
3904 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

Robust Connectivity-Aware Energy-Efficient
Routing for Wireless Sensor Networks

Charles Pandana and K. J. Ray Liu

Abstract—In this paper, we consider a class of energy-aware
routing algorithm that explicitly takes into account the connectiv-
ity of the remaining sensor network. In typical sensor network
deployments, some nodes may be more important than other
nodes because the failure of these nodes causes the network
disintegration, which results in early termination of information
delivery. To mitigate this problem, we propose a class of routing
algorithms called keep-connect algorithms, that use computable
measures of network connectivity in determining how to route
packets. The proposed algorithms embed the importance of the
nodes in the routing cost/metric. The importance of a node is
characterized by the algebraic connectivity of the remaining
graph when that node fails. We prove several properties of the
proposed routing algorithm including the energy consumption
upper bound. Using extensive simulations, we demonstrate that
the proposed algorithm achieves significant performance im-
provement compared to the existing routing algorithms. More
importantly, we show that our proposed algorithm is more
robust in terms of algebraic network connectivity compared
to the existing algorithm. Finally, we present the distributed
implementation of our proposed algorithm.

Index Terms—Sensor network, graph theory, communication
system reliability, communication system routing.

I. INTRODUCTION

ADVANCES in low-power integrated circuit devices and
communications technologies have enabled the deploy-

ment of low-cost, low-power sensors that can be integrated
to form a sensor network. This network has vast important
applications, i.e., from battlefield surveillance systems to
modern highway and industry monitoring systems; from the
emergency rescue systems to early forest fire detection and
the very sophisticated earthquake early detection systems, etc.
Having the broad range of applications, the sensor network
is becoming an integral part of human lives. Moreover, it
has been identified as one of the most important technologies
nowadays [1], [2].

There are many important characteristics of a sensor net-
work. First, the sensor nodes are typically deployed in an area
with high redundancy and each of the sensor node has limited
energy, therefore it is prone to failure. In order to accomplish
the mission, it is essential for the sensor nodes to collaborate.
Second, the nodes in the sensor network typically stay in
their original deployed places for their entire lifetime. Hence,
it is very important to always keep the remaining network

Manuscript received April 30, 2007; revised October 2, 2007 and January
15, 2008; accepted March 17, 2008. The associate editor coordinating the
review of this paper and approving it for publication was P. Fan.

C. Pandana is with Arraycomm, San Jose, CA 95131 (e-mail: cpan-
dana@gmail.com).

K. J. Ray Liu is with the Department of Electrical and Computer Engineer-
ing, and the Institute of Systems Research, University of Maryland, College
Park, MD 20742 (e-mail: kjrliu@umd.edu).

Digital Object Identifier 10.1109/T-WC.2008.070453

connected, since the disintegrated clusters of nodes are useless
for information gathering. Moreover, due to the immobility of
the nodes, it may not be possible to reorganize the remaining
nodes to create a new connected network.

Due to these characteristics of sensor networks, the design
of routing algorithms becomes very different from the typical
ad-hoc networks in the following aspect. Instead of minimiz-
ing the hop count and delivery delay in the network, the
routing algorithms in the sensor networks focus more on ex-
tending the scarce battery lifetime of the nodes. Furthermore,
most of the existing energy-aware routing algorithms use the
time until the first node in the network dies as the definition
of network lifetime [3], [4]. Since in many practical sensor
applications, the death of the first node may not influence
the information collection task; We argue that the definition
of the network lifetime should be defined as the time until
there is no route from any source to any destination. In other
words, the network lifetime should be defined as the time until
the network becomes disconnected/disintegrated. Using this
definition as the network lifetime, the network connectivity
becomes an important criterion to be explicitly considered in
the routing algorithm. None of the existing routing algorithm
has ever explicitly considered the network connectivity in
performing routing task.

To be precise, we employ the notion of algebraic connectiv-
ity of a graph in the spectral graph theory [5] to quantify the
importance of a node. In particular, the importance of a node is
quantified by the Fiedler value [6], [7] of the remaining graph
when that particular node fails. One property of the Fiedler
value is that the larger it is, the more connected the graph
will be. Due to this reason, the Fiedler value is also referred
to as algebraic connectivity of a graph [6]. By considering
the nodes’ importance from the graph connectivity perspective
in the routing design, the node with higher importance will
be retained in the network, therefore the connectivity of the
remaining network is maintained as long as possible.

By embedding the nodes’ importance in the routing cost, we
propose a class of algorithms called keep-connect algorithms
to solve the posed problem. Our proposed algorithm has sev-
eral advantages, namely it is online algorithm, which implies
that the algorithm does not require to know ahead of time
the sequences of messages to be routed. This characteristic
is important, since the information generation typically is not
known a priori in sensor network. The proposed algorithm
is efficient in maintaining the connectivity of the remaining
network, we demonstrate the effectiveness of our proposed
algorithm using extensive simulations. Finally, the proposed
algorithm is flexible and can be used along with any other ex-
isting energy-aware routing algorithms that employ distributed

1536-1276/08$25.00 c© 2008 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3905

Bellman-Ford/Dijkstra algorithms in their implementations.
This paper is organized as follows. We first give the

system description and problem formulation in Section II.
Several important facts from spectral graph theory are briefly
outlined in Section III. In Section IV, our proposed algorithm
is explained. Upper bound on the energy consumption of
our proposed algorithm is proved in Section V. In Section
VI, we present one possible distributed implementation of
our proposed algorithm. The effectiveness of our method is
presented in Section VII. Finally, conclusions are drawn in
Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the network model, review
several definitions for sensor network lifetime, and explain
the problem formulation.

A. Network Model

A wireless sensor network can be modeled as an undirected
simple finite graph G(V, E), where V = {v1, · · · , vn} is the
set of nodes in the network, E is the set of all links/edges,
|V | = n is the number of vertices in the graph, and |E| = m
is the number of edges in the graph. The undirected graph
implies that all the links in the network are bidirectional,
i.e. node vi is able to reach node vj implies the vice versa.
The simple graph implies that there is no self-loop in each
node and there are no multiple edges connecting two nodes.
And the finite graph implies the cardinality of the nodes and
edges is finite. The link (vi,vj) implies that node vj ∈ Svi

can be directly reached by node vi with a certain transmit
power level in the pre-defined dynamic range, where Svi is
the set of nodes that can be directly reached by node vi.
We assume that every node has the initial battery energy of
Ei for ∀i ∈ {1, ..., n}. The energy consumption for packet
transmission from node vi to vj is proportional to d(i, j)α,
where d(i, j) is the distance between node vi and vj . The path
loss exponent α, depends on the transmission environment [8]
and typically ranges from 2 to 4. In this paper, we assume
α = 2 for free space propagation. We will also discuss the
performance of our algorithm when α = 4.0 in Section VII.
When the energy in one node is exhausted, we say that the
node has failed.

B. Definitions of Network Lifetime

Depending on the application in the wireless sensor net-
work, there are many definitions of the network lifetime. In
[3], [4], the network lifetime is defined as the time until the
first node/sensor in the network fails. In contrast, in [9], the
network lifetime is defined as the time until all nodes fail.
A more general definition on the network lifetime is given
in [10]. In [10], they defined the lifetime of sensor networks
as the min{t1, t2, t3}, where t1 is the time it takes for the
cardinality of the largest connected component to drop below
c1 · n(t), where n(t) is the number of alive nodes at time
t, t2 is the time it takes for n(t) to drop below c2 · n(0),
and t3 is the time it takes for the area covered to drop below
c3 · A, where A is the area covered by the initial deployment

of the sensors. In the above definition, c1, c2, and c3 are the
pre-defined constants between zero and one. It is well-known
that the network connectivity is a very important character-
istic in ad-hoc/sensor networks, therefore it should be taken
into account in the network lifetime definition and algorithm
design. In sensor network applications, the time until the first
node/sensor fails may not serve as a good definition of the
network lifetime, since the failure of the first node/sensor
does not cease the information delivery/collection. In contrast,
network disintegration typically causes severe impact in the
information delivery. This motivates us to employ the time
until the remaining network becomes disconnected as our
network lifetime definition. Using this definition, we argue that
it is crucial to consider the network connectivity in designing
an energy-aware routing algorithm.

