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Abstract— Multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM) is one prominent commu-
nication system for realizing high speed data transmission services.
One critical issue for such systems is channel estimation. In this
paper, we first develop a pilot-embedded data-bearing (PEDB)
approach for joint channel estimation and data detection. Then
we propose a least square (LS) FFT-based channel estimator by
employing the concept of FFT-based channel estimation to improve
the performance of the PEDB-LS channel estimation. Also, the
effects of model mismatch error when considering non-integer
multipath delay profiles, and its performance are investigated.
We further propose an adaptive LS FFT-based channel estimator
that employs the optimum number of significant taps. Simulation
results reveal that the adaptive LS FFT-based estimator provides
superior performance under quasi-static channels or low Doppler’s
shift regimes.

I. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing (OFDM) systems have been
proposed for increasing the communication capacity as well
as the reliability of the wireless communication systems by
exploiting the transmitter and receiver diversities [1]. However,
these systems need an accurate channel state information (CSI)
for coherently decoding the transmitted data, e.g. a maximum-
likelihood (ML) decoder. Hence, channel estimation is of critical
importance.

Various channel estimation schemes have been recently pro-
posed for MIMO-OFDM systems [2]-[4]. In [4], the FFT-based
channel estimation using a certain number of significant taps for
estimating the channel impulse response in a temporal domain
was proposed. Despite the efficient computational complexity
of this scheme, it could suffer from an error floor caused by
a non-integer multipath delay spread in the wireless channels,
known as a model mismatch error. The model mismatch error,
or the leakage effect, was first mentioned in single-input single-
output (SISO)-OFDM systems employing the FFT-based chan-
nel estimation [5]. Without the knowledge of channel correlation
information, two methods could be used to reduce the leakage
effect: 1) by changing the exponential basis functions in the
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FFT-based approach to the polynomial basis functions [6],
and 2) by employing a proper number of significant taps
to construct a channel frequency response in the FFT-based
approach [4]. In the former, although the approach [6] provides
better performance than the FFT-based approach [4] under the
non-integer multipath delay profiles, its performance is worse
under the integer multipath delay profiles. Furthermore, this
approach imposes higher computational complexity than that
of the FFT-based approach, and a general rule of designing
the optimum window length is not fully discovered. Given the
efficient implementation and reliability, the FFT-based approach
is still attractive. However, the optimal solution of choosing
the number of significant taps remains unsolved. Here we
plan to find the optimal criteria for obtaining the optimum
number of significant taps when the knowledge of channel
correlation information or Doppler’s shift is not available. The
main contributions of this paper are:

• We develop and analyze the performances of pilot-
embedded data-bearing (PEDB) least-square (LS) and LS
FFT-based channel estimators for MIMO-OFDM systems.

• We study the relationship between the mean-squared error
(MSE) and the model mismatch error of the LS FFT-based
channel estimator for determining the optimum number of
significant taps, and hence, propose an adaptive LS FFT-
based channel estimation approach.

The organization of this paper is as follows. In section II, we
briefly introduce the wireless channel and system models used
in this paper. In section III, we propose the pilot-embedded
data-bearing approach for joint channel estimation and data
detection. Under this pilot-embedding framework, in section
IV, we propose the LS FFT-based channel estimator and study
the performance analysis for the PEDB-LS and LS FFT-based
channel estimation approaches. In section V, we propose the
adaptive LS FFT-based channel estimation. In section VI, the
performance of the proposed schemes are examined via simu-
lations, and the conclusion is given in section VII.

