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Abstract—In this paper, we study the effects of model mismatch
error inherently in the FFT-based channel estimation approach
when considering the multipath delay profiles with non-integer
delays. We propose an adaptive FFT-based channel estimator
that employs the optimum number of significant taps such that
the average total energy of the channels dissipating in each
tap is completely captured in order to compensate the model
mismatch error. Furthermore, our proposed pilot-embedded data-
bearing approach is employed for joint channel estimation and
data detection. Simulation results reveal that the adaptive FFT-
based channel estimator is superior to the FFT-based and LS
channel estimators; however, in nonquasi-static fading channels
under high Doppler’s shift regimes, the performances of all three
channel estimators are quite close resulting from the influence of
the channel mismatch error that dominates all factors causing the
detection error.

I. INTRODUCTION

High speed data transmission services have been highly de-
manded in future wireless communications [1]. One promising
transmission technique realizing this demand is an orthogonal
frequency division multiplexing (OFDM) technique [2]. Re-
cently, multiple-input multiple-output (MIMO) OFDM systems
have been proposed for increasing the communication capacity
as well as the reliability of the wireless communication systems
by exploiting the transmitter and receiver diversities [2]. Beside
this promising communication scheme, the space-frequency
(SF) coding for MIMO-OFDM systems have been developed for
high data-rate wireless communications by exploiting both the
spatial and frequency diversities [3]. However, those aforemen-
tioned schemes need accurate channel state information (CSI)
for coherently decoding the transmitted data, e€.g. a maximum-
likelihood (ML) decoder. Therefore, channel estimation is of
critical importance.

Various channel estimation schemes have been recently pro-
posed for MIMO-OFDM systems [4]-[6]. In [4], a linear mini-
mum mean-squared error (LMMSE) channel estimator was pro-
posed, in which a singular-value decomposition (SVD) is used
to simplify the ordinary LMMSE channel estimator. Despite
the highly accurate channel estimate of this scheme, it requires
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intensive computational complexity and the knowledge of the
channel correlation. In [5], the FFT-based channel estimation
using a certain number of significant taps for estimating the
channel impulse response in a temporal domain was proposed.
Despite the efficient computational complexity of this scheme,
it suffers from an error floor caused by a non-integer multipath
delay spread in the wireless channels, known as a model
mismatch error. The main contributions of this paper are as
follows.

o We study the underlying problem of the FFT-based channel
estimator, and solve this problem by proposing an adaptive
FFT-based channel estimation that employs the optimum
number of significant taps such that the average total
energy of the channels dissipating in each tap is completely
captured in order to compensate the model mismatch error.

o We also extend the pilot-embedded data-bearing approach
for joint channel estimation and data detection in the
MIMO-OFDM systems, which has been originally pro-
posed in [7] for the case of single carrier. This generalizes
the idea of pilot-symbol-assisted modulation (PSAM) and
pilot-embedding techniques.

The organization of this paper is as follows. In section II, we
briefly introduce the wireless channel and system models used
in our paper. In section III, we propose the pilot-embedded
data-bearing approach for joint channel estimation and data
detection including the basic LS channel estimation and ML
data detection. The FFT-based and adaptive FFT-based channel
estimations are considered in section IV. In section V, the
performance evaluation by computer simulations is examined,
and the conclusion is given in section VI. For ease of later use,
let (-)T stands for the transpose of a matrix, () stands for
the complex-conjugate transpose of a matrix, I stands for an
identity matrix, and O stands for an all-zero-element matrix.

II. WIRELESS CHANNEL AND SYSTEM MODELS

In this section, we introduce the wireless channel and system
models used in this paper. A K —tone SF-coded OFDM system
with L, receive and L, transmit antennas is considered.

