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Abstract—As embedded in wireless signals, information of an
indoor environment is captured during radio propagation, moti-
vating the development of emerging wireless sensing technologies.
In this paper, we propose a smart radio system that leverages
the informative wireless radios to enable intelligent environment
and extend human senses to perceive the world. In particular,
owing to the time-reversal (TR) technique that captures changes
in multipath profiles, the proposed TR indoor monitoring system
(TRIMS) is capable of monitoring indoor events and detecting
motion through walls in real time. A statistic model of intr-
aclass TR resonance strength is developed and treated as the
feature for TRIMS. Moreover, a prototype of TRIMS is imple-
mented using commercial WiFi devices with three antennas. We
investigate the performance of TRIMS in different single family
houses with normal resident activities. In general, TRIMS can
have a perfect detection rate with almost zero false alarm rates
for seven target events, whereas during a two-week experiment
TRIMS achieves a detection rate of 95.45% in the indoor multi-
event monitoring. The proposed TRIMS illustrates the potential
of smart radio applications in smart homes, thanks to the
ubiquitous WiFi.

Index Terms—Indoor activity monitoring, real-time monitor-
ing, smart radio, time-reversal (TR).

I. INTRODUCTION

THE DEVELOPMENT of emerging wireless sensing
technologies has enabled a plenty of applications that uti-

lizes wireless signals, or more specifically the wireless channel
state information (CSI), to perceive and exploit the informa-
tion hidden in the indoor environment. By deploying wireless
transceivers indoors, both macro changes introduced by human
activities and moving objects, and micro changes generated by
gestures and vital signals, can be extracted from the CSI and
recognized through passive wireless sensing.

The feasibility of wireless passive sensing relies on the
multipath propagation. Multipath propagation is the phe-
nomenon that a transmitted wireless signal reaches the receiver
(RX) through different paths after being reflected and scat-
tered by different objects in the indoor environment. A typical
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indoor multipath environment is demonstrated in Fig. 1, where
the channel between the transmitter (TX) and the RX consists
of paths affected by: 1) walls; 2) doors of each room; and
3) a moving human. Hence, as long as the states of an indoor
environment changes, the channel will record it in the CSI,
enabling the detection of activities by wireless passive sensing.

Existing research on wireless passive sensing can be cate-
gorized into different groups based on the features extracted
from the wireless channel. To begin with, traditional wire-
less passive sensing systems are mainly based on the received
signal strength (RSS) [1]–[5]. However, due to the fact that
the RSS is coarse-grained and can be easily corrupted by
multipath effect, RSS-based sensing systems often require a
line-of-sight (LOS) transmission, resulting in a limited accu-
racy in indoor activity detection. In order to improve the
accuracy and expand the applicable scenario of traditional
wireless passive sensing, a much more informative feature,
the CSI, becomes prevalent. Since the CSI is typically of high
dimensions, it contains more detailed information and supports
fine-grained classification applications, such as human motion
detection [6]–[15], and hand motion recognition [16], [17].
Among most of these works, due to the randomness of phase
distortion in the CSI, only amplitude of the CSI was used
to detect indoor activities, while ignoring the information in
the phase. Later, both amplitude and phase information of the
CSI was utilized in [7] to detect the dynamics of an indoor
environment. However, it can only differentiate between the
static and dynamic states in a LOS setting and the phase
information was sanitized through linear fitting with notable
drawbacks. A home intrusion detection system was proposed
in [14] which treated the amplitude of the CSI as the fea-
ture. However, there is no study on the false alarm rate and
long-term performance for the proposed system. Another cat-
egory of wireless passive sensing techniques relies on the
time-of-flight (ToF) of received signals to track the distance
changes of reflected moving objects [18]–[24]. However, in
order to extract the fine-grained ToF information, extremely
large bandwidths or specially designed frequency-modulated
continuous-wave signals are required. Hence, those techniques
cannot be implemented on off-the-shelf WiFi devices and
their ability of detecting multiple indoor events has not been
studied yet.

Recently, thanks to its capability of capturing the differ-
ence between different CSI, time-reversal (TR) technique has
been applied to wireless event detection in an indoor envi-
ronment [25]. Even though the proposed system achieved
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Fig. 1. Illustration of an indoor multipath environment.

an accuracy over 96.9% in detecting multiple events by uti-
lizing information in the complex valued CSI, the system
required a transmission under 125-MHz bandwidth which
cannot be implemented with commodity WiFi. Moreover, it
has no experimental results which evaluates the accuracy
in motion detection. Meanwhile, it lacks a long-term study
on performance in practical use with critical interference
introduced by resident activities.

Given the limitations of the aforementioned studies, we are
motivated to develop a new indoor monitoring system that not
only can fully utilize the information embedded in multipath
channels, but also support simple implementation with com-
mercial WiFi devices while maintaining a high detection
accuracy. To achieve this goal, we propose TR-based indoor
monitoring system (TRIMS), which utilizes both amplitude
and phase information in the CSI obtained from off-the-shelf
WiFi devices and succeeds in monitoring indoor environments
in real time under both LOS and NLOS sensing scenarios.
In particular, TRIMS is implemented on off-the-shelf WiFi
devices which operate around 5.8 GHz with 40-MHz band-
width, and capable of both multievent detection and motion
detection. Moreover, unlike the aforementioned works that use
the strength of TR resonance (TRRS) directly as a similarity
score for recognition and localization, TRIMS relies on the
statistical behavior of TRRS to differentiate different events.
The statistics of TRRS is derived in this paper and used as
features in TRIMS for event detection and motion monitoring.
The performance of TRIMS is evaluated through experiments
conducted in different single family houses with resident activ-
ities. TRIMS is shown to have a high accuracy in monitoring
different indoor events and detecting the existence of indoor
motion. Furthermore, the accuracy of TRIMS is maintained
over 95% during a long-term test lasting for two weeks.

The major contributions of this paper are summarized below.
1) To fully utilize the information in the CSI, both ampli-

tude and phase information is considered. Moreover, we
explore the TR technique to capture the difference in the
CSI and use the TRRS to quantify the similarity between
CSI samples.

2) The statistical behavior of intraclass TRRS is first
studied in this paper. The derived statistical model of
intraclass TRRS is then served as the feature in the
proposed smart radio, TRIMS, to differentiate between
different indoor events.

3) Built upon the theoretic analysis, the smart radio,
TRIMS, is proposed to monitor indoor environments,
recognize different events, and detect the existence of

motion in real time. TRIMS is implemented on com-
modity WiFi devices and evaluated through extensive
long-term experiments conducted in real homes with
resident activities.