C. Problem Formulation

The problem of maximizing the minimum residual energy
of nodes in the network has been studied in [3], [11], [12].
The time until the first node in the network dies can be found
using the following linear program

Maximize T
s.t.
1)f (c)(i, j) ≥ 0, ∀i ∈ N, ∀j ∈ Si, ∀c ∈ C,

2)
∑

j∈Si
et(i, j)

∑
c∈C f (c)(i, j)+∑

j:i∈Sj
er(j, i)

∑
c∈C f (c)(j, i) ≤ Ei,∀i ∈ N,

3)
∑

j:i∈Sj
f (c)(j, i) + TQ

(c)
i =∑

j∈Si
f (c)(i, j), ∀i ∈ N,∀c ∈ C,

(1)

where f (c)(i, j) is the amount of information of commodity c
that is transmitted from node vi to its neighbor node vj ∈ Si

until time T , Si is the set of vi’s neighboring nodes. Each
commodity c ∈ C has certain source node O(c) and destination
node D(c), where O(c) is the origin/source of commodity c
and D(c) being the destination/drain of commodity c. e(i, j)
is the energy required to guarantee successful transmission
from node vi to node vj , and Q

(c)
i denotes the information-

generation rates at node vi of commodity c. The first constraint
indicates that the number of packets transmitted between any
two nodes is nonnegative. The second constraint implies that
the total energy used for packet transmission and reception at
one particular node should be less that the battery capacity in
that node. And this applies for all nodes. The last constraint
indicates the flow conservation at each nodes in the network,
we note that Q

(c)
i > 0 for vi ∈ O(c), Q

(c)
i < 0 for vi ∈ D(c),

and Q
(c)
i = 0, otherwise. The notation j : i ∈ Sj denotes the

summation of the flow from all nodes vj whose neighbor is
node vi, therefore,

∑
j:i∈Sj

f (c)(j, i) denotes the total amount
of information going into (inflow to) node vi until time
T . Similarly,

∑
j∈Si

f (c)(i, j) indicates the total amount of
information going from (outflow from) node vi until time T .
The flow conservation simply states that the total flow coming
into node vi plus any information rate generated from node
vi is equal to the total flow going out from node vi.

We note that the above formulation has two assumptions;
first, the formulation requires the knowledge of all commodi-
ties when performing the optimization. This implies that the
information generation rate on sources in all commodities

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3906 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

during the whole duration of network lifetime is required
to solve the linear program. Second, the above formulation
does not reflect the sequences of the commodities. We know
that the performance of online routing algorithm depends
on the sequences of the commodities [11]. By sequences of
commodities, we mean the sequences in which the traffic
from different commodities appears in the network. These two
assumptions imply that the above formulation is only suitable
for off-line optimization, which has a limited use in practical
scenario. In practice, the routing decision has to be made on-
line; the routing decision is done upon the packet arrival. And
it will be very hard, if not impossible, to know the information
generation rate of all commodities a priori.

The qualitative performance comparison of online and off-
line algorithm for routing algorithm is given in [11]. They
show that there is no online algorithm for message routing that
has a constant competitive ratio in terms of network lifetime,
where the competitive ratio is defined as the ratio of the
solution to online algorithm with respect to the optimal off-line
solution. This implies that the performance of online algorithm
is worse compared to the off-line algorithm. Moreover, the
formulation in (1) is only suitable for the time until the first
node dies. For the above reasons, we focus on designing a
robust online algorithm by taking into account the connectivity
of the remaining network in making the routing decision. The
robustness of our proposed scheme comes from the fact that
when the information generation is not known a priori and the
routing decision is made on the fly, employing the connectivity
weight in the routing decision keeps the remaining network
connected as long as possible.

III. FACTS FROM SPECTRAL GRAPH THEORY

Before we describe our proposed solution, we briefly sum-
marize some important facts from spectral graph theory [5]–
[7], [13]. We will only state the lemmas since they provide
insight for understanding the proposed scheme. And we will
use some of these lemmas to prove several properties of the
proposed scheme. The complete proofs of the lemmas can be
found in the above literatures.

A. Eigenvalues of Laplacian Matrix

In this subsection, we briefly discuss the definition of a
Laplacian matrix, its eigenvalues and the relationship between
the eigenvalues of Laplacian matrix and the connectivity of
the associated graph. The following notations will be used
throughout the paper: G(V, E) is the graph with set of vertices
V and set of edges E. We recall the number of vertices as
|V | = n and the number of edges as |E| = m. Moreover, we
define G−vi as a graph resulted from removing vertex vi and
all its adjacent edges from the original graph G. In the rest
of the paper, we will use vertex and node, interchangeably.
Similarly, we will use link and edge, interchangeably. The
Laplacian matrix associated with a graph is defined as follow.

Definition 1 (Laplacian matrix associated with a graph):
In a graph G(V, E), the Laplacian matrix associated with a
graph, L(G) is an n by n matrix defined as follows:

L(i, j) =

⎧⎨
⎩

dvi if vi = vj ,
−1 if (vi, vj) ∈ E,
0 otherwise

(2)

where i, j ∈ {1, · · · , n} are the indices of the nodes. Equiva-
lently, the Laplacian matrix L(G) can be expressed as:

L(G) = T (G) − A(G), (3)

where T (G) is an n by n diagonal matrix associated with
graph G with the (i,i)-th entry having value dvi , which
represents the number of the neighboring nodes. A(G) is a
n by n adjacent matrix associated with graph G.

The eigenvalues of the Laplacian matrix, L(G), (λ0(G) ≤
λ1(G) ≤ · · · ≤ λn−1(G)) are usually referred to as the
graph spectra. The following lemma describes the relationship
between the graph spectra and the connectivity of a graph [5].

Lemma 1: Let’s denote 0 = λ0(G) ≤ λ1(G) ≤ · · · ≤
λn−1(G) as the eigenvalues of the Laplacian matrix L(G).
If G is connected, then λ1(G) > 0. Moreover, if λi(G) = 0
and λi+1(G) �= 0, then G has exactly i+1 disjoint connected
components.

It is easy to observe that the Laplacian matrix L(G) has
all zeros row sums, therefore, matrix L(G) has an eigenvalue
0 with the corresponding eigenvector (1, · · · , 1)T . Moreover,
since L(G) is real, symmetric and nonnegative semi-definite,
thus all the eigenvalues of L(G) should be real and nonneg-
ative. It is obvious that the smallest eigenvalue of Laplacian
matrix L(G) is zero. The above lemma indicates that if G
is strongly connected (there exists a simple path from any
initial node vi to the terminal node vj , where i �= j) then the
Laplacian matrix L has simple eigenvalue 0 (the eigenvalue
0 has the multiplicity of 1). Moreover, if the eigenvalue 0
of the Laplacian matrix L(G) has multiplicity n, then there
are n disconnected components. Since we always work with
the connected graph, we will focus on the second smallest
eigenvalue of the Laplacian matrix, L(G) for the rest of this
paper.

B. Fiedler value and vector

Let’s denote the eigenvalues of the Laplacian matrix, L(G)
associated with G(V, E) as λ0(G), · · · , λn−1(G) and the cor-
responding eigenvectors as ν0(G), · · · , νn−1(G). Obviously,
ν0(G) = e = (1, · · · , 1)T . Suppose that the graph G(V, E) is
strongly connected (the second smallest eigenvalue is strictly
larger than zero, λ1(G) > 0). This second smallest eigenvalue
can be represented as (Courant-Fisher Theorem [14])

λ1(G) = min
xT x=1,xT ν0(G)=0

xT L(G)x (4)

The second smallest eigenvalue of the Laplacian matrix is
always referred to as the algebraic connectivity of the graph
G [6]. It is also called as Fiedler value of a graph. The reason
for calling the second smallest eigenvalue as the algebraic
connectivity of a graph G comes from the following lemmas
[6].