II. WIRELESS CHANNEL AND SYSTEM MODELS

We consider a K−tone SF-coded OFDM system with Lr

receive and Lt transmit antennas. The complex baseband im-
pulse response of the wireless channel between the ath receive
antenna and the bth transmit antenna can be described by [4]
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hab(t, τ) =
∑

l γl(t)δ(τ − Dl), (1)

where Dl is the delay of the lth path and γl(t) represents
the corresponding complex amplitude. γl(t)’s are modelled as
wide-sense stationary (WSS), narrowband complex Gaussian
processes, which are independent for different paths. We assume
that all the signals transmitted from different transmit antennas
to the receive antennas undergo independent fading, and the
channel average power is normalized to have

∑
l σ

2
l = 1 with

σ2
l being an average power of the lth path. For OFDM systems

with tolerable leakage, the normalized frequency response of
the OFDM systems at the kth (k = 0, . . . , (K − 1)) subcar-
rier between the ath receiver and the bth transmitter can be
described by [4]

Hab(m,n, k) =
∑L−1

l=0 hab(m,n, l)F kτl

K , (2)

where hab(m,n, l) � hab(m,nTf , τlts), FK =
exp(−j2π/K), ts = 1/(K∆f), with ∆f being the tone
spacing, is the sample interval of the system, Tf is the OFDM
block length, and m denotes the index of a group of N -OFDM
blocks described next. L is the number of nonzero paths, and
τl (l = 0, . . . , L − 1) is the lth path’s delay sampled at rate
ts, e.g. Dl = τlts. The average power of hab(m,n, l) and the
value of L depend on the delay profile and the dispersion of
the wireless channels. For simplicity, we omit the time index
n in all notations in the next text.

At the transmitter side, the MPSK-data symbols are coded
by the space-frequency (SF) block code, e.g. [1], and grouped
to construct the Lt × KN SF-coded data matrix S(m), where
N denotes the number of OFDM blocks, and m denotes the
N -OFDM-block index. In our proposed pilot-embedded data-
bearing approach, the SF-coded data matrix S(m) is embedded
by the pilot signal, so we have the SF-coded symbol matrix
with size Lt × KM , where M denotes the number of OFDM
blocks included in one SF-coded symbol block. To eliminate the
intersymbol interference (ISI), a cyclic prefix is employed with
the length of cyclic extension being no smaller than τL−1. In
this paper, we consider quasi-static frequency-selective Rayleigh
fading channels, meaning that the channel remains constant
over the SF-coded symbol block but changes in a block-by-
block basis. By assuming tolerable power leakage and perfect
time/frequency synchronization, the received signal of the mth

SF-coded symbol block can be described by

Y(m) = H(m)U(m) + Z(m), (3)

where Y(m) is a Lr × KM matrix; H(m) is the
Lr × KLt channel matrix in which the ath row of
H(m) is [Ha1(m), . . . ,HaLt

(m)] where Hab(m) =
[Hab(m, 0), . . . ,Hab(m,K − 1)]; Z(m) is the Lr × KM
additive white Gaussian noise (AWGN) matrix with zero
mean and variance σ2

2 I(LrKM×LrKM) per real dimension; and
U(m) is the KLt × KM equivalent SF-coded symbol matrix.
Throughout this paper, we assume that the channels and noise,
and channels from different paths are mutually uncorrelated.

III. PILOT-EMBEDDED DATA-BEARING APPROACH

In this section, we first present the main ideas of the pilot-
embedded data-bearing approach. We then briefly introduce the

PEDB-LS channel estimation and PEDB-ML data detection.

A. Pilot-Embedded Data-Bearing Approach

In the pilot-embedded data-bearing approach for joint channel
estimation and data detection, the equivalent SF-coded symbol
matrix U(m) can be described as follows,

U(m) = D(m)B + C, (4)

where D(m) denotes the KLt × KN equivalent SF-coded
data matrix constructed from the matrix S(m) using the
K × K matrix-diagonalized operator diag{·}, where the
((b − 1)K + 1)th row to the (bK)th row of D(m) are
[diag{[S(m)]b,1:K}, . . . , diag{[S(m)]b,(N−1)K+1:NK}] with x :
y denotes the column/row index interval ranging x to y; B is the
KN ×KM data bearer matrix; and C is the KLt ×KM pilot
matrix. Notice that the K diagonal elements of a (b, c)th subma-
trix, c = 1, . . . ,M , represented in U(m) by the ((b−1)K+1)th

row to the (bK)th row and the ((c − 1)K + 1)th column to
the (cK)th column are the cth transmitted SF-coded OFDM
block at the bth transmitter in the mth SF-coded symbol block-
group. In addition, the energy constraint E[‖D(m)‖2] = KLt is
maintained for the equivalent SF-coded data matrix. Substituting
(4) into (3), we have the received signal matrix as