A. Wireless Channel Model

The complex baseband impulse response of the wireless
channel between the ' (a = 1,..., L,) receive antenna and

211



the b (b=1,..., L,) transmit antenna can be described by

hao(t, 7) = 32, m(t)o(T — D), D

where D, is the delay of the [** path and ~;(t) represents
the corresponding complex amplitude. ~;(¢)’s are modelled
as wide-sense stationary (WSS), narrowband complex Gaus-
sian processes, which are independent for different paths, and
E[|y:(t)]?] = o2 with o2 being an average power of the [*" path.
Throughout this paper, we assume that all the signals transmitted
from different transmit antennas and received at different receive
antennas undergo independent fades, and the channel average
power is normalized to have Y, 0f = 1. For OFDM systems
with tolerable leakage, the normalized frequency response of
the OFDM systems at the k" (k = 0,..., K — 1) subcarrier
between the a'* receive antenna and the b*" transmit antenna
can be described by [5]

Hop(m,n, k) = 2070 haw (m, n, DFET, ©)

where  hgp(m,n,l) ES hop(m, nTy, mts), Fx =
exp(—j2n/K), ts = 1/KAf, with Af being the tone
spacing, is the sample interval of the system, T is the OFDM
block length, and m denotes index of a group of N-OFDM
blocks described next. L is the number of nonzero paths, which
represents the order of frequency diversity of the channel, and
7 (I=0,...,L —1) is the {** path’s delay sampled at a rate
of 1/ts. Furthermore, the average power of hgy(m,n,l) and
the value of L(« K) depend on the delay profile and the
dispersion of the wireless channels. For ease of later use, we
omit the time index n in all parameters.

B. System Model

At the transmitter side, the data stream is split into L,
substreams, and, in each substream, a group of data is chosen
to match to the corresponding baseband M -phase-shift keyed
(MPSK) constellation symbol. These MPSK-data symbols are
then coded by the SF block code, e.g. [3], and grouped to
construct the Ly x KN SF-coded data matrix S(m), where N
denotes the number of OFDM blocks (each OFDM block has
K tones) to be regarded as one SF-coded data block, and m
denotes the N-OFDM-block index. Before modulating this SF-
coded data block by the OFDM modulator, the SF-coded data
matrix S(m) is embedded by the pilot signal using the pilot-
embedded data-bearing approach resulting in the L; x KM SF-
coded symbol matrix, where M denotes the number of OFDM
blocks to be regarded as one SF-coded symbol block. Notice
that M > N in which the redundancy is introduced after
embedding the pilot signal for acquiring the CSI. Each pilot-
embedded OFDM block is then modulated and simultaneously
transmitted across L; transmit antennas. In order to eliminate
the intersymbol interference (ISI), we employ a cyclic prefix
in which the length of cyclic extension must be larger than or,
at least, equal to 7_;. In this paper, we consider two types
of fading channels: quasi-static and nonquasi-static frequency-
selective Rayleigh fading channels. The former is the scenario
that the channel remains constant over the SF-coded symbol
block but changes in block-by-block basis, whereas in the latter
the channel changes within the SF-coded symbol block. At

the receiver side, the received signal is sampled at rate ¢5 and
demodulated by the OFDM demodulator. By assuming tolerable
power leakage and perfect time/frequency synchronization, the
reconstructed signal of the m** SF-coded symbol block can be
described by

Y(m) = H(m)U(m) + Z(m), 3

where Y(m) is the L, x KM received signal matrix;
H(m) is the L, x KL, channel matrix in which the a*®
row of H(m) is [He1(m),...,Hyp,(m)] where Hyp(m) =
[Haop(m, 0), ..., Hop(m, K—=1)]; Z(m) is the L, x K M additive
white (gaussian noise (AWGN) matrix with zero mean and vari-
ance G-Iy, xarxr, kary per real dimension; and U(m) is the
KL; x KM equivalent SF-coded symbol matrix. Throughout
this paper, we assume that the channels and noise, and channels
from different paths are mutually uncorrelated.