The rest of this paper is organized as follows. We introduce
the theoretical foundation of the proposed smart radio system
in Section II. Section III presents an overview of the proposed
TRIMS as well as the details of both event detector and motion
detector in TRIMS. The performance of TRIMS is studied
and evaluated in Section IV, where the long-term behavior
of TRIMS is also investigated. We briefly discuss the future
works as well as the limitations in Section V. This paper is
concluded in Section VI.

II. PRELIMINARIES

In this section, the theoretical foundation of the proposed
smart radio system, TRIMS, are discussed. We introduce and
explain the concept of the TR space where each indoor event
is represented by a distinct TR signal. Moreover, we derive
the statistics of intraclass TRRS, which later is used as the
feature for the event detector in TRIMS.

A. Time-Reversal Resonance

What Is TR Technique? In a rich scattering and reflect-
ing environment, the wireless channels are indeed multipath
channels which contain the characteristics of an indoor envi-
ronment. The evolution of TR technique can be dated back to
1957 [26] when it was proposed to compensate the delay dis-
tortion in picture transmission. Later, TR technique has been
extended to applications in acoustics [27]–[29] and the elec-
tromagnetic (EM) field [30]–[34]. More recently, TR has been
advocated as a novel solution for green wireless communica-
tion systems and the TR signal transmission was introduced
in [35].

The TR signal transmission consists of two phases: 1) chan-
nel probing phase during which the CSI h(t) between the TX
and the RX is estimated at the TX and 2) data transmission
phase during which the TR signature g(t) is convolved with
data signals and sent out from the TX to the RX which is
the time reversed and conjugated version of h(t). Through TR
signal transmission, a spatial-temporal resonance is produced
by fully collecting the energy in the multipath channel and
concentrating it at the intended location. In physics, the spatial-
temporal resonance is the result of a resonance of EM field,
in response to the environment. Hence, a strong TR resonance
indicates a match between the transmitted TR signature and its
propagation channel. In other words, TRRS can be viewed as
a similarity measurement between different CSI. TR technique
has been utilized in many indoor sensing applications, includ-
ing indoor locationing [36], indoor human recognition [37],
and vital sign monitoring [38].

In Fig. 2, each snapshot of the indoor radio propagation
environment, associated with the unique CSI, is represented
by a point in the CSI logical space. By taking a TR operation,
the corresponding TR signature is generated, mapping each
physical indoor events or locations into a new point in the TR
space. Since each multipath profile is uniquely determined by
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Fig. 2. Mapping between the CSI logical space and the TR space [37].

a physical locations or an indoor events in the real world,
we are going to use the multipath profile to represent them
directly. Moreover, the CSI obtained from WiFi devices is in
the frequency domain, i.e., the CSI is in the form of the chan-
nel frequency response (CFR). In the time domain where the
CSI is represented by the channel impulse response (CIR),
the TR signature is the time reversed and conjugated copy
of the CIR h(t), i.e., g(t) = h∗(−t). Hence, in the frequency
domain the corresponding TR signature g of the CFR h is
given by g = F{g(t)} = F{h∗(−t)} = h∗. With the help of the
TR space, the similarity between two physical events or loca-
tions associated with different multipath profiles, also known
as, CFRs, is quantified by TRRS which is defined as follows.

Definition: The TRRS T R(h1, h2) between two CFRs h1
and h2 is defined as

T R(h1, h2) =
∣
∣
∑

k g∗
1[k]g2[k]

∣
∣2

(
∑L−1

l=0 |g1[l]|2
)(

∑L−1
l=0 |g2[l]|2

)

=
∣
∣
∑

k h1[k]h∗
2[k]

∣
∣2

(
∑L−1

l=0 |h1[l]|2
)(

∑L−1
l=0 |h2[l]|2

) (1)

where L is the length of the CFR vector, k is the subcarrier
index, and (·)∗ denotes taking conjugation.

The higher the TRRS is, the more similar two CFRs
are. When the TRRS between two CFRs exceeds a certain
value, then both of them can be viewed as representing the
same physical location or indoor event. In [39] and [40],
a centimeter-level accurate indoor locationing system was
proposed and implemented by mapping indoor physical loca-
tions into logical locations in the TR space. TR technique
has been applied to indoor passive RF sensing systems to
detect indoor events and identify humans with a high accu-
racy [25], [37].

In this paper, by leveraging the information of indoor activ-
ities and events embedded in wireless channels, we adopt the
TR technique and propose an indoor monitoring system that
can detect indoor events and human motion in real time with
commodity WiFi devices. Unlike the aforementioned works
which use the TRRS directly, the proposed system relies on the
statistics of TRRS to classify different multipath profiles, with
the purpose of monitoring indoor environment. The details are
discussed in the following.

B. Statistics of TRRS

Based on the assumption of channel stationarity, if CFRs
h0 and h1 are captured from the same indoor multipath

propagation environment, we can model h1 as

h1 = h0 + n (2)

where n is the Gaussian noise vector, n ∼ CN (0, [(σ 2)/L]I),
and E[‖n‖2] = σ 2 with ‖ · ‖2 representing the L2-norm of a
vector.

Without loss of generality, we assume unit channel gain for
h0, i.e., ‖h0‖2 = 1. Then, the TRRS defined in Section II-A
between h0 and h1 can be calculated as

T R(h0, h1) =
∣
∣
∑

k h∗
0[k](h0[k] + n[k])

∣
∣
2

‖h0‖2‖h0 + n‖2
=

∣
∣1 + hH

0 n
∣
∣
2

‖h0 + n‖2
(3)

where (·)H denotes the Hermitian operator, i.e., transpose and
conjugate.

Based on (3), we introduce a new metric γ and its definition
is given by the following:

γ = 1 − T R(h0, h1) = 1 −
∣
∣1 + hH

0 n
∣
∣
2

‖h0 + n‖2
= ‖n‖2 − ∣

∣hH
0 n

∣
∣
2

‖h0 + n‖2
.