Lemma 2: If G1 and G2 are edge-disjoint graphs with the
same vertices, then λ1(G1) + λ1(G2) ≤ λ1(G1 ∪ G2).

Lemma 3: The Fiedler value λ1(G) is non-decreasing for
graphs with the same set of vertices, i.e. λ1(G1) ≤ λ1(G), if
G1(V, E1), G(V, E), and E1 ⊆ E.

We observe that G and G1 have the same number of
vertices. Since G1 has fewer edges compared to G and
E1 ⊆ E, this implies that G1 is less connected compared to G.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3907

From Lemma 3, we have that the Fiedler value corresponding
to G1 is smaller than G, λ1(G1) ≤ λ1(G). It is in this sense
that the Fiedler value represents the degree of connectivity in a
graph. Finally, the relation of Fiedler value for graph obtained
from removing a vertex and all its adjacent edges is given by
the following lemma [6].

Lemma 4: Let Gvi be a graph obtained from removing
vertex vi from G and all the adjacent edges. Then λ1(Gvi) ≥
λ1(G) − 1.
The following two lemmas give some upper and lower bounds
for the Fiedler value. These lemmas will be used to prove some
properties of the proposed algorithm in Section V.

Lemma 5: Let G(V, E), dvi be the degree of node vi and
|V | = n be the number of vertices, then

λ1(G) ≤
[

n

n − 1

]
min

vi

dvi . (5)

Lemma 6: Let ε(G) be the edge connectivity of the graph
G (the minimal number of edges whose removal would result
in losing connectivity of the graph G). Then, we have

λ1(G) ≥ 2ε(G)
[
1 − cos

(
π

n

)]
, (6)

where n is the number of vertices |V | = n.

IV. KEEP-CONNECT ALGORITHMS

In this section, we use the facts of spectral graph theory
described in the previous section to develop online routing
algorithms to maximize the network lifetime, which is defined
as the time until the network becomes disconnected. Before
describing the routing algorithms, let’s first consider how to
measure the degree of connectivity of the remaining graph in
the routing metric. We propose to quantify the connectivity of
the remaining graph based on the Fiedler value. Recall from
Section III-B, the Fiedler value qualitatively represents the
connectivity of a graph in the sense that the larger the Fiedler
value is, the more connected the graph will be. The degree
of connectivity of the remaining graph can be quantified by
the Fiedler value of the graph resulted from removing that
particular node and all the edges connected to that node from
the original graph. We design the connectivity weight of each
node as 1/λ1(G−vi), where G−vi denotes a graph resulted
from removing node vi and all its adjacent edges from the
original graph G. In this way, the node that causes severe
reduction in the remaining algebraic network connectivity
will be avoided when performing the routing decision. This
is due to the fact that λ1(G−vi) measures the degree of
connectivity of the graph after removing node vi and all
the edges connected to that node. We note that if vi is an
articulation node [15], (i.e. node after its removal results in
disconnected network), then λ1(G−vi) theoretically equals to
zero. This will cause numerical problem when we embed the
weight in the routing algorithm. To avoid this problem, we
introduce a small threshold, ε. If λ1(G−vi) <= ε, we set
λ1(G−vi) = ε. The detail of the algorithm is given in Table I.
In short, the proposed algorithm avoids using the articulation
nodes to keep the remaining network connected. We set the
threshold as ε = 10−5 throughout this paper.

TABLE I
KEEP-CONNECT USING FIEDLER VALUE

Let G(V, E) be the original graph. Let’s define the graph obtained after
removing node vi and all its adjacent edges as G−vi({V − vi}, E−vi ).
Let also denote ε as small threshold.

1. Initialization: Set nodes’ weights as zeros W (vi) = 0, ∀vi ∈ V
2. For each node vi:

a. Form the Laplacian matrix L(G−vi) of graph as (2).
b. Find the Fiedler value λ1(G−vi ) as (4).
c. Set the weight of node as:

W (vi) = 1/λ1(G−vi ), if λ1(G−vi ) > ε.
Else, set W (vi) = 1/ε.

End for

We note that in order to maintain the remaining algebraic
connectivity of a network as long as possible in the routing
algorithm, route metric should reflect the effect of selecting
one particular route on the remaining (algebraic) connectivity
of the network. In other words, the severity effect of the
selection of one particular route on the connectivity measure
of a network should be quantified. Since the route metric
is the sum of the links’ costs that constitute the route [3],
[4], [16], the link cost should also reflect the reduction in
the remaining connectivity of the network. In the following
subsections, we present proper modification on the existing
routing algorithms by incorporating the connectivity weight
into the routing metrics.

A. MMKC, MHKC and MMREKC routing algorithms

In this subsection, we first review the idea of existing rout-
ing algorithms and proceed with the modification to include
the keep-connect algorithm. The minimum hop routing is
usually used in ad-hoc or wire-line network to minimize the
delay in the packet delivery. The routing algorithm chooses
the route with the minimum hop (MH) [16]. The link cost
between two nodes is 1. To modify this algorithm to reflect
the remaining connectivity in the network, we embed the con-
nectivity weight in the link cost between two nodes, so that it
becomes c(u, v) = 1

2 [W (u)y+W (w)y]. We call this algorithm
minimum hop while keeping the connectivity, (MHKC(y)).
Both minimum hop and MHKC routing algorithms can be
computed using standard Dijkstra algorithm.

The max-min residual energy (MMRE) algorithm [4] selects
the route that maximizes the minimum residual energy of
nodes in the route. The link cost for MMRE is represented
as

c(u, w) = min{Eu(t), Ew(t)}, (7)

where Eu(t) and Ew(t) represent the residual energy at time
t for transmitting node u and receiving node w, respectively.
Another variant of MMRE is to maximize the minimum link
cost that is represented as

c(u, w) = Eu(t) + Ew(t). (8)

The max-min route can be implemented using modified Di-
jkstra algorithm [4]. Following the same way as before, we
modify the variant of MMRC by embedding the connectivity
into the link cost as

c(u, w) = Eu(t)W (u)y + Ew(t)W (w)y , (9)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3908 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

TABLE II
LINK COSTS FOR SEVERAL ROUTING ALGORITHMS WITH/OUT

CONNECTIVITY CRITERION

Algorithm / Method Link cost
MH / Standard Dijkstra c(u, w) = 1

MHKC(y) / Standard Dijkstra c(u, w) = 1
2
[W (u)y + W (w)y ]

MMRE / Modified Dijkstra c(u, w) = min{Eu(t), Ew(t)}
Variant of MMRE / c(u, w) = Eu(t) + Ew(t)
Modified Dijkstra
MMREKC(y) / c(u, w) =
Modified Dijkstra Eu(t)W (u)y + Ew(t)W (w)y

MMKC(y) / Modified Dijkstra c(u, w) = W (u)y + W (w)y

where W (u) and W (w) are the connectivity weights for
node u and v, respectively. We name this algorithm as MM-
REKC(y). This algorithm selects the routing decision based on
the remaining energy in nodes and the connectivity criterion.
We note that maximizing the minimum residual energy of
nodes is not the same as avoiding articulation nodes. Using
MMREKC(y), one hopes to balance the choices of avoiding
minimum residual energy of nodes and avoiding articulation
nodes. If we set the residual energy of nodes in MMRECK(y)
as one, we will get the max-min remaining connectivity
(MMKC(y)) algorithm. We note that the MMKC is similar
to MHKC except that the MMKC uses the modified dijkstra
algorithm and MHKC uses the standard dijkstra algorithm.
MMKC algorithm only avoids overusing some articulation
nodes. Precisely, the routing algorithms that use connectivity
criterion avoid using nodes that result in severe reduction in
the remaining connectivity after they failed.

