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Cooperation Enforcement and Learning for
Optimizing Packet Forwarding in
Autonomous Wireless Networks

Charles Pandana, Zhu Han, and K. J. Ray Liu

Abstract—In wireless ad hoc networks, autonomous nodes
are reluctant to forward others’ packets because of the nodes’
limited energy. However, such selfishness and noncooperation
deteriorate both the system efficiency and nodes’ performances.
Moreover, the distributed nodes with only local information may
not know the cooperation point, even if they are willing to
cooperate. Hence, it is crucial to design a distributed mechanism
for enforcing and learning the cooperation among the greedy
nodes in packet forwarding. In this paper, we propose a self-
learning repeated-game framework to overcome the problem
and achieve the design goal. We employ self-transmission effi-
ciency as the utility function of individual autonomous node.
The self transmission efficiency is defined as the ratio of the
power for self packet transmission over the total power for self
packet transmission and packet forwarding. Then, we propose a
framework to search for good cooperation points and maintain
the cooperation among selfish nodes. The framework has two
steps: First, an adaptive repeated game scheme is designed to
ensure the cooperation among nodes for the current cooperative
packet forwarding probabilities. Second, self-learning algorithms
are employed to find the better cooperation probabilities that
are feasible and benefit all nodes. We propose three learning
schemes for different information structures, namely, learning
with perfect observability, learning through flooding, and learn-
ing through utility prediction. Starting from noncooperation,
the above two steps are employed iteratively, so that better
cooperating points can be achieved and maintained in each
iteration. From the simulations, the proposed framework is able
to enforce cooperation among distributed selfish nodes and the
proposed learning schemes achieve 70% to 98% performance
efficiency compared to that of the optimal solution.

Index Terms—Game theory, cooperation, wireless (ad-hoc)
networks, intelligent sensors.

I. INTRODUCTION

OME wireless networks such as ad-hoc networks consist
of autonomous nodes without centralized control. In such
autonomous networks, the nodes may not be willing to fully
cooperate and accomplish the network task. Specifically for
the packet forwarding problem, forwarding the others’ packets
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consumes the node’s limited battery resource. Therefore, it
may not be of the node’s best interest to forward others’
arriving packets. However, rejection of forwarding others’
packets non-cooperatively will severely affect the network
functionality and impair the nodes’ own benefits. Hence, it is
crucial to design a mechanism to enforce cooperation among
greedy nodes. In addition, the randomly located nodes with
local information may not know how to cooperate, even if
they are willing to cooperate.

The packet forwarding problem in ad hoc networks has
been extensively studied in the literature. The fact that nodes
act selfishly to optimize their own performances has moti-
vated many researchers to apply the game theory [1], [2]
in solving this problem. Broadly speaking, the approaches
used in encouraging the packet forwarding task can be cat-
egorized into two methods. The first type of methods makes
use of virtual payment. Virtual currency, pricing, and credit
based method [3], [4] fall into this first type. The second
type of approaches is related to personal and community
enforcement to maintain the long-term relationship among
nodes. Cooperation is sustained because defection against one
node causes personal retaliation or sanction by others. This
second approach includes the following works. Marti et al. [5]
propose mechanism called watchdog and pathrater to identify
the misbehaving nodes and deflect the traffic around them.
Buchegger et al. [6] define protocols based on reputation
system. Altman et al. [7] consider a punishment policy to
show cooperation among participating nodes. In [8], Han et
al. propose learning repeated game approaches to enforce
cooperation and obtain better cooperation solutions. Some
other works using game theory in solving communication
problems can be found in [9], [10], and [11].

Since in some wireless networks, it is difficult to imple-
ment the virtual payment system because of the practical
implementation challenges such as enormous signaling. In this
paper, we concentrate on the second type of approaches and
design a mechanism such that cooperation can be enforced in
a distributed way. In addition, unlike the previous works which
assume the nodes know the cooperation points or other nodes’
behaviors, we argue that randomly deployed nodes with local
information may not know how to cooperate even if they are
willing to do so. Motivated by these facts, we propose a self-
learning repeated-game framework for cooperation enforcing
and learning.

We define the self-transmission as the transmission of a
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Fig. 1. Tllustration of time-slotted transmission to two alternative stages.

user’s own packets. We quantify the node’s utility as its self-
transmission efficiency, which is defined as the ratio of the
power for successful self transmission over the total power
used for self transmission and packet forwarding. The goal
of the node is to maximize the long-term average efficiency.
Using this utility function, a distributed self-learning repeated-
game framework is proposed to ensure cooperation among
autonomous nodes. The framework consists of two steps: First,
the repeated game enforces cooperation in packet forwarding.
This first step ensures that any cooperation equilibrium that
is more efficient than the Nash Equilibrium (NE) of the
one stage game can be sustained. The repeated game allows
nodes to consider the history of actions/reactions of their
opponents in making the decision. The cooperation can be
enforced/sustained using the repeated game, since any devia-
tion causes the punishment from other nodes in the future.
The second step utilizes the learning algorithm to achieve
the desired efficient cooperation equilibrium. We propose
three learning algorithms for different information structures,
namely, learning with perfect observability, learning through
flooding, and learning through utility prediction. Starting from
the non-cooperation point, the two proposed steps are applied
iteratively. A better cooperation is discovered and maintained
in each iteration, until no more efficient cooperation point
can be achieved. From the simulation results, our proposed
framework is able to enforce cooperation among selfish nodes.
Moreover, compared to the optimal solution obtained by
a centralized system with global information, our proposed
learning algorithms achieve similar performances in the sym-
metric network. Depending on learning algorithms and the
information structures, our proposed schemes achieve near-
optimal solution in the random network.

This paper is organized as follows: In Section II, we
give the system model and explain the design challenge.
In Section III, we propose and analyze the repeated-game
framework for packet forwarding under different information
structures. In Section IV, we construct self-learning algorithms
corresponding to different information structures in details.
In Section V, we evaluate the performances of our proposed
scheme using extensive simulations. Finally, the conclusions
are drawn in Section VI.

II. SYSTEM MODEL AND DESIGN CHALLENGE

We consider a network with N nodes. Each node is battery-
powered and has transmit power constraint. This implies that
only nodes within the transmission range are neighbors. The
packet delivery typically requires more than one hop. In each
hop, we assume transmission occurs in a time-slotted manner
as illustrated in Figure 1. The source, the relays (intermediate
nodes), and the destination constitute an active route. We
assume an end-to-end mechanism that enables a source node to
know if the packet is delivered successfully. The source node
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can observe whether there is a packet drop in one particular
active path. However, the source node may not know where
the packet is dropped. Finally, we assume that routing decision
has already been done before optimizing the packet forwarding
probabilities'.