(4)

According to the Cauchy–Schwartz inequality, we can have
|hH

0 n|2 ≤ ‖n‖2‖h0‖2, with equality holds if and only if n is a
multiplier of h0, which is rare to happen since n is a Gaussian
random vector and h0 is deterministic. Hence, we can assume
‖n‖2 > |hH

0 n|2 given ‖h0‖2 = 1, leading to γ > 0.
By taking the logarithm on both sides of (4), we have

ln(γ ) = ln
(

‖n‖2 − ∣
∣hH

0 n
∣
∣
2
)

− ln
(

‖h0 + n‖2
)

. (5)

Let us denote X = [2L/(σ 2)]‖n‖2, Y = [2L/(σ 2)]|hH
0 n|2

and Z = [2L/(σ 2)]‖h0 + n‖2. It is easy to prove that
X ∼ χ2(2L), Y ∼ χ2(2) and Z ∼ χ ′2

2L([2L/(σ 2)]). Here,
χ2(k) denotes a chi-squared distribution with k degrees of
freedom, and χ ′2

k (μ) represents a noncentral chi-squared distri-
bution with k degrees of freedom and noncentrality parameter
μ. By utilizing the statistics of X, Y , and Z, we can have the
following properties as:

E
[

‖n‖2
]

= σ 2 Var
[

‖n‖2
]

= σ 4

L
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[
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E
[
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]

= 1 + σ 2 Var
[
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]

= σ 4 + 2σ 2

L
(6)

where E[ · ] denotes the expectation and Var[ · ] represents the
variance.

According to (6), it is reasonable to establish the follow-
ing approximation as |hH

0 n|2 � [(σ 2)/L], whose mean square
error of approximation is equal to Var[|hH

0 n|2] = [(σ 4)/(L2)].
Considering that in a typical OFDM system σ 4 usually has a
magnitude smaller than 10−4 after normalization while L2 is
about 104, we have Var[|hH

0 n|2] = [(σ 4)/(L2)] → 0. Then,
substituting |hH

0 n|2 with [(σ 2)/L], (5) becomes the following:
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L
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− ln
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2L
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= ln
(

σ 2
)
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1
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(
σ 2

2L
Z

)

. (7)
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(a) (b) (c)

Fig. 3. Examples for evaluating the derived statistical model. (a) Distribution fitting for 500 real CSI measurements. (b) Histogram of scores of K–S test
from 500 real CSI measurements. (c) Mean square error of log-normal parameter estimation for simulated CFRs.

Moreover, considering that it is typical to have L > 100 and
σ 2 < 10−2 in a real OFDM system, (1/2L)X − (1/L) → 1
with a mean square error being 1/L2+1/L which approximates
to 0. Similarly, it is easy to derive that [(σ 2)/2L]Z → 1. By
utilizing the linear approximation of logarithm, i.e., ln(x +
1) � x when x → 0, along with (1/2L)X − (1/L) → 1 and
[(σ 2)/2L]Z → 1, (7) can be approximated as follows:

ln(γ ) � ln(σ 2) +
(

1

2L
X − 1

L
− 1

)

−
(

σ 2

2L
Z − 1

)

= ln
(

σ 2
)

− 1

L
+ 1

2L

(

X − σ 2Z
)

. (8)

Referring to the definition of X and Z, the last term in (8)
can be rewritten as

X − σ 2Z = 2L

σ 2
‖n‖2 + 2L‖h0 + n‖2 =

2L
∑

i=1

Wi

where Wi is defined as follows:

Wi =

⎧

⎪⎨
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w2
i −

(√
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)2
, if i = 2k

w2
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(√
2L�{h0[k]} + σwi

)2
, if i = 2k − 1.

(9)

Here, wi is independent and identically distributed with wi ∼
N (0, 1),∀i. �{·} denotes the function to take the real part of
a complex value while �{·} for the imaginary part. Given the
statistics of wi, the mean and variance of Wi are derived and
listed in (10) and (11), respectively

E[Wi] =
{

1 − 2L�{h0[k]}2 − σ 2, if i = 2k
1 − 2L�{h0[k]}2 − σ 2, if i = 2k − 1

(10)

and
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⎧
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,
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2
(
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)

σ 2
)

,

if i = 2k − 1.

(11)

Due to the fact that L > 100 in typical OFDM system,
∑2L

i Wi will exhibit an asymptotic behavior, according to
the central limit theorem. Hence we define a new normal-
distributed variable S2L as follows:

S2L =
∑2L

i Wi + 2Lσ 2

√

4L
(

1 + σ 4
)

∼ N (0, 1). (12)

After substituting (12) into (9), we finally get the statistical
distribution of γ as follows:

ln(γ ) � ln
(

σ 2
)

− 1

L
+ 1

2L

2L
∑

i=1

Wi

= ln
(

σ 2
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− 1
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)

2L
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(

ln
(

σ 2
)
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L
− σ 2,

1 + σ 4

L

)

. (13)

Hence, the metric γ , i.e., 1 − T R(h0, h1), follows the
log-normal distribution with the location parameter μlogn =
ln(σ 2) − (1/L) − σ 2 and the scale parameter σlogn =
√

[(1 + σ 4)/L].
The derived statistical model is verified by fitting over

real measured CSI samples and CSI samples generated from
the model in (2), as shown in Fig. 3. First, we adopt the
Kolmogorov–Smirnov test (K–S test) to quantitatively evaluate
the accuracy of the derived log-normal distribution model on
the real CSI measurements. The score of K–S test is denoted
as D which measures the difference between the empirical
cumulative distribution function (E-CDF) and the log-normal
cumulative distribution function (CDF). As depicted by the
example in Fig. 3(a) and (b), the log-normal distribution fits
better over CSI samples captured from real channels, com-
pared with the normal distribution. Moreover, the derived
log-normal distribution model is further investigated on simu-
lated CSI samples through studying the mean square errors of
parameter estimations against the signal-to-noise radio (SNR),
also known as, σ−1 in dB. As plotted in Fig. 3(c), in terms
of parameter estimation for the log-normal distribution, the
derived model is accurate with almost zero mean square error,
especially when SNR is high.

III. DESIGN OF TRIMS

Intelligent systems have become popular recently, in that
with the help of learning they are capable of comprehending an
object or even the world in the way humans do. For example,
researchers have spent decades on computer vision or machine
vision systems that achieve a high-level understanding over
digital images and videos which is comparable or even better
than the human visual system.
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Can WiFi perceive an indoor environment? To answer this
question, in this paper, we propose an intelligent indoor
monitoring system, TRIMS, which enables real-time indoor
monitoring with commercial WiFi devices by leveraging TR
technique. This novel indoor monitoring system consists of
the following components.

1) Event Detector: With the purpose of perceiving a mon-
itored environment and recognizing specific events, an
event detector is included in TRIMS. The proposed event
detector in TRIMS relies on TR technique to evaluate the
difference and similarity between various indoor events.
It consists of an offline training phase where the CSI and
corresponding statistics of training events are learned
and an online monitoring phase where the event detector
of TRIMS will report the occurrence of trained events
in real time. The details are discussed in Section III-A.