In all the keep-connect algorithms, y determines how im-
portant the connectivity weight should affect the routing cost.
Since in MMREKC(y) and MHKC(y) the routing metrics try
to simultaneously two different objectives (e.g., both minimum
hop and connectivity in the MHKC algorithm), this variable
y controls the importance of connectivity criterion in the
routing metric. The link cost for the exiting algorithms and
the proposed modifications are summarized in Table II. The
connectivity weight, W (·), in the algorithms is calculated
using the keep-connect algorithm (Table I). During the routing
computation, if there are more than one nodes having weights
of 1/ε, the route metric will be determined by the link cost
of the rest of nodes in the route. In the case where there is a
tie in route metric, any tie breaker rule is sufficient.

B. Minimum total energy while keeping connectivity
(MTEKC) routing

In previous subsection, the routing metrics are determined
either by the number of hops (minimum hop routing/MH)
or minimum residual energy of nodes (MMRE), with/without
the connectivity criterion. The minimum total energy (MTE)
algorithm minimizes the total energy used for packet trans-
mission and reception along the route [4]. By embedding
the connectivity weights of nodes to the MTE algorithm, we
obtain MTEKC(y). In particular, the link cost of MTEKC(y)
is represented by

c(u, w) = et(u, w) · W (u)y + er(u, w) · W (w)y , (10)

where et(u, w) and er(u, w) are the transmit and receive
energy for delivering a packet from node u to w. The

TABLE III
MTEKC(Y)

1. For any source-destination pairs, find the minimum total energy path
with edge cost as: et(vi, vj)W (vi)

y + er(vi, vj)W (vj)
y for vi ∈ V ,

vj ∈ Svi , where et(vi, vj) and er(vi, vj) are the transmit and receive
energy for delivering a packet from node vi to vj . Svi denotes the
neighbors of node vi. W (vi) is the weight of node vi.

2. If node dies, recompute the alive nodes’ weight using
Keep-Connect algorithm. Redo step 1.

MTEKC(y) minimizes the total transmit energy while trying
to keep the remaining network as connected as possible. The
complete algorithm for MTEKC is shown in Table III. One
of the purposes of introducing the variable y is to limit
the energy consumption of the MTEKC. In principle, the
algorithm will never achieve both the best energy efficient and
the most robust connectivity route. Introducing y provides a
way to trade-off between the two objective functions. This is
particularly true when the network is large as we will prove the
bound of the energy consumption in the MTEKC algorithm in
Section V. This bound can be easily controlled by the variable
y. Similar to the previous keep-connect algorithms, in the case
when there are more than one nodes having weights of 1/ε,
the rest of the nodes in these different routes will determine
which overall routing metrics are smaller. In the tie situation,
any tie breaker rule is sufficient.

It is important to emphasize the MTE algorithm is less
effective compared to MMRE type algorithms only when
one considers the first node dies as the network lifetime
definition. In our case, since we employ the time until the
network becomes disconnected as the network lifetime, the
above argument is not necessary true in general. In fact
this phenomena can be observed in [4]. In [4], after more
than one node dies, the expiration time (network lifetime)
for the MTE is higher than MMRE. We will further discuss
this phenomenon in the Section VII. In our simulation, we
typically observe that more than one node fails before the
network becomes disconnected (cf. Figure 4).

V. UPPER BOUND ON THE ENERGY CONSUMPTION OF

MTEKC(Y) ALGORITHM

In this section, we continue to show the upper bound
on the energy consumption of the MTEKC(y) algorithm. It
is well-known from [11] that there is a tradeoff between
the energy consumption in the route and avoiding overuses
of popular nodes in achieving the maximum lifetime/total
delivered packets before the network becomes disconnected.
Similarly, there is a trade-off between the energy efficiency
and the connectivity robustness. Hence, it is important to
show the bound on the energy consumption of our proposed
algorithm. In this section, we first derive some properties
of our proposed algorithm and we employ these properties
to prove the upper bound of the energy consumption. For
simplicity we only include the transmit energy between two
nodes in calculating the energy of the route. We denote r∗ as
the minimum total energy route connecting any fixed source
node v0 and destination node vd. Equivalently, the MTE route

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3909

is represented as

r∗ = arg min
r∈R(v0,vd)

d(r)−1∑
i=1

et(vi, vi+1), (11)

where R(v0, vd) is the set of all routes connecting source node
v0 and destination node vd, d(r) is the number of hops in
the route. Furthermore, we denote r† as the MTEKC(y) route
obtained using Fiedler value and this route satisfies

r† = arg min
r∈R(v0,vd)

d(r)−1∑
i=1

et(vi, vi+1)
λ1(G−vi)y

. (12)

In the following, we give some simple lemmas on the lower
bound and upper bound of the metric used in the keep-connect
algorithm.

Lemma 7: [Lower bound of MTEKC(y) metric] For each
route, the MTEKC(y) employing the Fiedler value metric has
the following property

d−1∑
i=0

et(vi, vi+1)W (vi)
y ≥

(
n − 2

n − 1

1

mini dvi(G)

)y d−1∑
i=0

et(vi, vi+1),

(13)

≥
(

(n − 2)n

2(n − 1)m

)y

·
d−1∑
i=0

et(vi, vi+1), (14)

where dvi is the degree of node vi in the graph, n is the
number of vertices in the graph, and m is the number of edges
in the graph.

Proof: To prove these inequalities, we require the upper
bound of the Fiedler value as follows (stated in Lemma 5).
Consider G(V, E) and let dvi(G) be the degree of node vi in
graph G. Then,

0 < λ1(G) ≤ n

n − 1
min

i
dvi(G). (15)

Now, consider the graph G−vi obtained from graph G by
removing node vi and all edges connecting to node vi.
Obviously,

λ1(G−vi ) ≤
n − 1
n − 2

min
i

dvi(G−vi) ≤
n − 1
n − 2

min
i

dvi(G),
(16)

since the minimum degree of graph G−vi is smaller or equal
to minimum degree of graph G. Now, using keep-connect
algorithm with Fiedler value, we have∑d−1

i=0 et(vi, vi+1) · W (vi)y =
∑d−1

i=0
et(vi,vi+1)
λ1(G−vi

)y

≥
(

n−2
(n−1) mini dvi

(G)

)y

· ∑d−1
i=0 et(vi, vi+1). (17)

Since n · mini dvi ≤
∑

i dvi = 2m, we have(
1

mini dvi(G)

)y

≥
(

n

2m

)y

. (18)

Then, we obtain the second inequality
(

n − 2
(n − 1)mini dvi(G)

)y

·
d−1∑
i=0

et(vi, vi+1) ≥
(

(n − 2)n
2(n − 1)m

)y

·
d−1∑
i=0

et(vi, vi+1). (19)

Lemma 8: [Upper bound of MTEKC(y) metric] For each
route, the MTEKC(y) employing the Fiedler value metric has
the following property∑d−1

i=0 et(vi, vi+1) · W (vi)y ≤[
1

2
(

ε(G)−1
)(

1−cos
(

π
n−1

))
]y ∑d−1

i=0 et(vi, vi+1), (20)

where ε(G) is the edge-cut or edge connectivity of the graph.
The edge-cut/edge connectivity is defined as the minimal
number of edges whose removal would result in disconnected
graph. n is the number of vertices in the graph.

Proof: Similar to Lemma 7, we use the lower bound of
Fiedler value in Lemma 6. Consider G(V, E) and let ε(G)
be the edge-cut of the graph. Then, λ1(G) ≥ 2ε(G)[1 −
cos(π/n)]. Now, consider the graph G−vi obtained from graph
G by removing node vi and all edges connecting to node vi.
From upper bound of Fiedler value, we have

λ1(G−vi) ≥ 2ε(G−vi)[1 − cos(π/(n − 1))]. (21)

Since, ε(G−vi) ≥ ε(G) − 1. Hence,

λ1(G−vi) ≥ 2[ε(G) − 1][1 − cos(π/(n − 1))]. (22)

Follow the similar proof in Lemma 7, we can obtain
∑d−1

i=0 et(vi, vi+1) · W (vi)y =
∑d−1

i=0
et(vi,vi+1)
λ1(G−vi

)y

≤
[

1
2[ε(G)−1][1−cos( π

n−1 )]

]y

· ∑d−1
i=0 et(vi, vi+1).