Let’s denote the set of sources and destinations as {.S;,
D;}, for i = 1,2,--- | M, where M represents the number
of source-destination pairs that are active in the network.
Suppose the shortest path for each source-destination pair
has been discovered. Let’s denote the route/path as R; =
(Sis [l [R,-+ > [B. Di), where S; denotes the source node,
D; denotes the destination node, and {f5 , f& , -+, [§,} is
the set of intermediate/relay nodes, thus, there are n 4 1 hops
from source node to the destination node. Let V = {R; : i =
1,---, M} be the set of routes corresponding to all source-
destination pairs. Let’s denote further the set of routes where
node j is the source as V' = {R; : S(R;) = j,i =1... M},
where S(R;) represents the source of route R;. The power
expended in node ¢ for transmitting its own packet is

PO = 3" pgy - K -d(S(r),n(S(r),m)", (1)

reV;ye

where 1g(,) is the transmission rate of source node S(r), K
is the transmission constant, d(i,j) is the distance between
node i and node j, n(i,r) denotes the neighbor of node ¢
on route 7, and vy is the transmission path-loss coefficient.
For the link from node ¢ to its next hop n(i,r) on route 7,
K -d(i,n(i,r))"” describes the reliable successful transmission
power per bit transmission. We note that equation (1) can
also be interpreted as the average signal power required for
successful transmission of certain rate p15(,y. This implies that
the transmission failure due to the channel fading has been
taken into account by the transmission constant K.

Let a; for ¢ = 1,--- | N be the packet forwarding proba-
bility for node <. Here, we use the same packet forwarding
probability for every source-destination pairs because of the
following reasons. First, based on the greedy assumption of
the nodes, there is no reason for one particular node to
forward some packets on some routes and reject forwarding
other packets on other routes. Second, the use of different
packet forwarding probability on different routes will only
complicate the deviation detection of a node and it will not
change the optimization framework proposed in this paper. So
in our first step to analyze the problem, we assume the same
forwarding probability on every route. In the future work,
we are also exploring the case where the nodes use different
packet forwarding probability for different routes.

Clearly, probability of successful transmission from node
1 to its destination depends on the forwarding probabilities
employed in the intermediate nodes and it can be represented

as )
Pi,, = 11
je(r\{S(r)=i,D(r)})

where D(r) is the destination of route ¢ and (r \ {S(r) =
i,D(r)}) is the set of nodes on route r excluding the source

aj, @)

IWe note that it is always possible for nodes to do manipulation in the
routing layer. However, it is beyond the scope of this paper. For more
information, please refer to [16]
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and destination. Let’s define the good power consumed in
transmission node 4, Ps(lg)ood as the product of the power used
for transmitting node ¢’s own packet and the probability of

successful transmission from node 7 to its destination,

PO = sy K - d(S(r),n(S(r), 7)) Py (3)
reV;y?

Moreover, let the set of routes where node j is the forward-
ing node be W;. The power used to forward others’ packets
is given by

P}Sl) =a;- K- Z d(i7n(i,’r))7,u/s(r)P;‘7m “)
reWw,;

where Pll;ir is the probability that node 7 receives the packet
to forward in route r, and Y iy ps(r) Ph,. is the total rate
that node ¢ receives for packet forwarding. The probability that
node ¢ receives the forward packet in route r is represented

as
11
S VEN RN

where r={S(r), fL,--, fm YL fm =i, fr,D(r)} is
the n 4+ 1 hops route from source S(r) to destination D(r),
and the m*" forwarding node f is node i. P}}m depends on
the packet forwarding probabilities of the nodes on the route
r before node 3.

We refer to the task of transmitting the node own infor-
mation as self-transmission and the task of relaying others’
packets as packet forwarding. We focus on maximizing the
self-transmission efficiency, which is defined as the ratio of
successful self-transmission power (good power) over the
total power used for self-transmission and packet forwarding.
Therefore, the stage utility function for node 7 can be repre-
sented as

Pp, = a, o)

(@)

i . s,good
UD (g, a;) = m (6)
where «; is node i’s packet forwarding probability, a_; =
(a1, y@i_1,i41, - ,an)T are the other nodes’ forward-
ing probability. Putting (1), (3) and (4) into (6), we have (7) (at
the top of the next page). Since the power for successful self-
transmission depends on the packet forwarding used by other
nodes, the self-transmission efficiency captures the trade-off
between the power used for packet transmission of its own
information and packet forwarding for the other nodes.

The problem in packet forwarding arises because the au-
tonomous nodes such as in ad-hoc networks have their own
authorities to decide whether to forward the incoming packets.
Under this scenario, it is very natural to assume that each
node selfishly optimizes its own utility function. In parallel to
(7), node 7 selects «; in order to maximize the transmission
efficiency U® (a;, ;). This implies that node 4 will selfishly
minimize P]EZ), the portion of energy used to forward others’
packets. In the game theory literature [1], [2], Nash Equilib-
rium (NE) is a well-known concept, which states that in the
equilibrium every node selects the best response strategy to
the other nodes’ strategies. The formal definition of NE is
given as follow
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Definition 1: Define feasible range 2 as [0, 1]. Nash Equi-
librium [af, -+, ak]T is defined as:

UD (ot a*,) > UD (i, a*,), Vi, Ya; € Q, (8)

i.e., given that all nodes play NE, no node can improve
its utility by unilaterally changing its own packet forward
probability. Here a*; = (af, -+, o} _1,af 1, ,ay)’.

Unfortunately, the NE for the packet forwarding game de-
scribed in (7) is of = 0, Vi. This can be verified by finding the
forwarding probability c; € [0, 1] such that U is unilaterally
maximized. To maximize the transmission efficiency of node
i, the node can only make the forwarding energy P}Z) as
small as possible. This is equivalent to setting «; as small
as possible, since the successful probability of its own packet
transmission in (2) depends only on the other nodes’ willing-
ness to forward the packets. By greedily dropping its packet
forwarding probability, node ¢ reduces its total transmission
power used for forwarding others’ packets, therefore, increases
its instantaneous efficiency. However, if all nodes play the
same strategy, this causes zero efficiency in all nodes, i.e.,
UD(af...ak) = 0, Vi. As the result, the network breaks
down. Hence, playing NE is inefficient not only from the
network point of view but also for the individual’s own benefit.
It is very important to emphasize that the inefficiency of NE is
independent to the utility function in (7). This inefficiency is
merely the result of greedy optimization unilaterally done by
each of the nodes. In the next two sections, we propose a self-
learning repeated-game framework and show how cooperation
can be enforced using our proposed scheme.