III. THE PILOT-EMBEDDED DATA-BEARING APPROACH
FOR JOINT CHANNEL ESTIMATION AND DATA DETECTION

In this section, we first propose the pilot-embedded data-
bearing approach for joint channel estimation and data detec-
tion, then we briefly introduce the LS channel estimation and the
ML data detection. In the pilot-embedded data-bearing approach
for joint channel estimation and data detection, the equivalent
SF-coded symbol matrix U(m) can be described as follows,

U(m) =D(m)A + P, 4

where D(m) denotes the K L x KN equivalent SF-coded data
matrix constructed from the L; x KN SF-coded data matrix
S(m) using the K x K matrix-diagonalized operator diag{-},
where the ((b— 1)K + 1) row to the (bK)™ row of D(m)
are [diag{[S(m)]s,1:xc }, - - ., diag{[S(m)]y, (v—1)k+1:v K }] With
z : gy denotes the column/row index interval ranging from
column/row x to column/row y; A is the KN x KM data
bearer matrix; and P is the K L; x KM pilot matrix. Notice that
the K diagonal elements of a (b, ¢)!* submatrix, ¢ = 1,..., M,
constructed by splitting U(m) from the ((b— 1)K +1)*" row to
the (bK )" row and the ((¢— 1)K +1)** column to the (cK)"
column are the ¢! transmitted SF-coded OFDM block of the b**
transmit antenna in the m** SF-coded symbol block. In addition,
the energy constraint E[||D(m)||?] = K L, is maintained for the
equivalent SF-coded data matrix. Substituting (4) into (3), the
received signal matrix can be rewritten as

Y (m)=H(m)(D(m)A +P) + Z(m). 3

Now, by the pilot-embedded data-bearing approach, we mean
that the data bearer matrix A and the pilot matrix P satisty the
following properties:

APT = 0(KN><KLL)7 PP’ = aI(KLtXKLt)7 (6)
PAT = 0(kr,«xn), and AAT = Bl nwrny, ()

where [ is the real-valued data-power factor, « is the real-
valued pilot-power factor. The similar property PP? = ol in
(6) is also suggested in [6] that they are the optimal criteria for
the optimal training design for MIMO OFDM systems. There
are many possible structures of data-bearing and pilot matrices,
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in a similar way to [7], that satisfy the properties (6) and (7).
However, we are interested in the Code-Multiplexing (CM)-
based structure because it is the best among all other structures
[7], given as

A = /BWH[L: N|(nwary @ Lixexiy, M = N + Ly,
P— JaWHIN +1: M]pan ©Tuenry, ()

where WH[z : y] denotes a sub-matrix created by splitting
the M x M normalized Walsh-Hadamard matrix starting from
xtrow to y*"row. The disadvantage of this structure is the
limitation of dimensionality of Walsh-Hadamard matrix, which
has a dimension proportionally to 2, n € L In addition,
this structure provides an instructive example of the proposed
general idea in (4) for pilot-embedding.

A. LS Channel Estimation

We first extract the pilot part from the received signal matrix

Y (m). By the virtue of null-space and orthogonality properties

in (6), respectively, we are able to extract the pilot part by

simply post multiply Y (m) in (5) by P7, and divide the result
by «, to arrive at

Y(m)PT

— H(m) | ZmPT ©)

Y(";>PT and Z;(m) = %, we have

Y (m)=H(m)+ Z;(m).

Let Y, (m) =
(10)

It can be shown that the LS channel estimator can be
described by

~ T
Hpg(m) = Y (m) = XoP—

B. ML Data Detection

we now explain the procedure of ML data detection. First,
we extract the data part from the received signal matrix Y(m).
By the virtue of null-space and orthogonality properties in (7),
respectively, we are able to extract the data part by simply post
multiply Y(m) in (5) by AT, and divide the result by 3, to
arrive at

(1D

Y(m)AT

AT H(m)D(m) + ZmAT, (12)
Let Yao(m) = Y("gAT and Zo(m) = Z(m‘#, we have
Yo (m) = H(m)D(m) + Za(m). (13)

From the orthogonality of A in (7) and Zf]:\/ll |[Av ji|? =
B8, Vi, which is implied from (7), the data-bearer-projected
noise Zs(m) is the zero mean AWGN with variance
%I(KLTNX[(LTN) per real dimension. Due to the i.i.d white
Gaussian distribution of Zo(m), the ML receiver for the d**
OFDM block in the m** SF-coded data block transmitted from
the b** transmit antenna decides the codeword that minimizes
the decision matric given by

D; j(m) = minp, , [|Ya, ,(m) — Hes(m)Di ;(m)|%,
i=(b— 1)K +1:bK, j=(d— 1)K +1:dK,

s=1:L,, andd=1,...,N, (14)

where H(m) is the estimated channel matrix, e.g. H(m)
HLs(m).