Lemma 9: [Complete Graph] For a complete graph, the
MTEKC(y) route employing the Fiedler value metric is the
same as the MTE route.

Proof: From the definitions of MTE route and MTEKC(y)
with Fiedler value route, we have the following inequalities

d(r∗)−1∑
i=1

et(vi, vi+1) ≤
d(r†)−1∑

i=1

et(vi, vi+1) (23)

d(r†)−1∑
i=1

et(vi, vi+1)
λ1(G−vi)y

≤
d(r∗)−1∑

i=1

et(vi, vi+1)
λ1(G−vi)y

(24)

We note that removing one nodes from a complete graph with
n nodes results in another complete graph with n − 1 nodes.
Therefore, we have λ1(G−vi) = n − 1. Simplifying (24), we
have

d(r†)−1∑
i=1

et(vi, vi+1) ≤
d(r∗)−1∑

i=1

et(vi, vi+1). (25)

Combining with (23), we have

d(r†)−1∑
i=1

et(vi, vi+1) =
d(r∗)−1∑

i=1

et(vi, vi+1). (26)

Since it is impossible to have two different routes with the
same total transmit energy in random network deployment for
fixed source node v0 and destination node vd, we conclude
that r∗ = r†.

Now we are ready to develop the upper bound on the energy
consumed in the MTEKC(y) algorithm with Fiedler value. The

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3910 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

following theorem gives the upper bound on the consumed
energy

Theorem 1: The energy consumed in the MTEKC(y) using
Fiedler value satisfies the following upper bound

d(r†)−1∑
i=1

et(vi, vi+1) ≤
[

(n − 1)m

n(n − 2)(ε(G) − 1)(1 − cos(π/(n − 1)))

]y d(r∗)−1∑
i=1

et(vi, vi+1)

(27)

Proof: From inequality (24), Lemma 7, and Lemma 8,
we have

(
(n − 2)n

2(n − 1)m

)y d(r†)−1∑
i=1

et(vi, vi+1) ≤
d(r†)−1∑

i=1

et(vi, vi+1)
λ1(G−vi)y

(28)
∑d(r∗)−1

i=1
et(vi,vi+1)
λ1(G−vi

)y ≤[
1

2[ε(G)−1][1−cos( π
n−1 )]

]y ∑d(r∗)−1
i=1 et(vi, vi+1) (29)

Combining the above two inequalities and (24), we have[
(n−2)n

2(n−1)m

]y ∑d(r†)−1
i=1 et(vi, vi+1) ≤

[
1

2(ε(G)−1)(1−cos( π
n−1 ))

]y ∑d(r∗)−1
i=1 et(vi, vi+1) (30)

∑d(r†)−1
i=1 et(vi, vi+1) ≤[

m(n−1)
n(n−2)(ε(G)−1)(1−cos( π

n−1 ))

]y ∑d(r∗)−1
i=1 et(vi, vi+1) (31)

The above theorem gives the upper bound on the energy
consumed in MTEKC(y) route compared to the minimum total
energy for routing the packet. The following theorem gives the
bound on the ratio of energy consumed by MTEKC(y) using
Fiedler value when the number of nodes becomes large.

Theorem 2: Suppose that the network generated satisfies
m = a1 · n and ε(G) − 1 = a2, where a1 and a2 are
some constants. Then the upper bound on the ratio of energy
consumed can be presented as follow

∑d(r†)−1
i=1 et(vi, vi+1)∑d(r∗)−1
i=1 et(vi, vi+1)

= O((n2)y) (32)

Proof: Using the assumption of the theorem, we have
∑d(r†)−1

i=1 et(vi, vi+1)∑d(r∗)−1
i=1 et(vi, vi+1)

≤
(

a1n(n − 1)
a2n(n − 2)(1 − cos( π

n−1 ))

)y

∑d(r†)−1
i=1 et(vi, vi+1)∑d(r∗)−1
i=1 et(vi, vi+1)

≤ C

(
n(n − 1)(1 + cos( π

n−1 ))

n(n − 2) sin2( π
n−1 )

)y

,

(33)

where C = (a1/a2)y . As n → ∞, we have

∑d(r†)−1
i=1 et(vi, vi+1)∑d(r∗)−1
i=1 et(vi, vi+1)

≤ C

(
(n − 1)2

π2

)y

, (34)

Fig. 1. Exchange and Update Q-value

where we have used small angle approximation in sinusoidal
function, sin(θ) ≈ θ, as θ � 1. Hence, we have (32).
From this theorem, we see that when the network is very
large, the ratio of energy increases as a quadratic function of
number of nodes, compared to the minimum energy used to
route a packet. This ratio of energy can be easily controlled
by the parameter y, for instance if y = 1/2, then the ratio of
consumed energy increases as a linear function of number of
nodes in the network. In the extreme case, setting y = O(1/n)
makes the proposed algorithm approaching to MTE as n →
∞.

VI. DISTRIBUTED IMPLEMENTATION AND LEARNING

ALGORITHM

In this section, we present the distributed implementation
of the proposed robust connectivity routing algorithm. The
method is based on the distributed reinforcement learning
routing algorithm [17]. We note that the reinforcement learn-
ing algorithm has been shown to be an effective online
decision making procedure in sensor network application [18].
The resulting algorithm can be characterized as a version
of distributed Bellman-Ford algorithm that performs its path
relaxation step asynchronously and online with the edge cost
defined as weighted energy required to transmit packet in that
hop [16]. Each node learns the routing decision by itself and
maintains the best packet delivery cost to its destinations.
In particular, each node vi maintains a table of Q-values
Qvi(vj , vd), for vj ∈ Svi , where vj is in the set of node vi

neighbors, Svi , and node vd is the destination. The Qvi(vj , vd)
has the interpretation of node vi’s best estimated cost that a
packet would incur to reach its destination node vd from node
vi when the packet is sent via node vi’s neighbor node vj .
Whenever node vi wants to send packets to node vd, it simply
sends the packets to its neighbor that satisfies

v∗j = arg min
vj∈Svi

Qvi(vj , vd). (35)

The value in the Q-table will be exchanged between node
vi and vj , whenever a packet is sent from node vi to node vj ,
and vice versa. The exchange mechanism is illustrated as in
Figure 1. Whenever node vi transmits a packet P to node vj ,
node vj feeds back

Qvj (v
∗
k, vd) = min

vk∈Svj

Qvj (vk, vd) (36)

to node vi as shown in the figure. We note that Qvj (v∗k, vd)
represents the best estimated cost incurred when a packet is

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3911

sent from node vj to the destination node vd. The node i uses
this value to update its own Q-value as follow

Qvi(vj , vd) = (1− δ)Qvi(vj , vd)+ δ[Qvj(v
∗
k, vd)+ c(vi, vj)],

(37)
where c(vi, vj) is the cost for sending packet from node vi to
node vj , and δ ∈ [0, 1] is the learning rate for the algorithm.
It is important to point out that the storage requirement
for the distributed algorithm is O(dvi (n − 1)), since each
node requires to store at most dvi(n − 1) Q-values, where
dvi is the number of neighbors, node vi has. Moreover, the
distributed algorithm has O(1) computational complexity per
packet transmission, since for every packet transmission, the
sender and the receiver update their corresponding Q-values
according to (37).