2) Motion Detector: TRIMS not only has the functionality
of detecting the occurrence of trained events, it is also
capable of detecting dynamics in the environment, i.e.,
motion inside the protected area. The proposed motion
detector leverages fluctuations in TRRS values within a
time window to indicate environmental dynamics and the
sensitivity is auto-adapted for each environment through
the training phase. In Section III-B, we will introduce
details of the proposed motion detector in TRIMS.

A. TRIMS: Event Detector

By leveraging the fundamental theories and techniques
proposed in Section II, we design a real-time event detection
module in TRIMS, utilizing the statistics of TRRS between
the CSI as the metric for categorizing indoor environments
and recognizing different indoor events. In this section, the
details of statistics-based event detector are introduced, and
the diagram illustrating how the event detector works is shown
in Fig. 4. The details are discussed in the following.

1) Offline Training Phase: In the offline training phase,
the proposed system aims to build a database that stores, for
each of the training events, the log-normal statistics of TRRSs
between the intraclass CSI and a representative CSI sample.

Specifically, for each indoor event Si ∈ S with S being the
set of indoor events to be monitored, the corresponding CFRs
are obtained through channel sounding and estimated at the
RX side as

Hi =
[

h(1)
i , h(2)

i , . . . , h(M)
i

]

, i = 1, 2, . . . , N (14)

where N is the size of S , i.e., the number of events of interest
and M is the number of links between the TX and the RX.
Each link represents the channel between a single TX–RX
antenna pair. The dimension of Hi is L × M with L being the
number of active subcarriers in a wireless OFDM system. The
statistics of intraclass TRRS is estimated through the following
steps.

1) Preprocessing: A phase sanitization algorithm is applied
to compensate all CFRs for phase offsets, which
are introduced by carrier frequency offset, sampling
frequency offset, and symbol timing offset.

Fig. 4. Diagram of the proposed event detector in TRIMS.

2) CSI Representative Generation: For each link m, a CSI
representative is found for every indoor event Si in the
training set. The CSI representative is selected as the one
that is most similar to all other CFRs on link m from
Si. In particular, to quantitatively evaluate the similarity,
the pair-wise TRRSs on link m between all the CFRs
collected for indoor event Si are calculated first. Then
the CSI representative is selected on link m for event Si

as the one that is most similar to the majority of other
CSI samples in the same class. Hrep,i is the collection
of CSI representatives on all links for event Si, which is
defined as follows:

Hrep,i =
[

h(1)
rep,i, h(2)

rep,i, . . . , h(M)
rep,i

]

∀i. (15)

3) Lognormal Parameter Estimation: Once the CSI repre-
sentative is selected, the log-normal distribution param-
eters can be estimated from intraclass TRRSs. For link
m and event Si, the TRRSs between the CSI represen-
tative h(m)

rep,i and all other realizations h(m)
i (n), ∀ n are

calculated using (1) and denoted as

T R(m)
i (n) = T R

(

h(m)
rep,i, h(m)

i (n)
)

n = 1, 2, . . . , Z − 1 (16)

where n is the realization index of CFRs collected for
event Si, and Z is the total number of CFRs. Then the
log-normal parameters (μ

(m)
i , σ

(m)
i ) of γ = 1 − T R(m)

i
for event Si on link m are estimated by

μ
(m)
i = 1

Z − 1

Z−1
∑

n=1

ln
(

1 − T R(m)
i (n)

)

(17)

σ
(m)
i =

√

Var
[

ln
(

1 − T R(m)
i

)]

(18)

where Var[ · ] is the sample variance function. The
training database is built with the collection of CSI rep-
resentatives and log-normal distribution parameters for
all the trained events. All the trained events can be
divided into two groups: a) the normal events group
Snormal where no alarm will be sounded when being
detected and b) the abnormal events group Sabnormal
where an alarm will be reported to users when an
abnormal event is detected.
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4) Threshold Learning: Based on the knowledge of Hrep
and Qrep, the system builds the normal event checker and
the abnormal event checker, through which the label of
the testing CSI sample is determined in the monitoring
phase. To determine whether event a testing CSI sample
Htest belongs to an event Si, a score is calculated first as

Wi,test =
M
∏

m=1

W(m)
i,test =

M
∏

m=1

F(

μ
(m)
i ,σ

(m)
i

)

(

1 − T R(m)
i,test

)

(19)

where T R(m)
i,test = T R(h(m)

rep,i, h(m)
test). W(m)

i,test is the sta-
tistical metric on link m of Htest conditioned on event
Si, defined as the value of log-normal CDF of 1 −
T R(m)

i,test with parameter being μ
(m)
i and σ

(m)
i . The oper-

ation
∏M

m=1(·) fuses the information among all links.
F(μ,σ )(x) represents the CDF of log-normal distribution
with parameters (μ, σ ) and the variable x. The smaller
the value of W(m)

i,test is, the higher the probability for
Htest belonging to event Si is. Two thresholds γnormal
and γabnormal are required for the normal event checker
and the abnormal event checker to define the bound-
ary for the value of metric Wi,j. Consequently, when
the value of Wi,test falls below the threshold γnormal
or γabnormal, Htest is viewed as from event Si. Hence,
in order to correctly distinguish different events, both
γnormal and γabnormal are carefully learned based on the
metrics Wi,test where Htest is replaced by Hrep,j during
the training phase. The criteria for choosing γnormal and
γabnormal are as follows:

γnormal = min
Si∈Snormal, Sj∈Sabnormal

Wi,j

γabnormal = min
Si∈Sabnormal, Sj∈S, Sj �=Si

Wi,j. (20)

2) Online Monitoring Phase: The statistics-based event
detector is designed to identify the real-time indoor events with
the knowledge of training database. Once the occurrence of a
trained event is detected, the system will decide to sound an
alarm based on the characteristics of that event. If an untrained
event is detected, the system will also notify user about the
situation. The details are discussed as follows.

During the monitoring phase, the RX keeps monitor-
ing the environment by collecting the CSI as Htest =
[h(1)

test, h(2)
test, . . . , h(M)

test ].
1) Statistical Metric Calculation: Since the obtained CSI

measurement Htest is corrupted by random phase offsets,
a phase sanitization algorithm is applied. After that, for
each trained indoor event, the TRRS between the CSI
representative and the testing measurement is calculated.
Given the TRRSs between the testing CSI sample and
trained events, the statistical metric Wi,test between Htest
and the trained event Si is calculated using (19).