IV. THE PROPOSED ADAPTIVE FFT-BASED CHANNEL
ESTIMATION

In this section, we improve the performance of the LS
channel estimator in (11) by employing the FFT-based approach
proposed in [5]. First, we briefly summarize the concept of the
FFT-based channel estimator and point out an inherent problem.
Then we propose the adaptive FFT-based channel estimation.
A. FFT-Based Channel Estimation Approach

As suggested in [5], the FFT-based channel estimation ap-
proach firstly performs the LS channel estimation by using
the L significant taps, and IFFT transformation. The resulting
temporal LS channel estimate is then FFT transformed to the K -
subcarrier channel frequency response. The simplified approach
is also suggested in [5] by choosing P significant taps, in the
sense that P’s largest EbL;l |Hys,, (m, k)% kE=0,... K—1
is selected, instead of using L significant taps.

Now let us describe the FFI-based channel estima-
tion in details. From (11), we have Hps,,(m)
([HLS]m(b,l)KH:bK)T. From the channel model in (2),
H_ s, (m) can be expressed as

I:ILSab (m) = Fhy (m) + Zlab (m)7

(15)

where F is the K x L matrix whose element [F],, is defined
by exp(—j2n/K)(x — D)y, z=1,...,K, y=0,...,L—1;
hop(m) = [hao(m,0), ..., hap(m, L — 1)]T; and Z;_,(m) =
([Zl(m)]a7(b,1)K+1:bK)T. Notice that the LS channel estimate
in (15) represents the K -tap FFT-based channel estimate.

Transforming the LS channel estimate in (15) to the temporal
LS channel estimate by using the K x K IFFT matrix G,
whose element [G,y is defined by & exp(j27/K)(x—1)(y —
1), z,y=1,..., K to arrive at

hyg,,(m) = GHpg,,(m) = GFhg(m) + GZy,,(m). (16)
It can be shown that

GFl.y = g exp(jé(e — 1 - 7)),
z=1,...,. K, y=0,....L—1,

_ _sin(wq)
w}l{lerle f(q) — sin(wg/K)
%. Note that if ¢ is equal to an integer number, then
flg) = 0; if ¢ is equal to zero, then f(0) = K. Substituting
(17) into the first term on the r.h.s. of (16) to arrive at

GFhab(m) - %[ lL:701 hab(m7 l)f(_Tl)ejE(iTl% R
Lo han(m, D F(K = 1= m)ed€E-1=m]T - (18)

Let Z§  (m) = GZi,,(m), then substituting Z{, (m) and
(18) into (16) given by

hrs,,(m)=[g9(1),...,q9(K)|", (19)

where g(z) = & 37" hap(m, ) f (x — 1 — m)ed€@—1-m) 4
Z¢ (m, z) with Z{  (m, ) being the z*" element of Z{, (m).

Obviously, from (19), if 7; is an integer number, then the
[ element of the L largest elements of hys,, (m) is equal to
hap(m, 1) + Zib(m7 [), and the rest elements, which are not a
member of the L largest elements, are equal to Z{" (m, e), e #

[, e € {0,....,K — 1H\W with W being the set of the L

)

is the leakage function and £ =
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largest elements. As a result, by choosing the L largest taps
and replacing the (K — L) remaining taps by zero is sufficient
and optimal for constructing the FFT-based estimated temporal
channel impulse response hppy, (m), since we completely
capture the channel impulse response h,,(m), and delete the
excessive noise in the (K — L) remaining taps out. However,
in reality, the {** multipath delay 7; is a non-integer number,
hence, the L-multipath channel impulse response dissipates to
all K taps of hyg , (m) resulting in the model mismatch error
that increases the channel estimation error, primarily caused by
the AWGN Z§ , (m). This additional channel estimation error
causes the severe error floor in the mean square error (MSE)
of the channel estimation, and the detection error probability.
Once the L or P largest taps are chosen and the rest taps are
replaced by zero, the FFT-based estimated channel frequency
response is determined by

Hrrr, ,(m)

In what follows, we propose the alternative approach for FFT-
based channel estimation to overcome the model mismatch
error.