The cost of sending a packet between node vi and node vj

is related to the energy consumption for sending the packet. In
particular, the costs of sending a packet for MTE and MTEKC
routing algorithms are

[MTE]: c(vi, vj) = et(vi, vj) + er(vi, vj),

[MTEKC(y)]: c(vi, vj) = e(vi, vj)W (vi)
y + er(vi, vj)W (vj)

y,

For MTE, Qvi(vj , vd) represents the total energy consumption
used to guarantee delivery a packet from node vi to node vd

via node vi’s neighbor node, vj . In contrast, Qvi(vj , vd) in
MTEKC represents the total energy consumption in delivering
a packet from node vi to vd via vj , while considering the
connectivity of the remaining network. The procedure for
implementing the MTEKC is summarized in Table IV. We
note that when δ = 1.0, the algorithm becomes the distributed
Bellman-Ford iterations [16].

A. Improvement on distributed algorithm

In previous description, it is obvious that the quality of the
routing decision depends on the accuracy of the Q-table. The
more accurate the Q-table represents the network state, the
better the routing decision will be. Moreover, the quality of
the Q-table depends on how frequently it is updated. In the
distributed scheme described in previous subsection, the Q-
value is updated whenever a packet is transmitted from the
transmitter to the receiver. This existing distributed algorithm
can be enhanced by improving the accuracy of the Q-table.
The accuracy of the Q-table can be improved by updating
the Q-values not only when there is a packet transmission
between two nodes, but nodes periodically send their neigh-
boring nodes small packets containing the request on updating
Qvi(vj , vd). This can be straightforwardly done by updating
Qvi(N(vi), vd) as if there are packets to be sent from node
vi to nodes N(vi). This approach is similar to the use of
packet radio organization packet (PROP) [19]. We note that the
overhead encountered in each request on updating Qvi(vj , vd)
is only Qvj (v∗k, vd) as in (36), which will be fed back by node
vj . This overhead depends on how many bits the Q-value is
represented. Typically, 8 bits will be sufficient. It is important
also to note that this small packet consumes negligible energy
compared to the energy for the packet transmission. Therefore,
these small packets can be sent more frequently to improve
the learning speed of the Q-table. In a real application, there
is a trade-off between how fast the link cost changes and how

frequently the small packets should be exchanged. We will
show in the simulation that the improvement in the distributed
implementation achieves the near-centralized solution.

B. Distributed weight computation and discussion on the
scalability

In the network initialization, each node will power up
and start to broadcast control/organization packet similar to
the DARPA packet radio network protocol [19]. This packet
contains information about its neighboring nodes (nodes that
are connected/reachable from this node). This packet will be
broadcasted to all of its neighbors. The nodes that are one hop
away from the origin node will also ripple this information
outward in the tiered fashion by appending its own neighbor
information. This is similar to the method of building tier table
in [19]. Therefore, all the nodes have the correct view of the
network topology. Before performing routing task, each node
calculates its connectivity weight based on this topology view
as in Table I. Precisely, the final topology view consists of
the adjacency matrix of the graph. Since, nodes stay in their
original places for their entire lifetime in the sensor network,
the flooding of information occurs rarely. This event occurs
whenever there are nodes joint the network or there are nodes
that have failed. We assume that this event rarely happens after
the network initialization.

In practical network, maintaining the algebraic connectivity
of the whole large network may not be necessary. Based on
different applications of sensor network, the sensor network
typically can be decomposed into several smaller subnetworks
which are interconnected by access points (APs). These APs
may not have power limitation. Each AP is responsible for
its own subnetwork. In order to exchange information be-
tween nodes within each subnetwork, it is very important
to maintain the connectivity within each subnetwork. It is
within this smaller subnetworks, the keep-connect algorithm
is applied. In this way, the neighboring nodes information
is only disseminated over the smaller subnetworks and the
improved distributed algorithm can be done on the fly. Using
this hierarchical structure, the routing across subnetworks can
be handled via the APs. And, the proposed method can be used
in this way in a very large network where the connectivity
of the whole network is maintained via combination of local
connectivity and the APs.

VII. SIMULATION RESULTS

We simulate the routing algorithms in a packet level
discrete-event simulator. The simulator initially deploys nodes
in the network. All events are time-stamped and queued. The
most current event will be dequeued and some task will be
performed according to the type of the event. There are three
types of events; the packet arrival event, the reporting event,
and the sending event. In packet arrival event, packets are
injected from source node to destination node. We assume
the packet arrival follows the Poisson arrival process with
mean μ. The reporting event occurs periodically to retrieve
the simulation parameters such as the average delivery delay
per packet, average hops per packet transmission, energy
consumed per one delivered packet, and the number of packets

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3912 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

TABLE IV
DISTRIBUTED ASYNCHRONOUS MTEKC(Y)

1. Network Initialization: forward the adjacent neighbors information to all
nodes in the network

2. Each node computes its own connectivity weight
3. Whenever node vi sends a packet to node vj :

a. Node vj informs vi its minimum cost transmitting a packet to the
destination vd , Qvj (v∗k , vd)

b. Node vi updates its metric as:
Qvi(vj , vd) = (1 − δ)Qvi (vj , vd) + δ[Qvj (v∗k , vd) + c(vi, vj)]

c. Node vi leaves other estimates unchanged.
4. When a node dies, the neighboring nodes flood this information to the

rest of the network and repeat step 2

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

N
or

m
al

iz
ed

   
   

ne
tw

or
k 

lif
et

im
e

Network realizations
1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Network realizations

N
or

m
al

iz
ed

 p
ac

ke
t 

de
liv

er
y 

tim
e 

   
 

 

 
MMRC
MH
MHKC(y=1)

1 2 3 4 5 6 7 8 9 10
1

1.5

2

N
or

m
al

iz
ed

 tr
an

sm
it 

en
er

gy
 p

er
 p

ac
ke

t  
 

Network realizations
1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 to

ta
l 

de
liv

er
ed

 p
ac

ke
ts

Network realizations

Fig. 2. Comparison of normalized metric for MMRC, MH, and MHKC(y=1) w.r.t. MTE algorithm, when the packet arrival follows the Poisson process
with mean μ = 1.0.

delivered in this report interval. All events that are neither
the packet arrival events nor reporting events are the sending
events. In the sending event, a packet is sent to the next hop.
The next hop is determined based on the routing algorithm
used. Whenever a packet arrives at a node, it is queued in
the node’s buffer and will be sent in the next transmission
time. Whenever a packet reaches its destination, the number
of delivered packets is incremented and the event associated
with that packet is freed.

The channel between two adjacent nodes in the network is
modeled as fading process that attenuates the transmit signal
proportionally to the distance, d−α. We note that the main
focus of this paper is on the static sensor network. In the
static sensor network, the effect of fast fading is negligible,
since practically the Doppler shift experienced by the receivers
is zero. Therefore, this model is general enough to describe
both the free space propagation and the two ray ground
propagation model, which has been typically used in many
ad-hoc simulators [20]. In this simulation section, we first
generate 10 uniform random networks in the area of 100m
by 100m with 36 nodes. The networks have average edges
per node from 4.4 to 7.5. All nodes in the network initially
have the same amount of energy. The source and destination
are selected uniformly from the alive nodes. We use the
network lifetime (time before the remaining network becomes

disconnected), packet delivery time, average transmit energy
per packet, and total delivered packet before the remaining
network becomes disconnected as our performance metrics.

In Figure 2, we compare the performance of the normalized
max-min residual connectivity (MMRC) routing, normalized
the minimum hop (MH) routing, and normalized minimum
hop while keeping connectivity (MHKC(y=1)) routing. All
metrics are normalized with respect to the performance of
MTE algorithm. From the figure, we observe that all the
algorithms have lower network lifetime compared to the MTE
algorithm. This also verifies that MTE is not less effective
than MMRE type algorithm when one defines the network
lifetime as the time before the remaining network becomes
disconnected as discussed in Section IV. This is partly due
to the fact that MH, MHKC, and MMRE do not use the
transmission energy to guide the routing decision, hence the
route is not energy efficient at all. This can be observed from
the figure that all the algorithms consume 20% to 90% more
energy per packet. However, the MH and MHKC take only
50% less time to deliver one packet, this is clear because MH
based algorithms select route that has the minimum hops from
source to destination, hence the resulting packet delivery delay
is the smallest.