III. REPEATED-GAME FRAMEWORK AND PUNISHMENT
ANALYSIS

As demonstrated in Section II, the packet forwarding game
has af = 0, Vi as its unique Nash equilibrium if the game is
only played once. This implies that all nodes in the network
won’t be cooperating in forwarding the packets. In practice,
nodes typically participate in the packet forwarding game for
a certain duration of time, and this is more suitably modelled
as a repeated game (a game that is played in multiple times).
If the game never ends, it is called infinite repeated game
which we will use in this paper. In fact, the repeated game
may not be necessarily infinite. The important point is that the
nodes/players do not know when the game ends. In this sense,
the properties of the infinitely repeated game can still be valid.
In this paper, we employ the normalized average discounted
utility with discounting factor § given by:

U9 = lim U = (1-8))_ s DU @(), ©)

t=1

where @(t) = (oa,...,an)”, UW(a(t)) is the utility of
node 7 at each stage game (7) played at time ¢, and Ut(,l)
is the normalized average discounted utility from time 1 to
time ¢’. Unlike the one-time game, the repeated game allows
a strategy to be contingent on the past moves and results in
the reputation and retribution effects, so that cooperation can
be sustained [2], [13], [14]. We also note that the utilities in
(7) and (9) are indeed heterogeneous in the sense that they
carry the information about the channel, routing, and node
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behaviors. In other words, the utility functions in (7) and
(9) reflect different energy consumption according to different
distance, rate, and route between nodes.

A. Design of Punishment Scheme under Perfect Observability

In this subsection, we analyze a class of punishment policy
under the assumption of perfect observability. Perfect observ-
ability means that each node is able to observe actions taken
by other nodes along the history of the game. This implies that
node knows which node drops the packet and is aware of the
identity of other nodes. This condition allows every node to
detect any defection of other nodes and it also allows nodes to
know if any node does not follow the game rule. The perfect
observability is the ideal case and serves as the performance
upper bound. In the next subsection, this assumption is relaxed
to a more practical situation, where an individual node only
has limited local information.

Let’s denote the NE in one stage forwarding game as

a* = (aj, -+ ,ai)T, and the corresponding utility functions
as (v, ,vy)T = (UO@), -, UN(@)T. We also
denote

U = {(v,---,von) FaecQV (10)

st. (v, ,on) = (U(l)(&),~-~ ,U(N)(O_Z))},

V = convex hull of U, (11)

Vi = {(vi,-on) € V] v >0, Vi) (12)
We note that V consists of all feasible utilities, and VT

consists of feasible utilities that Pareto-dominate the one stage
NE, this set is also known as the individually rational utility
set [1], [2]. The Pareto-dominant utilities denote all utilities
that are strictly better than the one stage NE. From the game
theory literature [2], [13], [14], the existence of equilibria that
Pareto-dominate the one stage NE is given by the Folk theorem
[14].

Theorem 1 (Folk Theorem [14]): Assume that the dimen-
sionality of VT equals to N. Then, for any (vi,---,vy)
in VT, there exists § € (0,1) such that for all § € (§,1),
there exists an equilibrium of the infinitely repeated game with
discounted factor § in which player i’s average utility is v;.

Before we give the application of Folk theorem in the
packet forwarding game, it is useful to recall the notion
of dependency graph. Given the routing algorithm and the
source-destination pairs, the dependency graph is the directed
graph that is constructed as follows. The number of nodes in
the dependency graph is the same as the number of nodes
in the network. When node 7 sends packets to node j via
nodes f!,---, f™, then there exist directed edges from node
i to nodes f!,---, ™. The resulting dependency graph is a
directed graph, which describes the node dependency in per-
forming the packet forwarding task. Let’s define deg;, (i) and
degout (1) as the number of edges going into node ¢ and coming
out from node i, respectively. Obviously, deg;,, (¢) indicates of
the number of nodes whose packets are forwarded by node

(N

i and degoyt (i) is the number of nodes that help forward
node ¢’s packets. Using the notation of the corresponding
dependency graph, the application of Folk theorem in packet
forwarding game is stated as follow:

Theorem 2: (Existence of Pareto-dominant forwarding
equilibria under perfect observability)

Under the following conditions

1. the game is perfectly observable;
2. the corresponding dependency graph satisfies the
condition
degout (i) > 0, Vi; (13)
3. VT has full dimensionality (VT has dimensionality

of N). We note that VT has dimensionality of N

implies that the space formed by all points in VT

has the dimensionality of N.
Then, for any (vi,---,v,) € VT, there exists § € (0,1),
such that for all § € (J,1), there exists an equilibrium of the
infinitely repeated game with node ¢’s average utility v;.

Proof: Let @ = (a1, -+ ,an)’ be the joint strategy

results in (UM (&),--- ,UWN)(&)). The full dimensionality
condition ensures the set (UM (&), -, U0=D(@), U (&) -
e, UGH(@), -+, UM)(@)) for any € > 0, is in V. Let
node i’s maximum utility be 7; = maxg U® (&), Vi. This
maximum utility is obtained when all nodes try to maxi-
mize node ¢’s utility. Let the cooperating utility be v; =
U™ (&) € V1, Vi. The cooperating utilities are obtained when
all nodes play the agreed packet forwarding probabilities. Let
the maximum utility node ¢ can get when it is punished be
v, = max,, min, , U®(A). Let’s denote node j’s utility
when punishing node i as w; We note that from (7), the
max-min utility v; coincides with the one stage NE. If there
exist € and the punishment period for node 7, T;, such that

< (1+1T;), (14)

UG — ¢
then the following rules ensure any individually rational util-
ities can be enforced.

1) Condition I: All nodes play cooperation strategies
if there is no deviation in the last stages. After any
deviations go to Condition II (Suppose node j deviates).

2) Condition II: Nodes that can punish the deviating node
(node 7) play the punishing strategies for the punishment
period. The rest of the nodes keep playing cooperating
strategies. If there is any deviation in Condition II,
restart Condition II and punish the deviating node. If any
punishing node does not play punishment in the punish-
ment period, the other nodes will punish that particular
node during the punishment period. Otherwise, after the
end of the punishment period, go to Condition III.

3) Condition IlI: Play strategy that results in utility
(U(l), Uy gl — g gt L U(N)). It
there is any deviation in Condition III, start Condition
IT and punish the deviating node.



3154

First, the cooperating strategy is the strategy that all nodes
agree upon. In contrast, the punishing node ¢ strategy, is
the strategy that results in max-min utility in node i, v, =
max,, min,_, U®(&). In the sequel, we show that under the
proposition’s assumptions:

« the average efficiency gained by the deviating node is

smaller than the cooperating efficiency,

« the average efficiency gained by the punishing node that
does not play the punishment strategy in the punishment
stage is worse than the efficiency gained by that node
when it conforms to the punishing strategy.

If node j deviates in Condition I and then conforms, it
receives at most U; when it deviates, v; for T} periods
when it is punished, and (UY) — ¢) after it conforms to the
cooperative strategy. The average discounted deviation utility
can be expressed as:

s 5(1— 0%

Ugh:@*‘(1_5)3f*1—5
Since if the node conforms throughout the game, it has the
average discounted utility of TléU (), So the gain of deviation
is given by:

5Tj+1

(UW) —¢).  (15)

AUD =0 _ L g
v =09 - —U
(1 —0T) L=ttt
<7+ T YT 13 (UY) —¢). (16)

We note that v; coincides with the one stage NE, which is

v; =0,Vj. As 6 — 1, 1’1535“ tends to 1 + 7). Under the
condition of (14), the deviation gain in (16) will be strictly
less than zero. This indicates that the average cooperating
efficiency is strictly larger than the deviation efficiency. Hence,
any rational node will not deviate from the cooperation point.