2) Decision: The statistical metric W(m)
i,test is a monotonic

function of T R(m)
i,test which depicts the similarity between

the testing CSI samples and the CSI representative of
event Si. In other words, the more similar two CSI sam-
ples are, the smaller the value of Wi,test is. The detailed

decision protocol based on Wi,test is described in the
following.

a) Step 1 (Normal Event Checker): To begin with,
the event detector checks whether the environment
is normal, i.e., only one of the normal events in
Snormal occurs, by the following rule:

Devent =
⎧

⎨

⎩

arg minSi∈Snormal Wi,test
if minSi∈Snormal Wi,test ≤ γnormal
go to step 2, otherwise.

(21)

b) Step 2 (Abnormal Event Checker): In order
to determine which trained abnormal event in
Sabnormal occurs, it follows the rule:

Devent =
⎧

⎨

⎩

arg minSi∈Sabnormal Wi,test

if minSi∈Sabnormal Wi,test ≤ γabnormal

0, otherwise
(22)

where Devent = 0 indicates the occurrence of some
untrained event.

To summarize, the event detector labels the CSI sample Htest
by the following rule:

Devent =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arg minSi∈Snormal Wi,test
if minSi∈Snormal Wi,test ≤ γnormal

arg minSi∈Sabnormal Wi,test
if minSi∈Snormal Wi,test > γnormal and
minSi∈Sabnormal Wi,test ≤ γabnormal

0, otherwise.
(23)

B. TRIMS: Motion Detector

TRIMS is designed not only to determine which trained
indoor event happens, but also to detect if environment
has any dynamics by means of a motion detector proposed
in TRIMS.

Motion always introduces fluctuations in the radio propa-
gation environment, leading to significant changes of TRRSs
between CSI samples within a time window. The impact intro-
duced by motion is larger compared to the impacts brought
by channel fading and noise, especially when motion happens
close to the TX or the RX. In this part, we propose a motion
detector which uses the variance of TRRSs between CSI sam-
ples within an observation window as the metric to indicate
the indoor dynamics. The proposed motion detector consists
of two phases: an offline training phase and a real-time mon-
itoring phase. The flow chart of the proposed motion detector
is depicted in Fig. 5.

1) Phase I—Offline Training: In the training phase, the
proposed motion detector is trained with the dynamics, mea-
sured by the variance of a TRRSs time sequence, under
both static state and dynamic state with motion in the indoor
environment. The detailed steps are listed as follows.

1) Data Acquisition: First, the state of an indoor envi-
ronment is divided into two classes: a) S1 where the
environment is static and b) S0 where there is some
motion happening in the monitoring area. The CSI
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Fig. 5. Diagram of the proposed motion detector in TRIMS.

is collected continuously in time for both classes as
Hi(t) = [h(1)

i (t), h(2)
i (t), . . . , h(M)

i (t)], where H0(t) is
collected when the environment is static and H1(t) is
from the dynamic environment. t is the time instance
when the CFR is captured. The phase offset in CFRs
is compensated individually and independently before
learning the dynamics.

2) Dynamics Acquisition: After time sequences of CFR
measurements under both static state S0 and dynamic
state S1 are obtained, the environmental dynamics is
evaluated by tracking the variance of TRRSs within a
time window. To study the variance under both states
Si, i = 0, 1, a sliding window with length W samples
and overlap W − 1 is applied on the time sequence of
Hi(t). For example, in a window of length W, CFRs
from Hi(t0) to Hi(t0 + (W − 1) ∗ Ts) are stored, where
Ts is the channel probing interval. Within each win-
dow, the corresponding TRRS sequence between t0 and
t0 + (W − 1) ∗ Ts is denoted as T R(Hi(t0), Hi(t)), t0 ≤
t ≤ t0 + (W − 1) ∗ Ts, which is calculated as follows:

T R(Hi(t0), Hi(t)) =

M∑

m=1
T R

(

h(m)
i (t0), h(m)

i (t)
)

M
.

(24)

Then the dynamics within the time window can
be quantitatively evaluated by the variance of
{T R(Hi(t0), Hi(t)), t0 ≤ t ≤ t0 + (W − 1) ∗ Ts},
which is denoted as σi(t0), i = 0, 1. In order to have a
fair and comprehensive analysis, multiple σ ′

i s, i = 0, 1
are captured at different time.

3) Threshold Learning: After dynamics acquisition,
multiple instances of σ0 and σi are obtained, and the
threshold γmotion for differentiating between S0 and Si

is determined by

γmotion =
⎧

⎨

⎩

α maxt σ0(t) + (1 − α)σ1(t)
if maxt σ0(t) ≤ σ1(t)

maxt σ0(t), otherwise
(25)

where σ1(t) denotes the average of multiple σ ′
1s captured

at different time. α, 0 ≤ α ≤ 1, is a sensitivity coeffi-
cient for motion detections in that the sensitivity of the
proposed motion detector increases as α decreases.

2) Phase II—Online Monitoring: During the online moni-
toring phase, the dynamics in the environment is tracked by
comparing the variance on real-time TRRSs with γmotion as

Dmotion(t0) =
{

1, σtest (t0) ≥ γmotion
0, otherwise

(26)

where σtest (t0) is the variance on the testing TRRS sample
sequence within a window of length W and overlap W − 1
at time instance t0. Dmotion(t0) = 1 indicates the existence of
motion, i.e., someone is moving inside the monitoring area,
while Dmotion(t0) = 0 means the environment is static.

C. TRIMS: Time-Diversity for Smoothing

In a real environment, noise in wireless transmission and
outside activities exist and corrupt the estimated CSI, lead-
ing to a misdetection or a false alarm in both event detector
and motion detector of TRIMS. However, by leveraging the
fact that these interferences are typically sparse and abrupt, a
smoothing method relying on the time diversity is proposed
in this paper to address that problem.

The essential idea of the proposed time-diversity smoothing
algorithm is by applying the majority vote over decisions of
each testing CSI sample, assuming that the typical indoor event
lasts for a couple of seconds. In both of the event detector and
the motion detector, decisions will be accepted only if they are
consistent along a short time period. The details are as follows.

With the help of a sliding window SW whose length is W
and overlap length is O, the decisions Dout(n) at time index n
is obtained through

Dout(w) = MV{Din(1 + (w − 1) ∗ O),

. . . , Din(W + (w − 1) ∗ O)} (27)

where Din(w) is the input decision sample at time index w
and MV{·} is the operator for taking majority vote. The corre-
sponding time delay introduced by the sliding window SW is
in general (W − O) × T , where T is the time interval between
consecutive Din samples.