Y(m) = H(m)(D(m)B + C) + Z(m). (5)

Now, by the pilot-embedded data-bearing approach, the data
bearer matrix B and the pilot matrix C are required to satisfy
the following properties:

BCT = 0(KN×KLt), CCT = αI(KLt×KLt), (6)

CBT = 0(KLt×KN), and BBT = βI(KN×KN), (7)

where β is the real-valued data-power factor and α is the real-
valued pilot-power factor. The similar property CCT = αI in
(6) is also suggested in [2] that it is the optimal criterion for the
optimal training design for MIMO-OFDM systems. There are
several possible structures of data-bearing and pilot matrices,
in which the elements of these matrices are real numbers, that
satisfy the properties (6) and (7). We are particularly interested
in the case of Code-Multiplexing (CM)-Based Matrices, since
it provides the superior performance among the three structures
studied in [7].

We now describe the CM-Based matrices. The structures of
these matrices are given as

B =
√

βWH[1 : N ](N×M) ⊗ I(K×K),M = N + Lt,

C =
√

αWH[N + 1 : M ](Lt×M) ⊗ I(K×K), (8)

where WH[x : y] denotes a sub-matrix created by splitting
the M × M normalized Walsh-Hadamard matrix [8] starting
from xth-row to yth-row and ⊗ denotes the Kronecker product.
This structure provides an instructive example of the proposed
general idea in (4) for pilot-embedding.

Notice that, in (8), the proposed scheme is a block-training
scheme in which Lt OFDM blocks are used for estimating the
CSI. As suggested in [3], [4], when using only one OFDM
block for training in the MIMO-OFDM systems, the LS channel
estimator for Hab(m) exists only if K ≥ LtL. In general,
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in the case that K < LtL and L ≤ K, the use of Lt

OFDM blocks for training can guarantee the existence of the
LS channel estimator and other better channel estimators, such
as the LMMSE channel estimator [3].

B. Pilot-Embedded Data-Bearing LS Channel Estimation

We first extract the pilot part from the received signal matrix
Y(m). By using the null-space and orthogonality properties in
(6), respectively, we are able to extract the pilot part by simply
post multiplying Y(m) in (5) by CT , and then dividing by α,
to arrive at

Y(m)CT

α = H(m) + Z(m)CT

α . (9)

Let Y1(m) = Y(m)CT

α and Z1(m) = Z(m)CT

α , we have

Y1(m) = H(m) + Z1(m). (10)

The PEDB-LS channel estimator can be obtained by mini-
mizing the following mean-squared-error objective function,

ĤLS(m) = min
H(m)

‖Y1(m) − H(m)‖2. (11)

It is straightforward to show that

ĤLS(m) = Y1(m) = Y(m)CT

α . (12)

C. Pilot-Embedded Data-Bearing ML Data Detection

We now describe the procedure of PEDB-ML data detection.
First, we extract the data part from the received signal matrix
Y(m). Using the null-space and orthogonality properties in (7),
respectively, we are able to extract the data part by simply post
multiplying Y(m) in (5) by BT , and then dividing by β,

Y(m)BT

β = H(m)D(m) + Z(m)BT

β . (13)

Let Y2(m) = Y(m)BT

β and Z2(m) = Z(m)BT

β , we have

Y2(m) = H(m)D(m) + Z2(m). (14)