If the punished node still deviates in the punishment period,
the punishment period (Condition II) restarts and the punish-
ment duration experienced by the punished node is lengthened.
As the result, deviation in the punishment period postpones
the punished node from receiving the strictly better utility
(UU) — ¢) in Condition III. Hence, it is better not to deviate
in the punishment stage.

On the other hand, if punishing node ¢ does not play the
punishing strategy during the punishment of node j, node ¢
receives at most

5T+1

Al 5(1 —67)

U =7, ,

R S g

However, if node ¢ conforms with the punishment strategy, it

will receive at least

1-6T §T+1
="

1-6 " 1-9

Here wf is the utility of node ¢ to punish node j. Therefore,
node 7’s reward for carrying out the punishment is (18) minus
a7,

(UD —¢). (17)

U@,

(18)

(1 _ 6T) ; _ T+1€
—(w] — bv;) —v; .

T (Wi o)~ T
Using v, = 0,Vi and let § — 1, the expression (19) is
equivalent to

00 - 09 =

19)

(20)
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Fig. 2. Example of the punishment scheme under perfect observability.

By selecting § close to one, this expression can be always
larger than zero. As the result, the punishing node always
conforms to the punishment strategy in the punishment stage.

The same argument of no node deviating in Condition I
can be used to show that no nodes deviates in Condition III.
Therefore, we conclude that deviations in all Conditions are
not profitable. [ ]

The proof above is based on two conditions: First, the
proof assumes that there always exist nodes that can punish
the deviating nodes, this is guaranteed by the assumption
degout(?) > 0 in the corresponding dependency graph. Sec-
ondly, nodes are able to identify which node is defecting
and which node does not carry out the punishment. This
is guaranteed by the perfect observability assumption. The
strategy of punishing those who misbehave and those who do
not punish the misbehaving nodes can be an effective strategy
to cope with the collusion attack.

Now let’s consider the following example to understand the
punishment behavior. We assume pgy = 1, K = 1, and
d(i,j) = 1. The resulting utilities are shown in Figure 2.
Each node has the one stage utility as:

Ymod(i—2,6)+1 T ¥mod(i,6)+1
24+ 20éi '

By selecting the discounted factor, § = 0.9 and T" = 2
appropriately, all nodes are better-off when they are co-
operating in packet forwarding by setting o; = 1,Vi. If
all nodes conform to the cooperative strategies, the 6-stage
normalized average discounted utilities defined in (9) are given
by Uﬁl) = 0.2343, V. In Figure 2, we plot the utility functions
and forwarding probabilities of all nodes. The x-axis of the
plot denotes the round of game, the left y-axis denotes the
value of node’s utility, and the right y-axis denotes the value of
forwarding probability. The forwarding probability is denoted
by the squared plot and the utility function is denoted by the
plot with stars.

In Figure 2, we show that node 1 is deviating in the second
round of the game by setting its forwarding probability to zero.
At this time, node 1’s utility changes from 0.5 to 1 as seen in
the figure. As the consequence, node 2 and node 6 are punish-

U = 1)
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ing node 1 at the following T" = 2 stages by setting their for-
warding probabilities to zeros. In the third round of the game,
node 1 has to return to cooperation. Otherwise, the punishment
from others restarts and consequently the average discounted
utility will be further lowered. After the punishment, all nodes
come back to the cooperative forwarding probabilities (as
shown in the figure). The resulting 6-stage normalized average
utilities are as follows Ué ) — = 0.2023, Uéz) UéG) 0.2887,
U = 08 = 01958, and TP = 0.2343. So node 1 has
less utility by deviation than by cooperation. Moreover, if both
node 2 and node 6 fail to punish node 1, they will be punished
by other nodes during the following 7' perlods of game The

resulting normalized average utilities are U6 o= o 3485,
v = 0% = 01425, TP = U = 0.3035, and
Ué4) = 0.165. Therefore, node 2 and node 6 will carry out

the punishment, since otherwise they will in turn be punished
and have less utility. The same argument can be used to
prevent nodes deviating from the punishment strategy. We note
that in this example the corresponding dependency graph has
degin(i) = degout(i) = 2,Vi. Therefore, there are always
punishing nodes available whenever any node deviates.

Finally, we discuss the discounting factor § which represents
the importance of the future. In the case where the discounting
factor is small, the future is less important. This will cause
the pathological situation where the instantaneous deviation
gain of the defecting node exceeds any future punishment
by the other nodes. Therefore, it is better-off for the node
to deviate rather than to cooperate and it becomes very hard
(if not impossible) to encourage all nodes to cooperate in
this scenario. We also note that the selfish nodes are better-
off to choose the § approaching to one. Since if the node
chooses § that closes to zero, this implies that the future is
not important to the node, the node will definitely ask other
nodes for transmitting his own packet at very beginning of
the game and stop forwarding others’ packets afterward. This
will invoke punishment from its neighboring nodes by not
forwarding that particular node’s packets. This implies that
that node will automatically be excluded from the network.
Therefore, it is better-off for nodes in the network to choose
& approaching to one.

B. Design of Punishment Scheme under Imperfect Local Ob-
servability

We have shown that under the perfect observability assump-
tion, the packet forwarding game along with the punishment
scheme can achieve any Pareto-dominant efficiency. However,
the perfect observability may be difficult to implement in ad-
hoc networks, due to the enormous overheads and signaling.
Therefore, we try to relax the condition of the perfect ob-
servability in this subsection. There are many difficulties in
removing the perfect observability assumption. Suppose each
node observes only its own history of stage utility function.
In this situation, the node knows nothing about what has
been going on in the rest of the network. The node only
knows the deviation of nodes on which it relies on to do
packet forwarding. And it cannot detect the deviation in the
other part of the network, even though it can be the one that
can punish the deviating node. Therefore, it is impossible
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to implement the Folk Theorem in this information limited
situation. Moreover, nodes may not know if the system is in
punishment stage or not. As soon as one of the nodes sees the
deviation, it starts the punishment period. This will quickly
start another punishment stage by other nodes, since the nodes
cannot differentiate if the change in stage efficiency is caused
by the punishment stage or the deviating node. As the result,
the defection spreads like an epidemic and cooperation in the
whole network breaks down. This is known as the contagious
equilibrium [13]. Indeed, the only equilibrium in this situation
is the one stage NE.

