needed for the Y component and
two lines (of half the size) for the U and V components. In
order to convert the output pixels to progressive scan order,
output sync delay lines are required (4 lines are required for
each of the Y, U and V components, out of which 2 lines
are used to store the output from the filter/bilinear units
when the other 2 lines are used to provide the outputs in
progressive scan order). See [l j for details.

A QCIF video sequence at 30 frames/sec has a pixel
rate of 7.6 x lo5 pixels/s (a CIF video sequence has a r,ate
3 . 0 4 ~ 1 0 ~ pixels/s). For QCIF to CIF (CIF to 4CIF) conver-
sion we need to compute the 4 output pixels corresponding
to one input pixel within 1315ns (328ns). In order to deter-
mine whether pipelining between units is required, we first
estimate the number of clock cycles required by each unit
to complete the computation. Based on the architecture
shown in Fig. 2(b), atleast 17 clocks are needed to compllete
the filtering computation. Similarly, the folded Sobel com-
putation, the folded histogram architecture and the foldled
angle computation require 3, 10 and 7 clock cycles, resplec-
tively. Finally, taking into account the interface between
these units as well as with the output synchronization de-
lay lines, about 42 clock cycles are required to compute the
output pixels corresponding to one input pixel. This trans-
lates to a clock cycle of requirement of 328/42 % 7.81ns for

IV-407

‘ Unit Std. Cell Std. Cell
Count Area (p 2)

Sobel 702 911601.00
Angle I 815 I 769414.50 I 7 I 10.81ns

Histoeram I 410 I 393295.50 I 10 I 8.0411s

Clock Timing
Cycles

3 10.761s

”
Filter

B i 1 in ear
Table 1: Cell Area and Timing from Synthesis

CIF to 4CIF conversion. We showed that the throughput
can be attained in a real design by describing the various
blocks in Verilog, synthesizing them and performing a static
timing analysis to estimate the speed (See [l]). The syn-
thesis was performed using a 0 . 8 ~ standard cell library with
Cadence’s Synergy tool. If a straightforward approach does
not lead to the required throughput, then there are two pos-
sible approaches. The first approach is to apply pipelining
to meet the throughput requirements. Alternately, we can
assume a newer technology such as 0.5,~ and perform ap-
propriate scaling of our 0 . 8 ~ results. If we assume a linear
scaling of propagation delay [6] with technology, then it is
enough to obtain a critical path of 8 x 0.8/0.5 = 12.8ns (in
reality, close to linear scaling is possible [7]).

Various logic optimizations and re-organizations were
applied to meet the throughput requirements. The results
summarized in Table 1. In addition, we also need a con-
troller (with cell count 2311 and cell area 2793393~’) that
has all the required registers and provides appropriate com-
mands for the computation units. Note that three copies
of the filter unit are required to compute all three inter-
polated output pixels in parallel. We estimated the area
based on an automatic layout of the standard cells using
Cadence’s Silicon Ensemble corresponding to the computa-
tion and control circuitry. The area of the delay lines and
ROM were estimated based on the designs in 181, [9]. The
computation and control parts required an area of 35.3mm’
at 0 . 8 ~ . The delay lines required an estimated area (based
on [9]) of x 43mm2 at 0 . 8 ~ . This implies a total area
of M 78.3mm’ at 0 . 8 ~ . Assuming that the areas scale by
(5/8)2, an area of about 30.6mm2 at 0 . 5 ~ . The results indi-
cate that without pipelining between units we can achieve
the throughput required to scale a QCIF image to a 4CIF
image at 30 frames/sec using a 0 . 5 ~ technology.

We have shown that an efficient VLSI architecture and
implementation can be obtained for QCIF to 4CIF con-
version at 30 frames/sec. The total chip area for such an
implementation was estimated to be about 20mm2 at 0 .5 ,~.
Further speed-up can be obtained by pipelining so that the
scaling architecture can be used with larger image formats.

841 815625.00 20 9.8011s
258 395838.00 2 9.12ns

4. REFERENCES

[l] A. Raghupathy, “LOW Power and High Speed Algo-
rithms and VLSI Architectures for Error Control Cod-
ing and Adaptive Video Scaling,” Ph.D Thesis, Univ.
of Maryland, College Park, Dec. 1998.

[2] J. Salonen, “Edge and motion controlled spatial upcon-
version,” IEEE Trans. Cons. Elec., vol. 40, pp. 225-233,
Aug. 1994.

[3] Y. Wang and S. K. Mitra, “Image representation using
block pattern models and its image processing applica-

d [o,oi p! [0.5,0J
p’ W.5) pT [0.5,0.51

tions,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 15, pp. 321-336, Apr. 1993.

[4] P. Hsu and K. J. R. Liu, “Method and apparatus for
adaptive image interpolation,” Odyssey Technologies-
Confidential Report, Nov. 1997.

[5] Y. H. Hu, “CORDIC-based VLSI architectures for dig-
ital signal processing,” IEEE Sig. Proc. Mag., vol. 9,

[6] N.H.E.Weste and K. Eshraghian, Principles of CMOS
VLSI design. Addison Wesley, 1993.

[7] B. Davari, R. H. Dennard, and G. G. Shahidi, “CMOS
scaling for high performance and low power - the next
ten years,” Proc. of the IEEE, vol. 83, pp. 595-606,
April 1995.

[8] K. Dejhan, F. Jutand, N. Demassieux, 0. Colavin,
A. Galisson, and A. Artieri, “A new high-performance
programmable delay line IC,” IEEE Trans. on Cons.
Elec., vol. 35, pp. 893-899, Nov. 1989.

[9] H.-J. Mattausch, F. Matthiesen, J. Hartl, R. Tielert,
and E. P. Jacobs, “A memory-based high-speed delay
line with large adjustable length,” IEEE J . Solid-state
Circuits, vol. 23, pp. 105-110, Feb. 1988.

pp. 16-35, July 1992.

P10.01

j* p’p”
($I-------’ pixel in

MEMORY

I

MEMORY ANGLE

HISTOGRAM
COMPUTATION

IV-408

Functionality
of

adder/subtrdclor

-E

- 3-bit
Comb. Orientation

fn. *pending
to f, & fy

A
Compare

B>A \,

h Y
Multiplier

I
Adder Array

Sum[(Carry
Address

4-2 compressor

Filtered result
after 16 MAC'S
are completed

(b)

61 4 bit ctr.

Figure 3: Folded Architecture for Histogram Computation

P(2.31 p(3.21 p13.31 pII.31 K I F YUVinpll CIF YUVl"pll

INPUT OEIAY LINE5
I PI2.11 I Pl1.21 ' Pll.11 I Pl3.11

I I

Control

I I I
1, CIF YUV =dcd wylpt K I F YuV ==Iedmw
I I

'Y

(4 (b)
Figure 4: (a)Sobel Operator Computation b)Overall System Architecture

IV-409