From the orthogonality of B in (7), we note that∑KM
j′=1 |Bi′,j′ |2 = β, ∀i′. Therefore, the data-bearer-

projected noise Z2(m) is AWGN with zero-mean and variance
σ2

2β I(KLrN×KLrN) per real dimension. Due to the i.i.d white
Gaussian distribution of Z2(m), the PEDB-ML receiver jointly
decides the codewords for the dth OFDM block in the mth

SF-coded data block by solving the following minimization
problem,

D̂i,j(m) = minDi,j
‖Y2s,j

(m) − Ĥs,i(m)Di,j(m)‖2,

i = 1 : KLt, j = (d − 1)K + 1 : dK,

s = 1 : Lr, and d = 1, . . . , N, (15)

where Ĥ(m) is the estimated channel matrix, e.g. Ĥ(m) =
ĤLS(m). The codeword transmitted from the bth transmitter is
represented by D̂ib,j(m), with ib = (b − 1)K + 1 : bK.

IV. THE LS FFT-BASED CHANNEL ESTIMATION AND

PERFORMANCE ANALYSIS

As shown in (9), the PEDB-LS channel estimate contains the
channel frequency response that is contaminated by AWGN.
In this section, we improve the performance of the PEDB-LS
channel estimator by employing the basic concepts of the FFT-
based approach proposed in [4].

A. LS FFT-Based Channel Estimation Approach

As suggested in [4], the FFT-based channel estimation ap-
proach first calculates the temporal LS channel estimate by
using L significant taps, i.e. L’s largest

∑Lt

b=1 |ĤLSab
(m, k)|2.

The resulting temporal LS channel estimate is then FFT trans-
formed to obtain the K-subcarrier channel frequency response.

Now let us propose the LS FFT-based channel es-
timator in details. From (12), we have ĤLSab

(m) =
([ĤLS(m)]a,(b−1)K+1:bK)T . From the channel model in (2),
ĤLSab

(m) can be expressed as

ĤLSab
(m) = Fhab(m) + Z1ab

(m), (16)

where F is the K × L matrix whose element [F]xy is defined
by exp[(−j2π/K)(x−1)τy], x = 1, . . . ,K, y = 0, . . . , L−1;
hab(m) = [hab(m, 0), . . . , hab(m,L − 1)]T ; and Z1ab

(m) =
([Z1(m)]a,(b−1)K+1:bK)T .

Transforming the PEDB-LS channel estimate in (16) to
the temporal PEDB-LS channel estimate by using the K ×
K IFFT matrix G, whose element [G]xy is defined by
1
K exp(j2π/K)(x − 1)(y − 1), x, y = 1, . . . , K, we have

ĥLSab
(m) = GĤLSab

(m) = GFhab(m) + GZ1ab
(m). (17)

Let ZG
1ab

(m) = GZ1ab
(m), it can be shown that

ĥLSab
(m) = [g(1), . . . , g(K)]T , (18)

where g(x) = 1
K

∑L−1
l=0 hab(m, l)f(x − 1 − τl)ejξ(x−1−τl) +

ZG
1ab

(m,x) with ZG
1ab

(m,x) being the xth element of ZG
1ab

(m),
f(q) = sin(πq)

sin(πq/K) is the leakage function, and ξ = (K−1)π
K .

Obviously, from (18), if τl is an integer number, then the
lth element of the L largest elements of ĥLSab

(m) is equal to
hab(m, l) + ZG

1ab
(m, l), and the rest elements, which are not a

member of the L largest elements, are equal to ZG
1ab

(m, e), e �=
l, e ∈ {0, . . . , K−1}\W1 with W1 being the set of the L largest
elements. As a result, by choosing L largest taps and replacing
the (K − L) remaining taps by zero is sufficient and optimal,
resulting in the LS FFT-based estimate of the temporal channel
impulse response ĥFFTab

(m), since we completely capture the
channel impulse response hab(m), and remove the excessive
noise in the (K − L) remaining taps. However, in reality, the
lth multipath delay τl is often a non-integer number, hence,
the L-multipath channel impulse response dissipates to all K
taps of ĥLSab