The main reason of the contagious equilibrium is that all
nodes have the inconsistent beliefs about the state of the
system, they do not know whether the system is currently
in the punishment stage, the deviation state, or the end of
punishment stage. Therefore, any mistake in invoking the
punishment stage can cause the contagious equilibrium. The
lack of the consistent knowledge of the system state can be
mitigated using communications between nodes. Suppose each
node observes only a subset of the other nodes’ behaviors.
The communication is introduced by assuming that each node
makes a public announcement about the behaviors of the nodes
it observes. This public announcement can be implemented
by having the nodes exchange the behaviors of nodes they
observe through broadcasting. The intersection of these an-
nouncements can be utilized to identify the deviating node.
At the end of each stage game, the nodes report either no
nodes deviate or the identity of the deviating node. Since these
announcements can be exchanged in a relatively low frequency
and only to the related nodes, the communication overheads
are limited. Under this local observability assumption, the
following theorem inspired by the Folk Theorem for privately
monitoring with communication [15] is proposed

Theorem 3: Suppose V' has N dimensionality (full dimen-
sionality), where N is the number of nodes in the network.
If every node 7 is monitored by at least two other nodes, this
implies the following:

1. If node ¢ participates in the routes that have only 2
hops, then deg;,, (i) > 2 is sufficient.

2. If node ¢ participates in the routes which one of
the routes has only 2 hops, then deg;, (i) > 3 is
sufficient.

3. If node ¢ participates in the routes which have more

than 2 hops, then deg;, (i) > 4 is sufficient.

Also, there always exists a node that can punish the deviating
node, i.e.,

degout( ) > 0 Vi. (22)

Moreover, the monitoring nodes can exchange the observa-
tions. Then, for every v in the interior of VT, there exist
0 € (0,1), such that for all 6 € (6,1), v = (v1,--- ,un) is an
equilibrium of an infinitely repeated game in which node i’s
average utility is v;.

Proof: Suppose there exist €, § and punishment period
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T; such that (14) holds and

max;{T;}—1
Z 6* max{ max (v;(a) —vi(a))}
=0 v (e
< ) b (23)
t=max; {T;}

then the following rules of the game (Condition I to III)
achieves the equilibrium when deg;y, (i) = 2, Vi.
Condition I: If there is no announcement of the deviating
nodes

a. If the previous stage is in cooperating state, continue the
cooperating state.
b. If the nodes play the following strategy in the previous

stage
(UW,... u*=D gk _ gkt .. i)
for k € {1,---, N}, continue the previous state.

c. If the previous stage is in punishing node k state and the
punishment has not ended, then continue the punishing.
Otherwise, switch to strategy that results in

(U(l), ... ’U(’f—l)’ Uk — , U("~‘-i-1)7 . ,U(N)).

Condition II: If node j is incriminated by both of its moni-

tors 71 and jo

a. If the previous stage’s strategy is either in the
following states: punishing node j, implementing
(U(1)7... UG- gl — o guth ... ,U(N)), imple-
menting (U(l)’... UG —e o UO gL ,U(N)),
for some [ # j, or in implementing (U™, ... . U® +
g, U0 —¢, ... 7U(N)), for some [ # j, then start
the punishment stage for punishing node j.

b. If the previous stage’s strategy is in punishing
node j;, then switch to the strategy that results in
(U(l),--- UG 4o oo U0 —g) . ,U(N)). The sim-
ilar argument is applied to increase node j;’s utility by
€ when node j; is punished in the previous stage.

Condition III:  If there is any inconsistent announcement
by node j; and j2. We note that the inconsistent
announcement happens when there are at least two
announcements of the deviation node, but the devi-
ation nodes in the announcements are different.

a. If the previous state is punishing node j; or node js, then

restart the punishment stage.

b. Otherwise, implement (U™, ... U0 —¢ ... [Ul2) —

g,- - ,U(N)).

In the above rules, we consider three different conditions,
namely when no announcement of deviating node (Condition
I), when the announcements are consistent (Condition II),
and when the announcements are inconsistent (Condition III).
Then we discuss the different strategies for different states
within each Condition. We note that only the nodes whose
packets are forwarded by node j have the potential ability of
detecting the deviation of node j. The above game rule ensures
that if every nodes in the network are monitored by at least
two other nodes and there always exist nodes to punish the
deviating node, then any v € VT can be realized.
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If both the monitors (node j; and node j2) of node j
incriminate node j, then node j is punished in the similar
way to the punishment in Theorem 1. The deviator (node j7)
is punished for a certain period of time if the previous state
is in one of the following states: punishing node j state (this
implies that the punishment stage will be restarted), finished
punishing node j state (i.e. in the state with utility function
as UMW ... pglU-D gl — ¢ yU+h ... UWN)) after pe-
nalizing nodes that make inconsistent announcements (i.e. in
state with utility UM ... UF) —¢ ... UO —¢ ... UWN),
where node k£ and [ are the nodes that previously make incon-
sistent announcements, or in state with utility U @ .o ub4
g, UK — o ... UWN) In all these states, the deviator
(node j) will be punished for a certain period of time
(Condition IIa). However, if the previous state is in punishing
node ji, then the system switches to strategy that results in
UL oo U2 pe oo U@ —¢ ... UWN) (Condition 1Ib).
This strategy gives additional incentives (U72) + ¢) for node
J2 to punish to node j. Obviously, node j; has the incentive to
announce if node j deviates, since this announcement will end
node j; punishment. Because of the possible early termination
of the punishment period, node j; also has the incentive
to wrongly incriminate node j, this particular case will be
prevented by Condition IIla. Condition IIb is also used to
avoid the situation where node jo lies on its announcement
even though it observes that node j deviates. This condition
will become obvious as we discuss the Condition III.

Next, we consider the case where there are incompatible
announcements. We note that incompatible announcements
imply that there are two nodes or two groups of nodes
that make different announcements on the deviation. These
announcements can be in the forms of either node j is
only incriminated by one of the nodes (a group of nodes)
or two different nodes are incriminated by two other nodes
(two other groups of nodes). When there are incompatible
announcements about node j (Condition III) and the previous
state is not in punishing node j; or jo, the nodes that make
incompatible announcements will be penalized and they will
receive utility U Ui) — ¢ for i = 1,2 (Condition IIIb). In the
case when node j; is being punished in the previous stage, the
Condition IIla prevents node j; from falsely accusing node j.
Condition IITa and Condition IIIb are sufficient to avoid lying
in announcement. However, including Condition IIla creates
the situation where node jo enjoy punishing node j;. This
means that when node j; is being punished and in the case
node j has really deviated, node j2 has the incentive to lie in its
announcement and announces that no nodes is deviating. This
problem is solved by Condition IIb that gives additional reward
for node js to tell the truth and punish node j. Moreover (23)
implies that this additional reward for node jo outweighs the
benefit from punishing node j;. (23) can be thought as the
incentives for the monitoring nodes to punish the deviating
node when the announcements are inconsistent.