For example, in order to alleviate false alarms introduced by
outside activities and imperfect CSI estimation to the proposed
event detector, a two-level time-diversity smoothing is applied
as follows.

1) Level I: A majority vote is applied directly on the raw
decisions Dmotion of each single CSI sample. Given a
sliding window SW1 whose length is W1 and overlap
length is O1, the decisions of index w, DMV1(w), is
obtained from taking a majority vote over Devent(i +
(w − 1) ∗ O1), 1 ≤ i ≤ W1.

2) Level II: A second sliding window SW2 is applied on
DMV1(w) with length W2 and overlap O2. Consequently,
the final decision output is Dfinal(n). The system suffers
a time delay (W2 − O2) × (W1 − O1) × Ts.

IV. EXPERIMENTAL RESULTS

In order to evaluate the feasibility and the performance
of the proposed TRIMS in indoor monitoring, we build a
prototype on commodity WiFi devices performing 3 × 3
multiple-input and multiple-output transmission at 5.845-GHz
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(a) (b)

Fig. 6. Experimental setting for TRIMS. Floorplan of (a) house #1 and (b) house #2.

(a) (b) (c) (d)

Fig. 7. ROC performance for the proposed event detector. ROC performance for (a) all events (TX in the foyer), (b) targets events (TX in the foyer), (c) all
events (TX outside the study room), and (d) targets events (TX outside the study room).

carrier frequency under the IEEE 802.11n standard. According
to the IEEE 802.11n standard, both 2.4-GHz band and 5-GHz
band support a 40-MHz bandwidth and the CSI at those two
bands should share the same resolution. Therefore, with the
obtained CSI, the proposed system should achieve a detection
performance at 2.4 GHz similar to that from 5.8 GHz. In the
prototype, the CSI is extracted from the Qualcomm network
interface card and composed by a complex-valued matrix for
accessible subcarriers on all nine links. With a single pair of
devices, we conduct extensive experiments in two real indoor
environments: Houses #1 and #2 with regular residence activ-
ities, whose floorplans are shown in Fig. 6(a) and (b). The
locations of the TX and the RX are marked in the floorplans.

A. TRIMS: Event Detector

We start from the performance study of the proposed event
detector in TRIMS and experiments are conducted in both
facilities. In order to learn the statistics of intraclass TRRS, at
least 300 realizations of CFRs corresponding to each indoor
propagation environment should be collected. Furthermore, the
CSI sounding rate is 100 Hz in the training phase, while
it becomes 30 Hz in the real-time monitoring phase for the
event detector in TRIMS. The two-level time diversity algo-
rithm is applied in the event detector with W1 = 15, O1 =
14, W2 = 45, and O2 = 15, considering that 30 CSI samples
are collected per second.

1) Study on Location of TX–RX: As discussed in the
previous sections, the proposed event detector is aimed at
monitoring and detecting indoor events by leveraging the TR
technique to capture changes in the CSI. Different events

TABLE I
EVENTS OF INTEREST IN HOUSE #1

introduce different changes, depending on not only the char-
acteristics of each indoor event but also the distance between
the event location to the transceivers. The closer the indoor
event is, the larger impact it introduces. Hence, it is crucial
to study how the locations of the TX and the RX affects the
performance of the proposed event detector.

In house #1, we study the impact of TX–RX locations on
TRIMS’s performance in the event detection and the events of
interest are listed in Table I, while the candidate locations of
TX and RX are labeled with “TX_1” and “RX_1” in Fig. 6(a).
The RX is fixed in the study room while the TX is located
either in the foyer against a wall or outside the restroom. The
performance is evaluated through the RX operating character-
istic (ROC) curve, where the x-axis is the false alarm rate of an
event ei, i.e., the probability of other events being misclassified
as ei, whereas the y-axis is the detection rate of ei.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Monitoring results of the proposed event detector for operational tests in house #1. Test under (a) all doors closed, (b) opening (around the 20th
and the 50th s) and closing (around the 30th and the 60th s) front door from the outside the house twice, and (c) opening (around the 25th and the 55th s)
and closing (around the 35th and the 65th s) back door from the outside the house twice. (d) Postman test with someone walking outside the front door. Test
when an intruder (e) comes in (around the 60th s), walks inside, and leaves (around the 120th s) through front door and (f) comes in (around the 60th s),
walks inside, and leaves (around the 120th s) through back door.

As shown in Fig. 7(a), the proposed event detector fails to
differentiate between the CSI of e1, e6, and e7, in that the
false alarm rates of e1, e6, and e7 are extremely high under
the same detection rate, compared with others. The reason is
that the changes in the wireless multipath channel introduced
by e6 and e7 are too small for the proposed event detector
to capture. A possible reason is that event e6 and e7 are far
from the TX and the RX, when both devices are located in
the front part of the house. Similarly, in Fig. 7(c), when the
TX is put outside the study room, i.e., in the back part of the
house, event e2 and e8 are too far away while e9 is outside
the circle range defined by the line segment between the TX
and the RX. Consequently, the proposed event detector has an
ambiguity over e1, e2, e8, and e9.

Here, we introduce the concept of “target event,” to whom
the proposed event detector has a perfect accuracy, as shown
in Fig. 7(b) and (d). The target events are those events that
satisfy a rule-of-thumb, which says that in order to have it
detected, the event should either be close to the TX–RX link
or have a LOS path to one of the devices, given the location of
the TX and the RX. Under the rule-of-thumb, the target event
is able to change the CSI between the TX and the RX in a
way that is significant enough. The proposed event detector
can achieve a perfect ROC performance for target events.

2) Operational Test in House #1: In this part, to further
study the performance of TRIMS in the real-time event mon-
itoring, we imitate several intrusion and postman cases with
locations of TX and RX being “TX_2” and “RX_2.” In the
intrusion test, an intruder enters the house from a door and
walks inside the house before leaving from the same door.
On the other hand, in the postman test, some one is walking
outside the front door of each house to imitate a postman.

Moreover, in this part, the system is only trained for events
e1–e3. In Fig. 8, the system output is plotted along the time.
The y-axis is the output decision, where “allclosed” indicates

e1, “front” and “back” represent e2 and e3, respectively, and
“unknown” means untrained events happening. Take Fig. 8(a)
as an example. The proposed event detector outputs state
1, i.e., “all doors are closed,” during the test. As shown in
Fig. 8(b), during the test, the proposed event detector first
reports e1 for about 20 s and then detects the occurrence of
e2 when the front door is opened at the time index of the
20th s, with a single detection over the untrained event, i.e.,
the output falls to unknown. The system starts to report e1
when the front door is closed at around the 30th s.