(m) and thus results in the model mismatch error,
which increases the channel estimation error, primarily caused
by the AWGN ZG

1ab
(m). This additional channel estimation

error causes the severe error floor in the MSE of the channel
estimation, and the detection error probability. Once the L (or
P ) largest taps are chosen and the rest taps are replaced by
zero, the LS FFT-based estimated channel frequency response
is determined by

ĤFFTa,b
(m) = KGH ĥFFTab

(m). (19)

B. Channel Estimation Error Performance Analysis

We now analyze the performance of the PEDB-LS and LS
FFT-based channel estimators by using the MSE of channel
estimation as the performance measure.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2006 proceedings.

1521



1) PEDB-LS Channel Estimator: For arbitrary multipath
delay profiles, the temporal channel impulse response between
the ath receiver and bth transmitter can be described by,

hG
ab(m) = GFhab(m). (20)

The channel estimation error can be readily described by

h̃LSab
(m) = hG

ab(m) − ĥLSab
= −ZG

1ab
(m), (21)

by referring to ĥLSab
(m) in (17), and hG

ab(m) in (20). Using
(21), the MSELS(a, b) of the channel estimation is expressed
as

E[‖h̃LSab
(m)‖2] = E[‖ − ZG

1ab
(m)‖2] =

σ2

α
, (22)

by using E[|ZG
1ab

(m,x)|2] = σ2

Kα , x = 1, . . . ,K, as referring
to section III.B. It is worth noticing that (22) is also the MSE
of the K-tap FFT-based channel estimation.

For Lr-receiver Lt-transmitter MIMO systems, the overall
MSELS in (22) can be expressed as follows,

MSET
LS =

Lt∑
a=1

Lr∑
b=1

MSELS(a, b) =
σ2LtLr

α
. (23)

2) LS FFT-Based Channel Estimator: As we mentioned
earlier, the LS FFT-based channel estimator first simply chooses
the L largest taps, and then replaces the (K−L) remaining taps
by zero. This operation can be equivalently described by using
the K × K tap-selection matrix T given by

T = diag{1, 1, . . . , 0, 1, . . . , 0}, (24)

where 0’s and 1’s represent non-selected and selected taps,
respectively. There are (K − L) 0’s and L 1’s elements in
the diagonal elements of T. By using the tap-selection matrix
T, the temporal LS FFT-based-estimate of the channel impulse
response between the ath receiver and bth transmitter can be
described by

ĥFFTab
(m) = TGĤLSab

(m)
= TGFhab(m) + TGZ1ab

(m), (25)

by plugging in ĤLSab
(m) in (16).

Similarly to (21), the channel estimation error can be de-
scribed by, using hG

ab(m) in (20) and ĥFFTab
(m) in (25),

h̃FFTab
(m) = hG

ab(m) − ĥFFTab
(m)

= (GF − TGF)hab(m) − TGZ1ab
(m).(26)

Now let us define W2 ∈ {0, . . . , K−1}\W1 to be a set of the
non-selected (K − L) less significant taps, and w2 ∈ W2 and
w1 ∈ W1 are row indices indicating the 0’s and 1’s elements
of T, respectively. It can be shown that

[GF − TGF]w2,1:L = 1
K [f(w2 − 1)ejξ(w2−1), . . . ,

f(w2 − 1 − τL−1)ejξ(w2−1−τL−1)], (27)

where τ0 = 0. Therefore, by substituting (27) into (26), we can
express each part of the channel estimation error as follows,

[(GF − TGF)hab(m)]w1∈W1 = [TGZ1ab
(m)]w2∈W2 = 0,

[(GF − TGF)hab(m)]w2∈W2

= 1
K

∑L−1
l=0 hab(m, l)f(w2 − 1 − τl)ejξ(w2−1−τl), and

[TGZ1ab
(m)]w1∈W1 = [ZG

1ab
(m)]w1∈W1 . (28)