Previous arguments ensure that if every nodes in the net-
work are monitored by at least two other nodes, then any
feasible v € VT can be realized. Next, we analyze the three
cases listed in Theorem 3. In the first case, if all routes that
node 4 participates have only 2 hops, and deg;, (i) > 2, this
implies that every node can be perfectly monitored by two or
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Fig. 3. Suppose the victim node, S, is in the edge of the network and every
transmission coming from node S should go through node f. Suppose node
f deviates and blocks the announcement from .S. Node S can increase the
transmission power to bypass node f to broadcast the announcement.

more nodes. It is obvious that the above game rules can be
applied directly. In the second case when node ¢ participates
in routes with one of the routes of exactly 2 hops, and
degin (i) > 3, both the announcement from the source of the 2-
hop route and the aggregate announcements from the sources
of the rest of the routes serve as the final announcements.
We note that the intersection of the aggregate announcements
will do the incrimination on a certain node. The node that
does not tell the truth can be determined by majority voting
method. Finally, for the case where node ¢ participates in the
routes which have more than 2 hops and deg;, (i) > 4, the
sources can form two groups and use the previous game of
rule. The lying node will be detected using majority voting.
In summary, any potential deviation in the network satisfying
the conditions of Theorem 3 can be detected. Moreover, the
game rules guarantee that any feasible rational utilities can be
enforced. ]

We note that from the announcement forwarder perspec-
tive, it faces two scenarios, namely either the announcement
contains negative information about the forwarder itself or it
contains negative information about the other nodes. In the first
case, the forwarding node may not forward the announcement,
however, even though that node itself does not forward the
announcement, there is only a small probability that the
announcement does not go through the whole network as
illustrated in Figure 3. Moreover, the condition that every node
is monitored by at least 2 nodes indicates that the illustrated
case is less probable. In the second case, the forwarding
nodes do not have any immediate gain for not forwarding the
announcement, i.e., the forwarder is indifferent of forwarding
the announcement. However, the forwarding nodes are better-
off to forward the truthful announcement in order to catch
and punish the deviating node. Otherwise, the forwarding
nodes may also become the victims of the deviation in the
future. Moreover, the announcement consumes much lower
energy compared to the packet transmission itself. Hence, by
indifferent we meant, each node is better off while making
a truthful announcement, which will consume just a small
portion of the energy transmission rather than a bigger loss
when it is deviated by the deviating node.

Based on different information structures, analyses in Sec-
tion ITI-A and Section III-B guarantee that any individually
rational utilities can be enforced under some conditions.
However, the individual distributed nodes need to know how to
cooperate, i.e. what the good packet forwarding probabilities
are. In the next section, we describe the learning algorithms
to achieve better utilities.
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IV. SELF-LEARNING ALGORITHMS

From Section III, any Pareto dominant solutions better
than one stage NE can be sustained. However, the analysis
does not explicitly determine which cooperation point to be
sustained. In fact, the system can be optimized to different
cooperating points, depending on the system designer choices.
For instance, the system can be designed to maximize the
weighted sum of the average infinitely repeated game’s utilities
as follow

Teys = > w(i)U,

N
where Zw(z) =1 (24
i=1 i=1

In particular, when w(i) = 4, Vi, maximize the average utility
per nodes is usually employed in network optimization

N
T 7 i U(i)
sys — N Z o0 *
=1

We use (25) as an example, but we emphasize that any
system objective function can be incorporated into the learning
algorithm in a similar way. From individual point of view, as
long as the cooperation can generate a better utility than the
non-cooperation, the autonomous node will participate. More-
over, any optimization other than the system optimization can
be monitored by the other nodes as deviation. Consequently,
the punishment can be explored in the future.

The basic idea of the learning algorithm is to search itera-
tively the good cooperating forwarding probability. Similar to
the punishment design, we consider the learning schemes for
different information availability, namely, the perfect observ-
ability and the local observability. In parallel with the system
model in Section II, we consider the time-slotted transmis-
sion that interleaves the learning mode and the cooperation
maintenance mode as shown in Figure 1. In the learning
mode, the nodes search for better cooperating points. In the
cooperation maintenance mode, nodes monitor the actions of
other nodes and apply punishment if there is any deviation.
In the learning mode, the nodes have no incentives to deviate
since they do not know if they can get benefits. So they do
not want to miss the chance of obtaining the better utilities
in the learning mode. It is also worth mentioning that if a
node deviates just before a learning period, it will still be
punished in the following cooperation maintenance period. So
the infinite repeated game assumption is still valid in this time
slotted transmission system.

(25)

A. Self-learning under the perfect observability

Under the perfect observability information structure, every
node is able to detect the deviation of any defecting node,
and observe which nodes help forwarding others’ packets.
This fact implies that every node is able to perfectly predict
the average efficiencies of other nodes and optimize the
cooperating point based on the system criterion (25). The basic
idea of the learning algorithm is to use the steepest-descent-
like iterations. All nodes predict the average efficiencies of the
others and the corresponding gradients. The detailed algorithm
is listed as in Table I. Learning with perfect observability
assumes the perfect knowledge of utility functions of all nodes
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TABLE I
SELF-LEARNING REPEATED-GAME ALGORITHM UNDER PERFECT
OBSERVABILITY

For node i: Given &_;, small increment J3,
and minimum forwarding probability au,p
Iteration: t =1,2,- -
Calculate VU g5 (@(t — 1))
Calculate @(t) = @(t — 1) — BVUys(@(t — 1))
Select «;(t) = min {max {[&(¢)];, ¥min}, 1}

in the network, and represents the best solution that any
learning algorithm can achieve.

B. Self-learning under the local observability

In this subsection, we focus on the learning algorithm with
the information structure available under local observability.
Under this condition, the nodes may not have the complete
information about the exact utility of others. Based on this
information structure, we develop two learning algorithms.
The first algorithm is called learning through flooding. The
second algorithm makes prediction of the other nodes’ stage
efficiency based on the flows that go through the predicting
node. We called the second algorithm as learning through
utility prediction.

1) Learning through Flooding: The basic idea of the learn-
ing algorithm is as follow. Since the only information the node
can observe is the effect of changing its forwarding probability
onto its own utility function. The best way for the nodes to
learn the packet forwarding probability is to gradually increase
the probability and monitor if the utility function becomes
better. If the utility becomes better, the new forwarding
probability will be employed. Otherwise, the old forwarding
probability will be kept. The algorithm lets all nodes change
their packet forwarding probabilities simultaneously. This can
be done by flooding the instruction for changing the packet
forwarding probability. After changing the packet forwarding
probability, the effect propagates throughout the network. All
nodes wait for a period of time until the network becomes
stable. At the end of this period, the nodes obtain their new
utilities. If the utilities are better than the original ones, then
the new packet forwarding probabilities are employed. Other-
wise, the old ones are kept. We note that the packet forwarding
probability increment is proportional to the increase in the
utility function: the nodes with higher increment in their utility
functions increase their forwarding probability more compared
to the nodes with lower utility increment. Here, we introduce
the normalization factor U"*~1(a!™1) (the utility before
changing the forwarding probability) in order to keep the
updates in forwarding probability bounded. The forwarding
probability increment depends on small increment constant 7
and the normalization factor. The above process is performed
until no improvement can be made. The detailed algorithm is
shown in Table II.