Fig. 8(a)–(c) illustrates the ability of the proposed event
detector to perfectly monitor and detect the trained events in
real time when: 1) the environment is quiet and all doors are
closed; 2) the front door is opened and then closed twice from
the outside; and 3) the back door is opened and closed twice
from the outside. In Fig. 8(d), we simulate the postman case
where someone wanders outside the front door, close to the
target event. The proposed event detector shows its robustness
to outside activities by reporting no false alarms in the post-
man case. In the next test, we simulate intrusions made by
an intruder through the front door and the back door and the
intruder is required to leave through the same door after walk-
ing inside the house for a certain period. As demonstrated in
Fig. 8(e) and (f), the proposed event detector succeeds in cap-
turing the intrusion. Moreover, between the door opening in
both figures, the decision of the proposed event detector may
become unknown which is owing to the interference to the
multipath channel brought by human motion inside the house.

3) Long-Term Test in House #1: Furthermore, we conduct
a long-term monitoring test for the proposed event detector in
TRIMS in house #1 for six days. The result is compared with
that of a commercial home security system whose contact sen-
sors are installed on the front and back door. During the first
six days, TRIMS has zero false alarm when the ground truth
state of the indoor environment is e1. It detects with 100%
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(a) (b) (c)

Fig. 9. Monitoring results of the proposed event detector for operational tests in house #2. Test under (a) all doors closed, (b) opening (around the 19th and
the 61st s) and closing (around the 36th and the 72nd s) front door from the outside the house twice, and (c) opening (around the 18th and the 50th s) and
closing (around the 28th and the 64th s) back door from the outside the house twice.

TABLE II
EVENTS OF INTEREST IN HOUSE #2

accuracy over 21 times of front door opening while detects 15
out of 18 times of back door opening, i.e., an average accuracy
of 92.31%.

The degradation in the accuracy is because the wireless
channel keeps fading along the time while the training data
for front door opening and back door opening is not updated.
Hence, there eventually will be a mismatch between the testing
CSI measurements and the training profiles. Considering the
channel fading, the proposed event detector is designed to have
an automatic updating scheme for e1, i.e., it will periodically
update the training data of e1 as long as the environment is rec-
ognized as in the state of all doors closed by the event detector.
The periodic refresh of e1 training metrics is to address the
uncontrollable changes in the indoor environment but fails to
fully resolve the problem. Due to the difficulty of labeling
the testing CSI measurements from door opening in an unsu-
pervised way, in this paper we do not consider to update the
training data for other events automatically.

4) Operational Test in House #2: In this part, the
performance of TRIMS in real-time event monitoring is stud-
ied in house #2 with the event list being in Table II. Moreover,
all the parameters and hardware settings are as the same as
the ones in house #1.

To begin with, the proposed event detector is set to monitor
when: 1) the environment is quiet and all doors are closed;
2) someone opens the front door and then closes it from the
outside (twice); and 3) someone opens the back door and then
closes it from the outside (twice). The results are shown in
Fig. 9, where the decision output being unknown means that
an untrained event is happening, allclosed indicates that envi-
ronment is in the all-doors-closed and quiet, and front and
back represent front door and back door is opening, respec-
tively. All figures can be interpreted in the same way as those
in Fig. 8. The proposed event detector succeeds in capturing
the trained events perfectly without false alarms.

5) Long-Term Test in House #2: Furthermore, the long-
term behavior of the proposed event detector in TRIMS is

investigated in house #2 through a test that lasts for two
weeks. During the long-term test, resident activities are more
often than that in house #1 and thus the indoor environ-
ment changes every day which might jeopardize the proposed
event detector trained in day 1. Every day during the long-
term test, tester performed the same operational test as in
Section IV-A4 to evaluate the detection performance of the
proposed event detector. The system outputs along the time
are plotted in Fig. 10, where y-axis is the system out-
put with unknown, allclosed, front, and back representing
the occurrence of untrained events, e1 all doors are closed,
e2 “front door is opened,” and e3 “back door is opened,”
respectively.

As shown in Fig. 10(a), (f), and (k), the proposed event
detector is good at detecting the trained events with no
false alarm during the same day when the system is trained.
However, after one week or even two weeks, with the original
training database built on day 1, the proposed system fails to
detect the trained events and has a high false alarm rate on e2,
as shown in Fig. 10(b), (d), (g), (i), (l), and (n). For example,
as depicted in Fig. 10(b), the system keeps reporting front door
is opened, when the ground truth of the indoor state being e1
all doors are closed. With uncontrolled resident activities, the
indoor environment changes resulting in a different multipath
profile not only for e1 but also for e2 and e3. With the help
of the auto-update of e1, the proposed event detector is able
to detect the trained events e2 and e3 during the two-week
experiment with no false alarm. The results are as shown in
Fig. 10(c), (e), (h), (j), (m), and (o).

As demonstrated by examples in Fig. 10, with an automatic
and periodic update of the training data for e1, TRIMS can
maintain its accuracy in differentiating between and recog-
nizing trained events in a single family house with normal
resident activities during two weeks. The monitoring results
of TRIMS in the 14-day experiment is compared with the his-
tory log provided by a commercial home security system. In
general, the proposed event detector captures the incidents of
e2 and e3, i.e., opening the front or the back door from the
outside of the house, with an accuracy being 95.45% while a
single misdetection happens on day 13.

B. TRIMS: Motion Detector

The performance of the motion detector is tested in house
#1 with the TX and RX devices located at positions marked by
TX_2 and RX_2 in Fig. 6(a). The parameter α defined in (25)
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Fig. 10. Monitoring results of the event detector for long-term tests in house #2. e1 test on (a) day 1, (b) day 7 w/o e1 update, (c) day 7 w/ e1 update,
(d) day 14 w/o e1 update, and (e) day 14 w/ e1 update. e2 test on (f) day 1 (open around the 20th and the 62nd s and close around the 34th and the 74th s),
(g) day 7 w/o e1 update (open around the 20th and the 60th s and close around the 30th and the 70th s), (h) day 7 w/ e1 update, (i) day 14 w/o e1 update
(open around the 18th and the 58th s and close around the 30th and the 70th s), and (j) day 14 w/ e1 update. e3 test on (k) day 1 (open around the 18th
and the 52nd s and close around the 24th and the 62nd s), (l) day 7 w/o e1 update (open around the 46th and the 72nd s and close around the 52nd and the
80th s), (m) day 7 w/ e1 update, (n) day 14 w/o e1 update (open around the 12th and the 40th s and close around the 20th and the 48th s), and (o) day 14
w/ e1 update.