From (28), it is readily shown that the channel estima-
tion error of the LS FFT-based channel estimator are due to
two error sources: the model mismatch error, i.e. [(GF −
TGF)hab(m)]w2∈W2 , and the corresponding noise effect, i.e.
[TGZ1ab

(m)]w1∈W1 . By substituting (28) into (26), we have
the MSEFFT (a, b) of the LS FFT-based channel estimator as

E[‖h̃FFTab
(m)‖2] = 1

K2

∑
w2∈W2

∑L−1
l=0 E[|hab(m, l)

·f(w2 − 1 − τl)|2] + Lσ2

Kα , (29)

in which the assumption that the channel and noise, and
channels from different paths are mutually uncorrelated, is
exploited. For Lr-receiver Lt-transmitter MIMO systems, the
overall MSEFFT in (29) can be expressed as follows,

MSET
FFT =

χ

K2
+

Lσ2LtLr

Kα
, (30)

where χ
K2 =

∑Lr

a=1

∑Lt

b=1

∑K
j=1 E[‖[ĥLSab

(m)]j‖2] −
η2 − ∑Lr

a=1

∑Lt

b=1

∑
w1∈W1

E[‖[ĥLSab
(m)]w1‖2] with η2 =

(K−L)σ2LtLr

Kα .
First, we consider the case of the multipath delay profiles

with integer delays. In this case, the model mismatch error χ is
equal to zero. Since L ≤ K and by referring to (23), we can see
that the channel estimation performance of the LS FFT-based
channel estimator is superior to that of the PEDB-LS channel
estimator in this case, i.e. MSET

FFT ≤ MSET
LS . Using χ = 0,

we have
∑Lr

a=1

∑Lt

b=1

∑
w1∈W1

E[‖[ĥLSab
(m)]w1‖2]

=
∑Lr

a=1

∑Lt

b=1

∑K
j=1 E[‖[ĥLSab

(m)]j‖2] − (K−L)σ2LtLr

Kα .(31)

The observation in (31) indicates that in order to achieve the
minimum MSE of the LS FFT-based channel estimator, the
L largest taps must be capable of capturing the average total
energy of channels in the presence of AWGN.

For the case of the multipath delay profiles with non-integer
delays, a non-zero model mismatch error χ exists, as shown in
(30), due to the leakage phenomenon. Hence, it is important to
study the joint effects of the tap length L and the noise level
σ2 on the MSE measure.

V. THE PROPOSED ADAPTIVE LS FFT-BASED CHANNEL

ESTIMATOR

In this section, we propose an adaptive LS FFT-based channel
estimation approach in which the number of significant taps
used in channel estimation can be adjustable in order to min-
imize the model mismatch error and the corresponding noise
effect. The model mismatch error in the LS FFT-based channel
estimation stems from the fact that a fixed number of L (or
P ) largest taps is used in the channel estimation process for
all signal-to-noise ratio (SNR) values. In the proposed adaptive
LS FFT-based approach, the number of significant taps P is
chosen to achieve the intuitive goal that the average total energy
of the channels dissipating in each tap is completely captured
in order to compensate the model mismatch error. Specifically,
the number of significant taps Popt used to capture the CSI
in ĥLSab

(m) in (18) is obtained by solving the following
optimization problem:
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Fig. 1: Theoretical examples of the model mismatch error, the noise
effect, and the overall MSE of the LS FFT-based channel estimator as
a function of the number of significant taps P .
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Popt = min(P ) s.t.
∑Lr

a=1

∑Lt

b=1 E
[
maxWp,|Wp|=P

∑
i∈Wp

‖[ĥLSab
(m)]i‖2

]
≥

∑Lr

a=1

∑Lt

b=1

∑K
j=1 E[‖[ĥLSab

(m)]j‖2] − (K−P )LtLrσ2

Kα . (32)