Since considering the energy efficient route is very impor-
tant, we will focus on MTE type algorithm for the rest of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3913

1 2 3 4 5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

 n
et

w
or

k 
lif

et
im

e

Network realizations
1 2 3 4 5

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
or

m
al

iz
ed

 r
ou

tin
g 

tim
e

Network realizations

1 2 3 4 5
0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
xR

x 
E

ne
rg

y

Network realizations
1 2 3 4 5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

N
or

m
al

iz
ed

 s
uc

ce
ss

fu
l d

el
iv

er
ed

 p
ac

ke
ts

Network realizations

load μ=1.0

load μ=2.0

load μ=3.0

Fig. 3. Comparison of normalized metrics for MTEKC(y=1) w.r.t. to MTE for different packet arrival rate.

TABLE V
SIMULATION PARAMETERS SET 2

Network 1 2 3 4 5

Nodes 102 101 115 124 86
Algebraic network

connectivity 0.3994 0.5679 0.7282 0.5543 0.1141

the simulation section. Next, we simulate both 2D Poisson
network and uniform random network. The nodes in the 2D
Poisson network are deployed/generated based on 2D Poisson
process, while the nodes in uniform random network are
generated based on uniform distribution. We also consider 2
types of source and destination pairs, namely converge-cast
traffic and random traffic. The converge-cast traffic refers to
the pattern where the sources are generated from alive nodes
to a fixed destination (sink). And, the random traffic refers
to the pattern where the source and destination are selected
randomly from the nodes that have not failed. We generate
5 networks, where nodes are generated using 2D Poisson
point process with the following parameters. Networks with
averaged 100 nodes are generated using 2D Poisson point
process in the area of 100m by 100m. The transmit energy
per packet between two nodes is equivalent to 3 × 10−3d2,
where d is the distance between the nodes. The maximum
transmit power equals to 1.4 Watt per packet, receive power
equals to 0.7 Watt per packet. This implies that the farthest
node that can be reached by a node is about 21.602m away.
The initial energy of all nodes is equal to 10000.0 energy
unit. We also show the algebraic network connectivity of the
original graph in Table V. Figure 3 shows the simulation
results for normalized MTEKC(y=1) w.r.t. MTE algorithm

for the generated networks. As before, this figure shows
the normalized performance metrics with respect to MTE
algorithm. These metrics are collected from the initialization
of the network until the network becomes disconnected. The
x-axes of these sub-figures denote the network number shown
in Table V. From this figure, we observe that the improvement
of keep-connect algorithm w.r.t MTE is about 20% for load
(μ = 1.0) in network 2. In summary, one can observe that the
proposed algorithm achieves from 10% to 53% increase in
the network lifetime for broad network loads. Similarly, the
proposed algorithm achieves around 10% ∼ 36% improve-
ment in the total delivered packets. We note that the keep-
connect algorithm is about 20% less energy efficient compared
to MTE. Besides being able to have longer lifetime and
larger total delivered packets, our proposed algorithm is also
more robust in terms of the algebraic network connectivity.
This can be seen from Figure 4. This figure shows the
decrease in the algebraic network connectivity whenever a
node dies. The x-axis is the number of failed nodes before the
network becomes disconnected and the y-axis is the algebraic
network connectivity. We note that the zero algebraic network
connectivity implies the disconnected network. It is obvious
that our algorithm is more robust in terms of algebraic network
connectivity. As shown in Figure 4, there is typically more
than one node dies before the network becomes disconnected.
We also simulate converge-cast traffic in network 1 of Table
V and run the simulation for 100 realizations. We randomly
select the destination to be node 94 and assume that it has
infinite energy. Figure 5 shows that our proposed algorithm
constantly outperforms the MTE algorithm.

Next, we show the performance of the distributed imple-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3914 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of dead nodes

A
lg

eb
ra

ic
 n

et
w

or
k 

co
nn

ec
tiv

ity
The robustness of our proposed algorithm in terms of network connectivity

MTE network 1
MTEKCFiedler network 1
MTE network 2
MTEKCFiedler network 2

Fig. 4. Robustness of our proposed algorithm in terms of network connec-
tivity

0 20 40 60 80 100
4.2

4.3

4.4

4.5

4.6
x 10

4

N
et

w
or

k 
lif

et
im

e

Network realization

Comparison for MTEKCFiedler(1) and MTE algorithm 
for converge cast traffic load=1.0 

0 20 40 60 80 100
4.25

4.3

4.35

4.4

4.45

4.5

4.55
x 10

4

D
el

iv
er

ed
 p

ac
ke

ts

Network realization

MTE
MTEKCFiedler(1)

Fig. 5. Comparison of normalized metrics for MTEKC(y=1) w.r.t. to MTE
for converge cast traffic.

mentation presented in Section VI in Figure 6. The distributed
solution sends around 10 small packets in between sending
the actual packets to facilitate better learning result. If one
node dies, each node increases the sending of small packets to
quickly learn the correct route. The implementation is straight-
forward. The learning process for the distributed solution for
the converge cast traffic in network 1 is shown in Figure 6.
This figure shows that the improved distributed solution can
nearly achieve the centralized solution.

Finally, in order to get statistics of improvement of keep-
connect algorithm, we study the effect of routing algorithm
on random network where nodes are randomly placed uni-
formly in an area of 100m by 100m with random traffic. For
each number of nodes (100 to 200 nodes), we generated 20
networks, we averaged the normalized network lifetime for
MTEKC(y = 1, 2, 3) with respect to MTE algorithm. The
results are plotted in Figure 7 to 9. In these Figures we show

both the mean, m and unbiased standard deviation, s of the
performance metrics given below by means of error bar,

m =
1
N

N∑
n=1

xn,

s =

√√√√ 1
N − 1

N∑
n=1

(xn − μ)2,

where N = 20 represents 20 network realizations. xn denotes
the normalized network lifetime and normalized number of
nodes failed before the network becomes disconnected in the
left and right sub-figures of Figures 7 to 9, respectively.

We note that Figure 7 shows the case where the attenuation
is α = 2.0 and load is μ = 1.0. In contrast, we also simulate
the case where α = 4.0 and μ = 1.0 in Figure 9. Comparing
these figures, we conclude that the proposed algorithm is not
sensitive to the choice of attenuation coefficient α. From all
these figure, we show that the proposed algorithm achieves
about 10% to 20% performance improvement compared to
MTE algorithm. Moreover, the proposed algorithm is more
robust in terms of algebraic network connectivity, which may
be a much more important criterion to be considered in the
network protocol design. This can be seen from these Figures,
there is more number of nodes failed before the network
becomes disconnected in our proposed algorithm.

VIII. CONCLUSIONS

In this paper, we employ the time before the network
becomes disconnected as our definition of network lifetime.
Using this definition, we propose a class of routing algorithms
called keep-connect algorithms that use computable measures
of network connectivity in determining how to route pack-
ets. The algorithm embeds the importance of a node when
making the routing decision. The importance of a node is
quantified by the Fiedler value of the remaining network when
that particular node dies. The proposed algorithm achieves
10 ∼ 20% better network lifetime (time before the network
becomes disconnected) and total delivered packets compared
to MTE algorithm in low to high arrival rate. More impor-
tantly, the proposed algorithm is more robust in terms of
algebraic network connectivity. We also present a distributed
implementation that nearly achieves the centralized solution.

REFERENCES

[1] Tech. Review, “10 emerging technologies that will change the world,”
Technology Review, pp. 33–49, Feb. 2003.

[2] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportu-
nities, and challenges,” IEEE Wireless Commun., vol. 91, no. 8, pp.
1247–1256, Aug. 2003.