B. The Proposed Adaptive FFT-Based Channel Estimation

The model mismatch error in the FFT-based channel estima-
tion stems from the fact that a fixed number of L or P largest
taps is used in the channel estimation process for all signal-to-
noise ratio (SNR) values. This has been suggested in [5] that, in
low SNR regimes, the channel estimation error is mainly caused
by the AWGN, hence, a small number of taps is recommended
in order to reduce the noise effect; as a result, a lower channel
estimation error is obtained. In high SNR regimes, the channel
estimation error is mainly caused by the model mismatch
error, hence, a large number of taps is suggested in order to
compensate this model mismatch error; as a result, the enhanced
channel estimation error is obtained. Based on this basic idea,
we now propose the adaptive FI'T-based channel estimation as
follows. We propose that the number of significant taps Fop
used to capture the CSI in hyg,, (m) in (19) is obtained by
solving the following optimization problem:

= KG"hppr,, (m). (20)

Pyt = min(P) s.t.
SN[ e s ol
pr i e R LA
o . (K — P)L;L,o?
ZZZEHHhLSCLm)}jn?} e
a=1b=1 j=1
L, Ly K L-1
e PlLiL,o?
D 20D Bllhas(m. Df (G =1 = )| + — =, D)
; o
a=1b=1 j=1 =0

where the second equality comes from the assumption that
the channel hgp(m,!) and noise are mutually uncorrelated.
In addition, Y5 ST, Bl|[Z15, ()5 117] = LiLeo?
The detail derivation of (21) 1s omitted here due to the page
limitation.

Intuitively explaining, this optimization approach is to find
the minimum number of significant taps that can capture the
average total energy of the channel dissipating in all K taps in

the presence of AWGN. Notice that, the optimum number of
taps increases as the noise variance decreases (i.e. the SNR
increases). In high SNR regimes, the model mismatch error
approaches to zero. This phenomenon stems from the fact that
the constraint in (21) will exist if a large number of taps are
used, due to the small variance of AWGN. In low SNR regimes,
the small number of taps is resulted, as we expected, since the
variance of AWGN is large resulting in the small number of
taps is enough to make the constraint in (21) existed.

V. COMPUTER SIMULATIONS

To illustrate the performance of the proposed scheme, simu-
lations are conducted under two different scenarios: quasi-static
and nonquasi-static frequency-selective Rayleigh fading chan-
nels. The simulated SF block code is obtained from Alamouti’s
structure, as proposed in [3], whose elements are taken from a
BPSK constellation for two transmit antennas and two receive
antennas. The COST207 typical urban (TU) six-ray power delay
profile [5] with delay spread of 5 ps is studied. The entire
channel bandwidth, 1 MH,, is divided into K = 128 subcarriers
in which four subcarriers on each end are served as guard tones,
and the rest (120 tones) are used to transmit data. To make the
tone orthogonal to each other, the symbol duration is 128 us,
and additional 20 ps guard interval is used as the cyclic prefix
length in order to protect the ISI due to the multipath delay
spread. This results in a total block length T = 148 ps and a
subchannel symbol rate r, = 6.756 KBd. In addition, the equal
block-power allocation, i.e. § = a = 0.5 W, is employed, and
the normalized SF-coded symbol block-power is 1 W.

A. Quasi-Static Channel Scenario

In this scenario, the channel impulse response hgp(m,()’s
in (2) are from the normalized time-varying channel which is
modelled as Jake’s model [8], when fq+Tr = 0.08 (fast fading)
with f; being the Doppler’s shift.