It is clear that, for a given P , the solution of achieving
maxWp,|Wp|=P

∑
i∈Wp

‖[ĥLSab
(m)]i‖2 is to choose Wp as the

indices of the P largest taps (P = L in the previous sections).
Now let us intuitively explain why (32) in details. If we

assume a perfect situation, then the most desired criteria used
to determine the number of significant taps P is the MSET

FFT

in (30), such that the optimization solution is expressed as

Popt = min
P

{MSET
FFT (P )}. (33)

First, instead of minimizing MSET
FFT (P ) directly, we want to

take advantage of specific observations revealed in the two terms
of (30). In Fig. 1, we plot the corresponding χ/K2 term and
the noise error term Lσ2LtLr

Kα as a function of P under several
SNR levels with the setting parameters described in Section VI.
From this figure, we note that χ/K2 converges to zero as P
increases, meaning that more taps can be used to compensate
the model mismatch error. Also, it is seen that the resulting Popt
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Fig. 3: The graph of MSEs of the channel estimation in quasi-static
fading channels.
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Fig. 4: The graph of BERs of the pilot-embedded SF-coded MIMO-
OFDM system in quasi-static fading channels.

increases as SNR increases. In addition it is noted that Popt can
be approximately determined by locating the intersection point
of the curve of the model mismatch error and the curve of the
noise error. Therefore, the problem in (33) can be formulated
as

Popt = min(P ) s.t. { χ

K2
≤ Pσ2LtLr

Kα
}. (34)

Or equivalently, by substituting χ, we have
Popt = min(P ) s.t.

∑Lr

a=1

∑Lt

b=1

∑
i∈Wp

E
[
‖[ĥLSab

(m)]i‖2
]

+ Pσ2LtLr

Kα ≥
(∑Lr

a=1

∑Lt

b=1

∑K
j=1 E[‖[ĥLSab

(m)]j‖2] − (K−P )LtLrσ2

Kα

)
.(35)

However, in practice, since Wp is an unknown
set, it is not feasible to compute the term∑Lr

a=1

∑Lt

b=1

∑
i∈Wp

E
[
‖[ĥLSab

(m)]i‖2
]

directly. In stead,
for each transmission, depending on the real observations,
for different P , we instantaneously compute the term
max{Wp,|Wp|=P}

∑
i∈Wp

‖[ĥLSab
(m)]i‖2. Then empirical

expectation is calculated. Overall, we compute the following
term

∑Lr

a=1

∑Lt

b=1 E
[
maxWp,|Wp|=P

∑
i∈Wp

‖[ĥLSab
(m)]i‖2

]
.
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Since∑Lr

a=1

∑Lt

b=1 E
[
maxWp,|Wp|=P

∑
i∈Wp

‖[ĥLSab
(m)]i‖2

]
≥

∑Lr

a=1

∑Lt

b=1

∑
i∈Wp

E
[
‖[ĥLSab

(m)]i‖2
]
, (36)

where Wp is a set of the P largest taps. We note that the
left hand is based on order statistics. In our case, since the
components in ĥLSab

(m) follow non-identical distributions, due
to the complex nature of order statistics, it is infeasible to find
the theoretical close-form expression of the l.h.s of (36) in term
of the r.h.s of (36). Numerical examples are plotted in Fig. 2 to
demonstrate the relationship between the l.h.s of (35) and the
l.h.s of (36). From Fig. 2, we can see that the curves of the l.h.s
of (35) and (36) are close together when the number of taps are
small until the intersection point between these two curves and
the r.h.s of (35) for both SNR = 2 and 20 dB. This phenomenon
indicates that by replacing the l.h.s of (35) by the l.h.s of (36) for
determining the minimum number of significant taps that yield
the equality to the constraint of (35), the resulting number of
taps are mostly the same as solving (35) directly. It is worth
noticing that in the regimes beyond the intersection point, these
two curves are different; however, this phenomenon does not
affect the minimum number of significant taps since we never
exploit their relationship in these regimes.