We note that the time until the network is stable is defined
as the time until all of the nodes do not observe fluctuations
in their utility functions as the result of flooding/changing
forwarding probabilities in the previous round. In practice,
this waiting time can be either predefined or adjusted online as
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TABLE II
SELF-LEARNING REPEATED-GAME ALGORITHM (FLOODING)

Initialization: ¢ = 0
aﬁ = ag, Vi. Choose small increment &, 7).
Iteration: t = 1,2, -
Calculate U= (al™t) and UM+l +¢),
Calculate AU =1 = @:t=1(g!=1 4 ¢)
_U(i),t—1(a§—1)’
For each 4 such that AU®:t=1 > (),

t_ -1 AUt
ai =q,  + nU(iM*l(a;*l)’

al = max(min(at, 1), amin)-
End when: No improvement.
Keep monitoring the deviation
Start punishment scheme if there is a deviation

follow: Depending on the size of the network, a waiting period
will be set in each node. If the node observes that its utility
function fluctuates more than the preset period of time, that
node can propose to prolong the preset time in the next round
of flooding, otherwise the old preset waiting time is employed.
When a node observes requests to prolong the waiting time,
it sets the maximum of the broadcasted waiting times and
its own waiting time as the current waiting time. In this
way, nodes will wait until the effect of changing forwarding
probability propagates to the whole network before the next
flooding (changing of forwarding probability) happens. The
maximum delay can also be set to keep the delay time
bounded.

2) Learning with utility prediction: In this second ap-
proach, we observe that some of the routing information can
be used to learn the system optimal solution (25). We assume
that the routing decision has been made before performing the
packet forwarding task. For instance, in the route discovery
using Dynamic Source Routing (DSR) [12] algorithm without
route caching, the entire selected route is included in the
packet header in the packet transmission. The intermediate
nodes use the route (in packet header) to determine to whom
the packet will be forwarded. Therefore, it is clear that the
transmitting node knows where the packet goes through, the
relaying nodes know where the packet comes from and heads
to, and the receiving node knows where the packet comes
from. The nodes use this information to predict the utilities of
others’ nodes. We note that because not all nodes are involved
in all of the flows in the network, the utility prediction may
not be perfectly accurate. But from the simulation results,
the performance degradation is minimal since only the nearby
nodes matter.

The utility prediction is illustrated using an example shown
in Figure 4, assuming pg,) = 1, K = 1, and d(i, j) = 1. We
denote Ui(j) as the utility of node j predicted by node 7. From
the figure, node 1 receives flows from node 3, and node 4 and
node 4 receives flows from node 1 and node 2. It is obvious
that the flow from node 2 to node 4 is not perceived by node
1. Hence, the utilities of node 2 and node 3 predicted by node
1 are not the accurate ones. Similarly, the flow from node 3
to node 1 is not perceived by node 4. Therefore, Uf) and
U f’) are not accurate. The accuracy of the prediction depends
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U indicates the utility of node j predicted by node i

Fig. 4. Example for learning with utility prediction.

on the flows. If all flows involving node ¢ pass through node
j then U ;l) will be accurate and vice versa as illustrated in
Figure 4. However, as we show by simulations the inaccuracy
in the prediction does not affect the results of optimization
too much.

Since the objective of the optimization is to achieve the
system optimal solution (25), the best node ¢ can do is to find
the solution that minimizes the total average predicted utility
function, which is

mm—Z] 1U(j( (1) = ,dZ(N)), (26)

St Qi < &) < 1,5,
where dgj ) is the packet forwarding probability that node
j should employ as predicted by node ¢. The detailed of
the algorithm is presented as in Table III. The algorithm in
Table III imitates the steepest-descent algorithm based on
the predicted utility, where every node finds the gradient
of the predicted utility and optimizes the predicted system
utility (26). After obtaining {&(?}, each node sets its own
packet forwarding probability as of = A(l) . We note that the
optimization problem (26) can be done in a distributed manner,
since the optimization does not require the global knowledge
of the utility function. Each node does the optimization based
on its own prediction and sets its packet forwarding probability
according to the optimized predicted average utility.

Finally, we discuss how to handle the mobility of nodes.
We note that the scheme will work well in moderate node
mobility when the neighbors of each node do not change
very often. Under this condition, the long-term relationship
between nodes can be established by means of the repeated
game and reputation announcement as described in Section
III. As a result, the cooperation can be learned and enforced.

Obviously, the long-term relationship may be hard to estab-
lish in the case where there is a node that deviates in one part
of the network, moves quickly to the other part of the network,
deviates again and so on so forth. In this case, there are two
possible solutions. First, when the node moves to a new place,
in order for the node to transmit, some background check is
necessary. This can be done in two ways: first, if the nearby
nodes can share the announcement, then the neighbors of the
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TABLE III
SELF-LEARNING REPEATED-GAME ALGORITHM WITH UTILITY
PREDICTION

Initialization: ¢ = 0

agi)’t = v, V1, j. Choose small increment (.
Iteration: t = 1,2, -
For eachnode j =1,--- ,N

Calculate
(1) (M _ o, v oy N U
[Vj ,'..,Vj ]— Nal(l)]t S, NaJ(N)t
Calculate agz) LN OR 1 n CV
Set agl)v _ max(mm(ag ),t’ 1)7 OémZn).
End when:

No improvement and return a( Q.

Keep monitoring the deviation, and go to
punishment scheme whenever there is a deviation.

VZJ

node can obtain the announcement from the node’s previous
neighbors. And the new neighbors will know the reputation
of this new node. The analogy of this case in the real life is
when someone applies for a new job, the new employer always
asks for the references from the old employers. And both
employers can work harmoniously in a distributed manner.
In the literature, the above idea is implemented in the trust
establishment for ad hoc network such as [16].

The other solution is by increasing the sampling of the
learning algorithm. As long as the node mobility does not
change the relationship between neighboring nodes drastically,
the effect of mobility to the learning algorithm can be lever-
aged by putting more frequent learning period in the slotted
transmission as in Figure 1. This case is similar to tracking
non-stationary channel; the faster the channel changes the
more frequent the training sequence transmission is required.