In Fig.1 and 2, the MSEs and BERSs of the LS, 10-tap FFT-
based, adaptive FFT-based, and LMMSE channel estimators [4]
are shown, respectively. Notice that the LS channel estimator
has higher MSE and BER than that of the 10-tap FFFT-based
and the adaptive FFT-based channel estimators in low SNR
regimes. In high SNR regimes, the LS and adaptive FFF'T-based
channel estimators performs better than the 10-tap FFT-based
channel estimator in which the error floor caused by the model
mismatch error occurs. It is worth noticing that the LMMSE
channel estimator serves as a performance bound.

B. Nonquasi-Static Channel Scenario

For the sake of exposition, we study a 4-block fading model
in which the channel impulse response hgqp(m, () symmetrically
changes four times within one SF-coded symbol block, i.e. there
exists Hy(m) to Hy(m) in the m‘*-block SF-coded symbol
matrix. In Fig.3, the BERs of the SF-coded MIMO-OFDM
system employing the LS, 10-tap FFT-based, adaptive FFI-
based, and LMMSE channel estimators and fy 7T are 0.04 and
0.064, are shown. Notice that when the Doppler’s shift is small
(fa * Ty = 0.04) in high SNR regimes, the 10-tap FFT-based
channel estimator performs the worst. In low SNR regimes,
the LS channel estimator performs the worst. When Doppler’s
shift is high (fg * Ty = 0.064) in high SNR regimes, all
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Mean-Squared Error (MSE) of Channel Estimation vs. SNR
T T T
—=— Pilot-Embedded Data-Bearing LS CM-based matrices|
—=&— Adaptive LS FFT-based CM-based matrices
—+— LMMSE CM-based matrices
—#— 10-tap LS FFT-based CM-based malrices

Fig. 1. The graph of MSEs of the channel estimation in quasi-static
fading channels.

Bit Error Rate (BER) vs. SNR

T T T
—4&— LS CM-
—=8&— Adaplive FFT-based CM-based matrices|
—#— LMMSE CM-based matrices
—#— 10-tap FFT-based CM-based matrices
—&— Ideal Channel

T
based matrices

Fig. 2: The graph of BERs of the pilot-embedded SF-coded MIMO-
OFDM system in quasi-static fading channels.

channel estimators yields quite close results. This phenomenon
stems from the fact that the channel mismatch error dominates
all factors causing the detection error. In Fig4, the optimum
number of significant taps for both quasi-static and nonquasi-
static fading channels is shown.

VI. CONCLUSION

In this paper, we have proposed the adaptive FFT-based chan-
nel estimator for improving the performances of the FFT-based
and LS channel estimators, and the pilot-embedded data-bearing
approach for joint channel estimation and data detection. Sim-
ulations were conducted to examine the performance of the
proposed scheme. For quasi-static (and nonquasi-static with low
Doppler’s shifts, under high SNR regimes) TU-profile fading
channels, the adaptive FIF'T-based channel estimator performs
the best. Furthermore, for nonquasi-static fading channels with
high Doppler’s shifts, the channel mismatch error dominates
all factors causing the detection error, and thus results in
comparable error floors for all channel estimators.

Bit Error Rate (BER) vs. SNR

T I

—&— LS CM-based matrices (fd*Ti=0.04)

—=&— Adaptive FFT-based CM-based matrices (id*T{=0.04)
—#— LMMSE CM-based matrices (id*T{=0.04)

—#— 10-tap FFT-based CM-based matrices (id*T{=0.04)

— £ — LS CM-based matrices (fd*Tf=0.064)

— 8 — Adaptive FFT-based CM-based matrices (fd*Tf=0.064)
— # — LMMSE CM-based matrices (id*Tf=0.064)

— # — 10-tap FFT-based CM-based matrices (id*Ti=0.064)

Td*T = 0.064

BER

Fig. 3: The graph of BERs of the pilot-embedded SF-coded MIMO-
OFDM system in nonquasi-static fading channels.

The number of taps vs. SNR
T T

120

— 8 — Nonquasi-static fading channels (fd"Tf = 0.04) - s
— % — Nonquasi-static fading channels (fd"Tf = 0.064) e s e
—#— Quasi-siatic fading channels - a”

The number of taps

20

Fig. 4: The graph of the optimum number of significant taps for both
quasi-static and nonquasi-static TU-profile fading channels.
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