Based on the above observations, we propose to replace the
l.h.s of (35) by the l.h.s of (36), and thus replace the inequality
constraint in (35) by the inequality constraint in (32). Therefore,
we have the proposed scheme in determining Popt as described
in (32). In this sense, we could regard the proposed scheme in
(32) as a sub-optimal approach in determining Popt. However,
in most cases, the Popt determined by solving the problem in
(32) is almost identical to the optimum solution obtained by
using an exhaustive search for the minimum MSET

FFT in (30).
While the later case serves as a theoretical ideal solution.

VI. SIMULATION RESULTS

Simulations are conducted under quasi-static frequency-
selective Rayleigh fading channels. The simulated SF block
code is obtained from Alamouti’s structure as in [1], using a
BPSK constellation for two transmit and two receive antennas.
The COST207 typical urban (TU) six-ray normalized power
delay profile [9] with delay spread of 5 µs is studied. The entire
channel bandwidth, 1 MHz , is divided into K = 128 subcarriers
in which four subcarriers on each end are served as guard tones,
and the rest (120 tones) are used to transmit data. To make the
tone orthogonal to each other, the symbol duration is 128 µs,
and additional 20 µs guard interval is used as the cyclic prefix
length in order to protect the ISI due to the multipath delay
spread. The equal block-power allocation, i.e. β = α = 0.5 W,
is employed, the normalized SF-coded symbol block-power is
1 W, N = 2, and M = N +Lt = 4. The CM-based structure in
(8) is selected as the representative of three structures studied in
[7]. In this experiment, the channel impulse response hab(m, l)’s
in (2) are based on Jake’s model [10], when fd ∗ Tf = 0.08
(fast fading) with fd being the Doppler’s shift.

In Fig.3, the MSEs of the PEDB-LS, 10-tap LS FFT-based,
adaptive LS FFT-based, and LMMSE channel estimators [3], are
shown. Notice that the PEDB-LS approach has a higher MSE

in low SNR regimes than that of the 10-tap LS FFT-based and
the adaptive LS FFT-based approaches. In high SNR regimes,
the PEDB-LS and adaptive LS FFT-based approaches performs
better than the 10-tap LS FFT-based one in which the error floor
caused by the model mismatch error occurs, whereas the former
two do not suffer from this severe error floor. It is worth noticing
that the LMMSE estimator serves as the channel estimation
performance bound at the price of the intensive computational
complexity and the additional channel correlation information.

In Fig.4, the BER comparisons are shown. Notice that the
10-tap LS FFT-based and adaptive LS FFT-based estimation
performances are quite close in low SNR regimes, whereas the
PEDB-LS approach performs worse, in which the 2-dB SNR
difference at BER of 10−3 is observed. In high SNR regimes,
the 10-tap LS FFT-based estimator suffers from the error floor,
say at BER of 2× 10−4, whereas the others do not. At BER of
10−4, the SNR differences between the ideal-channel scheme,
where the true channel impulse response is employed, and the
adaptive LS FFT-based and PEDB-LS estimators are 2.2 dB and
3.6 dB, respectively, whereas the LMMSE estimator provides
the error probability coinciding with the ideal-channel scheme.

VII. CONCLUSION

In this paper, we have proposed an adaptive LS FFT-based
channel estimator for improving the performances of the LS
FFT-based and PEDB-LS estimators, under the framework of
pilot-embedded data-bearing approach for joint channel esti-
mation and data detection. For quasi-static TU-profile fading
channels, simulations show that the adaptive LS FFT-based
estimator provides superior performance to that of the 10-
tap LS FFT-based and PEDB-LS approaches. For instance, at
BER of 10−4, the SNR differences are as 2.2 dB and 3.6 dB,
respectively, for the adaptive LS FFT-based and the PEDB-LS
estimators compared with the ideal-channel scheme, whereas
the 10-tap LS FFT-based estimator suffers from the severe error
floor caused by the model mismatch error.
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