[3] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless
sensor networks,” IEEE/ACM Trans. Networking, vol. 12, no. 4, pp.
609–619, Aug. 2004.

[4] C.-K. Toh, “Maximum battery life routing to support ubiquitous mobile
computing in wireless ad hoc networks,” IEEE Commun. Mag., vol. 39,
no. 6, pp. 138–147, June 2001.

[5] F. R. K. Chung, Spectral Graph Theory. CBMS Regional Conference
Series in Mathematics, no. 92, American Mathematical Society, 1997.

[6] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-
matical J., vol. 23, pp. 298–305, 1973.

[7] ——, “A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory,” Czechoslovak Mathematical J.,
vol. 25, pp. 619–633, 1975.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



PANDANA and LIU: ROBUST CONNECTIVITY-AWARE ENERGY-EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORKS 3915

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
0

10
1

10
2

T
xR

xE
ne

rg
y

Simulation time

Comparison of improved distributed solution for centralized and distributed MTEKCFiedler(1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
0

R
ou

tin
g 

tim
e

Simulation time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

40

60

80

100

120

140

D
el

iv
er

ed
 p

ac
ke

ts

Simulation time

centralized
improved distributed

Fig. 6. Performance of Tx and Rx Energy, Routing time, and the delivered packets for improved distributed solution when μ = 1.0.

80 100 120 140 160 180 200 220
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of nodes

N
or

m
al

iz
ed

 li
fe

tim
e

Normalized lifetime in uniform network 
with random traffic load=1.0           

 

 

y=1
y=2
y=3

80 100 120 140 160 180 200 220
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of nodes

N
or

m
al

iz
ed

 n
um

be
r 

of
 n

od
es

 fa
ile

d
 b

ef
or

e 
di

sc
on

ne
ct

ed
   

   
   

   
 

Normalized performance in uniform network 
with random traffic load=1.0              

 

 

y=1
y=2
y=3

Fig. 7. Normalized performance in random network with random traffic when the packet arrival load is μ = 1.0 and α = 2.0

80 100 120 140 160 180 200 220
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of nodes

N
or

m
al

iz
ed

 li
fe

tim
e

Normalized lifetime in uniform network 
with random traffic load=3.0           

 

 

y=1
y=2
y=3

80 100 120 140 160 180 200 220
0.8

1

1.2

1.4

1.6

1.8

2

Number of nodes

N
or

m
al

iz
ed

 n
um

be
r 

of
 n

od
es

 fa
ile

d 
be

fo
re

 d
is

co
nn

ec
te

d 
   

   
   

   
  

Normalized performance in uniform network 
with random traffic load=3.0              

 

 

y=1
y=2
y=3

Fig. 8. Normalized performance in random network with random traffic when the packet arrival load is μ = 3.0 and α = 2.0

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



3916 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008

80 100 120 140 160 180 200 220
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of nodes

N
or

m
al

iz
ed

 li
fe

tim
e

Normalized lifetime in uniform network 
with random traffic load=1.0           

 

 

y=1
y=2
y=3

80 100 120 140 160 180 200 220
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of nodesN
or

m
al

iz
ed

 n
um

be
r 

of
 n

od
es

 fa
ile

d 
   

   
   

   
   

   
 b

ef
or

e 
ne

tw
or

k 
is

 d
is

co
nn

ec
te

d 
   

   
   

   
   

   
  

Normalized performance in uniform network 
with random traffic load=1.0              

 

 
y=1
y=2
y=3

Fig. 9. Normalized performance in random network with random traffic when the packet arrival load is μ = 1.0 and α = 4.0

[8] T. S. Rappaport, Wireless Communications: Principle and Practice,
2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[9] A. Chandrakasan, W. Heinzelman, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
Proc. 33rd Annual Hawaii International Conference on System Sciences,
pp. 1–10, Jan. 2000.

[10] D. M. Blough and P. Santi, “Investigating upper bounds on network
lifetime extension for cell-based energy conservation techniques in sta-
tionary ad hoc networks,” in Proc. 8th Annual International Conference
on Mobile Computing and Networking, pp. 183–192, 2002.

[11] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in wireless
ad hoc networks,” in Proc. 4th Annual IEEE/ACM MOBICOM, Rome,
Italy, pp. 97–107, July 2001.

[12] A. Sankar and Z. Liu, “Maximum lifetime routing in wireless ad-hoc
networks,” in Proc. IEEE INFOCOM, pp. 1089–1097, Mar. 2004.

[13] B. Mohar, “Some applications of Laplace eigenvalues of graphs,”
Hahn and G. Sabidussi, eds., Graph Symmetry: Algebraic Methods and
Applications, NATO ASI Series C, Kluwer, Dordrecht, vol. 497, pp.
227–275, 1997.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, 1st ed. Cambridge,
UK.: Cambridge University Press, 1985.

[15] R. Diestel, Graph Theory, 3rd ed. Springer-Verlag, 2005.
[16] D. P. Bertsekas, Network Optimization: Continuous and Discrete Mod-

els. Belmont, MA.: Athena Scientific, 1999.
[17] M. L. Littman and J. A. Boyan, “A distributed reinforcement learning

scheme for network routing,” Advances in Neural Infromation Process-
ing Systems, vol. 6, pp. 670–678, 1993.

[18] C. Pandana and K. J. R. Liu, “Near-optimal reinforcement learning
framework for energy-aware sensor communications,” IEEE J. Select.
Areas Commun., vol. 23, no. 4, pp. 788–797, Apr. 2005.

[19] J. Jubin and J. D. Tornow, “The darpa packet radio network protocols,”
Proc. IEEE, vol. 95, no. 1, pp. 21–34, Jan. 1987.

[20] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy
conservation for ad-hoc routing,” in Proc. MOBICOM, pp. 70–84, July
2001.

Charles Pandana received his B.S. degree and
M. S. degree in electronics engineering from the
National Chiao Tung University, Hsinchu, Taiwan,
in 1998 and 2000, and the Ph.D. degree in electrical
and computer engineering from University of Mary-
land in 2005. He is currently working as a system
research engineer in ArrayComm LLC. His research
interests include stochastic modeling/learning and
system level/network performance analysis for next
generation wireless networks. He is a member of
the IEEE Signal Processing and Communication

societies.

K. J. Ray Liu (F-03) is Professor and Associate
Chair, Graduate Studies and Research, of Electrical
and Computer Engineering Department, and Distin-
guished Scholar-Teacher of University of Maryland,
College Park. He leads the Maryland Signals and
Information Group conducting research encompass-
ing broad aspects of information technology includ-
ing signal processing, communications, networking,
information forensics and security, biomedical and
bioinformatics.

Dr. Liu is the recipient of numerous honors and
awards including best paper awards from IEEE Signal Processing Society
(twice), IEEE Vehicular Technology Society, and EURASIP; IEEE Signal
Processing Society Distinguished Lecturer, EURASIP Meritorious Service
Award, and National Science Foundation Young Investigator Award. He
also received various teaching and research recognitions from University of
Maryland including university-level Invention of the Year Award and college-
level Poole and Kent Company Senior Faculty Teaching Award.

Dr. Liu is Vice President Publications and on the Board of Governor of
IEEE Signal Processing Society. He was the Editor-in-Chief of IEEE SIGNAL

PROCESSING MAGAZINE and the founding Editor-in-Chief of EURASIP
JOURNAL ON APPLIED SIGNAL PROCESSING.

His recent books include Cooperative Communications and Networking,
Cambridge University Press, 2008; Resource Allocation for Wireless Net-
works: Basics, Techniques, and Applications, Cambridge University Press,
2008; Ultra-Wideband Communication Systems: The Multiband OFDM Ap-
proach, IEEE-Wiley, 2007; Network-Aware Security for Group Communi-
cations, Springer, 2007; Multimedia Fingerprinting Forensics for Traitor
Tracing, Hindawi, 2005.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 5, 2008 at 14:49 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