TABLE III
DETECTION RATE FOR MOTION AT DIFFERENT LOCATIONS

UNDER ZERO FALSE ALARM RATE

is set to be either 0.8 or 0.2, while W = 30 indicates a 1-s
window of continuously collected CSI as defined in (24). For
the Dmotion(t0) in (26), we apply a time-diversity smoothing
with only one-level majority vote whose W = 45 and O = 15,
to eliminate any possible false alarms due to burst noise or
error in the CSI estimation.

During the training phase, the proposed motion detector
learns the threshold γmotion based on the data from 1-min mon-
itoring data collected under e1, and someone walking in and
around the center of the house.

Given a zero false alarm, the detection rates of motion at
different locations are listed in Table III. The proposed motion
detector is intelligent in that it learns and adapts its sensitivity
automatically based on the characteristics of the radio propa-
gation environment where it is deployed, through the training
phase. The change that motion introduces to the channel is

proportional to the amount of the reflected signal energy that
is generated by the moving object and collected at the RX.
Hence, by relying on the motion detector, TRIMS succeeds in
captures motion inside the house occurring close to the devices
or have a LOS path to either the TX or the RX. However,
due to the large path loss for EM waves penetrating multiple
walls, motion occurring inside the Alice’s room or restroom
will have no or tiny impacts on the CSI measurements and thus
cannot trigger the motion detector. Moreover, a smaller value
of α indicates the system being less sensitive and a smaller
coverage of monitoring area.

V. DISCUSSION

In this section, we are going to discuss some limitations of
TRIMS proposed in this paper, along with topics for further
extending this paper.

A. Retrain of TRIMS

As discussed in the long-term test in Section IV-A3, the
system keeps automatically and periodically updating the
training data of e1, i.e., the state of that all doors are closed,
based on its real-time detection results. Due to the difficulty in
labeling the testing CSI of door opening in an unsupervised
way, the proposed auto-updating scheme can only work for
e1. As verified by experiments, with that automatic updating
scheme, the proposed system is robust to normal EM pertur-
bations introduced by noise and slight environmental changes.
However, environmental changes affect not only the CSI of
state e1, but also that of event e2 and e3. If the environment
changes significantly from that when e2 and e3 were trained,
the proposed system would fail to find a match between the
testing CSI and the one in the training database. That is when
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the system needs retraining, and it can be determined by com-
paring the very first e1 training data with the current one.
Through experiments we found that when the TRRS between
the earliest e1 training CSI and the current CSI measured under
e1 drops below an empirical threshold of 0.7, the proposed
system requires retraining over all states.

B. Monitoring With Multiple Transmitters

In current days, there are more than one device that usu-
ally connects to the same WiFi router in an office or at home,
which inspires us to extend this paper by developing TRIMS
to accommodate more TXs. The performance of TRIMS can
be improved since the information has more degrees of free-
dom by means of an increased spatial (device-level) diversity.
Moreover, as shown in Sections IV-A1 and IV-B, for a single
pair of the TX and the RX devices, it has a limited cover-
age in detecting events and motion. By deploying more TXs
at different locations, the monitoring area will be expanded.
However, it requires further study to optimize the performance
of the multi-TX TRIMS and will be one of our future work.

C. Detecting Dynamic Event

In the current event detector of TRIMS, the training
database is built upon static CSI measurements collected for
each events. Each dynamic event can be decomposed into
several intermediate states sampled during its occurrence.
Since the intermediate state can be viewed as static, the
proposed algorithm can be applied to detect the occurrence
of its intermediate states. Consequently, the state transition
that depicts the occurrence of dynamic events can be cap-
tured, and thus dynamic events can also be monitored by the
proposed system. Moreover, the authors are working on a new
method for monitoring indoor dynamic events and details will
be discussed in a future paper.

D. Identifying Motion

In this paper, the proposed motion detector in TRIMS
manage to detect the incidents of motion. Nevertheless, it
is worthwhile to study how to utilize the TR technique to
extract the characteristics of a motion with WiFi signals, e.g.,
the direction and the velocity. The potentiality of extracting
motion information and even identifying motion with com-
mercial WiFi devices is beneficial to various applications like
elderly assistance and life monitoring.

E. Potential of TRIMS

The proposed TRIMS is not confined by WiFi and can be
applied to other wireless technologies as long as CSI with
enough resolution can be obtained. The spatial resolution of
CSI is determined by the transmission bandwidth of the radio
frequency (RF) device. Ultrawideband (UWB) communica-
tion whose bandwidth exceeds 500 MHz can provide CSI
of a finer spatial resolution and enable a better discrimina-
tion than WiFi does. However, UWB-based indoor monitoring
systems require to deploy specially designed RF devices and
the coverage is small. On the other hand, as demonstrated by

experiments in this paper, with the help of TRIMS, commer-
cial WiFi devices with only a 40-MHz bandwidth can support
high-accuracy indoor monitoring. Due to the explosive pop-
ularity of wireless devices, increasing wireless traffic clogs
WiFi and collisions delay the CSI probing with an unknown
offset, which introduces difficulty to real-time wireless sens-
ing systems. Taking advantage of the proposed smoothing
algorithm, TRIMS is robust to nonuniform CSI probing and
packages loss. Moreover, thanks to the ubiquitous deployment
of WiFi, the proposed system is ready and can be easily put
into practice for smart home indoor monitoring. In general, the
proposed system can be integrated with all kinds of wireless
technologies where CSI with enough resolution is accessible.

VI. CONCLUSION

In this paper, we present a smart radio system, TRIMS, for
real-time indoor monitoring, which utilizes TR technique to
exploit the information in multipath propagations. Moreover,
the statistical behavior of intraclass TRRS is analyzed the-
oretically. An event detector is built, where different indoor
events are differentiated and quantitatively evaluated through
TRRS statistics of the associated CSI. Furthermore, a motion
detector is designed in TRIMS to detect the existence of
dynamics in the environment. The performance of TRIMS is
studied through extensive experiments, which are conducted
with TRIMS’s prototype implemented on a single pair of com-
modity WiFi devices. Experimental results demonstrate that
TRIMS addresses the problem of recognizing different indoor
events in real-time. We also evaluate the performance through
a two-week monitoring test in a single family house with nor-
mal resident activities. TRIMS succeeds in achieving a high
accuracy in long-term indoor monitoring experiments, demon-
strating its prominent and promising role in future intelligent
WiFi-based low-complexity smart radios.
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