V. SIMULATION RESULTS

To investigate effectiveness of our proposed framework, we
perform simulations with the following settings. We generate
two networks with 25 nodes: the ring-25 network and random-
25 network. The ring-25 network consists of 25 nodes that
are arranged in a circle with radius 1000m. The random-25
network consists of 25 nodes that are uniformly distributed in
the area of 1000 x 1000m. We define the maximum distance
dmaz, such that two nodes are connected if the distance
between two nodes is less than d,,,4,.. We select the maximum
distance between two nodes to ensure connectivity of the
whole network. In the ring-N network the angle separation
between two neighboring nodes is W And, the distance
between two neighboring nodes is 2r sm(;’\}) where 7 is the
radius of the circle. In particular, the maximum distance for
the ring-25 network can be calculated as 2000 sin (50)m =
250.7m. In the random-25 network, the maximum distance
between two nodes is 350m to ensure connectivity of the
whole network with a high probability.

We also define the flows as source-destination (SD) pairs.
We assume that the routing decision has been made before
performing packet forwarding optimization. The shortest path
routing is employed in the simulations. In the random-25
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Fig. 5. Punishment of repeated game in the ring network and the random
network.

network, we vary the number of SD pairs. When there are
traffic flows from all nodes to all other nodes, we called this
traffic as dense flow that implies that each node has packets
destined to the rest of nodes in the network. Obviously, the
dense flow has NV x (N —1) SD pairs in the N-node network.
When the total flow is less than the dense flow, the SD pairs
are determined randomly. In the ring-25 network, the number
of SD pairs is defined in the following way. The (K - N) SD
pairs are obtained when every node ¢ sends packets to nodes
({mod(i+2,25), -+ ,mod(i + K + 1,25)}. For instance, 25
SD pairs are obtained when every node ¢ transmits packets
to node mod(i + 2, 25), 50 SD pairs are obtained when every
node 7 sends packets to nodes {mod(i+2, 25), mod(i+3, 25)},
etc. The rest of the simulation parameters are given as follows,
transmission rate of source ¢ as p; = 1, Vi, transmission
constant K = 1, distant attenuation coefficient v = 4. We
compare three learning algorithms according to the informa-
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Fig. 6. Learned average efficiency per node for different traffic loads in the
ring network.

tion availability. The parameters for the learning algorithms
are listed as follows 0 = 0.05, £ = 0.001, n = 1.0, and
¢ = 0.05. The minimum forwarding probability is set to be
Qmin = 0.1 and the maximum forwarding probability is set
to be amqe, = 1. Finally, all algorithms are initiated with
agp = 0.5,Vi. We note that in the following simulations, we
employ the average efficiency per node defined in (25) as our
performance metric.

Figure 5(a) shows the average efficiency of the deviation
node in the ring-25 network when the number of source-
destination is 75 with the discounted factor § = 0.9. In the
figure, node 3 deviates at time instant 10. This deviation causes
the stage efficiencies of node 1, 2 and 25 become lower. From
the route, node 1, node 2 and node 25 suspect that nodes
in {2,3,4}, {3,4,5} and {1, 2,3} are deviating, respectively.
The nodes in the network know that node 3 is consistent to
be incriminated for deviation and start the punishment stage
(Here, the punishment period is set to 3). The punishment
scheme results in lower average stage efficiency as described
in Figure 5(a). From the figure, the average efficiency without
deviation is better than the average efficiency with deviation.
It is clear that it is better off for node 3 to conform to the
previously agreed cooperation point. As the result, no node
wants to deviate, since the deviation results in worse average
efficiency. Similarly, Figure 5(b) shows the average utilities of
deviating node and other nodes in the random network with
16 nodes with the discounted factor 0.9. At time instant 11,
node 10 in the network deviates. At the next time instant, all
related nodes that detect deviation exchange the list of the
incriminated nodes. The consistent incriminated node (in this
case node 10) is punished for a certain period of time (in this
figure, 8 period of time). From the figure, it is clear that node
10 will have higher average efficiency when it conforms. So
from Figure 5(a) and Figure 5(b), the proposed repeated game
can enforce the cooperation among autonomous greedy nodes.
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Fig. 7. Learned average efficiency per node for different traffic loads in the

random network.

Figure 6 and Figure 7 show the learning curves for the
proposed self-learning repeated-game scheme for the ring-
25 network and the random-25 network, respectively. In the
figures, we compare the optimal solution, learning with perfect
observability, learning with flooding, and learning with utility
prediction. In Figure 6, all of the algorithms achieve the
system optimal value when the source-destination pairs are
100, 200, and 275. The learning with perfect observability
and the learning with utility prediction have approximately the
same convergence speed. The learning with flooding converges
slower, since the learning with flooding does the trial-and-
error to find the better forwarding probabilities. This unguided
optimization although requires minimal information has the
inferior convergence speed. Figure 7 shows the learning curves
of the proposed algorithms for random-25 network with differ-
ent source-destination pairs. One can observe that the learning
with utility prediction achieves very close efficiency per node
compared to the optimal solution and learning with perfect
observation. In contrast, the learning with flooding achieves
inferior efficiency per node.

Figure 8(a) shows the learned average efficiency per node
for the various algorithms with different traffic flows in
the ring-25 network. The efficiency becomes lower as the
number of source-destination pairs become larger. This can be
explained as follows. Because of the symmetric property of
the utility functions, the local optimal forwarding probabilities
for all nodes are the same. It can be easily shown that the local
optimal forwarding probabilities in the ring-25 network is 1
for all nodes?. Therefore, the larger the number of source-
destination pairs, the more packets a node needs to forward

2This is not true in the random network in general.
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and the higher value of the denominator of the stage utility
function in (7). As the result, the average efficiency per
node decreases as the number of source-destination increases.
Using simple calculation, it can be shown that the average
efficiency per node decays is (Nsd/N+0_5*(JJ\&S‘Z//I;[VH)*(NM/N),
where V44 is the number of source-destination pairs. In Figure
8(a), all learning algorithms perform similarly for the different
numbers of source-destination pairs.

Figure 8(b) shows the achievable efficiency per node after
the learning algorithms converge for different numbers of
source-destination pairs in the random-25 network. We ob-
serve that the learning with utility prediction achieves very
close efficiency compared to the learning with perfect obser-
vation and the optimal solution. The learning with flooding
achieves lower efficiency per node, but still achieves much
better efficiency compared to the Nash Equilibrium. In aver-
age, the learning with utility prediction achieves around 99.2%
of the efficiency achieved by the optimal solution. In contrast,
the learning with flooding achieves more than 73.18% of the
optimality.

Comparing Figure 8(a) and 8(b), we can see that the
learning with flooding performs well in the ring-25 network
but inferior in the random-25 network. The reason for this
phenomenon is that in the ring-25 network, the utilities of all
nodes are symmetric and optimizing the system criterion (25)
results in the same average efficiency in each node. Since the
learning with flooding tries to increase its node’s efficiency
by changing its own forwarding probability synchronously,
this iteration will finally reach the point where all nodes’
efficiencies are the same due to the symmetric structure of
the network. This solution is coincidentally the same as the
solution of the system criterion (25) optimization. In contrast
to the ring-25 network, the utility functions for each node are
highly asymmetric in the random-25 network. In this case, the
node that firstly reaches a better solution will not change its
forwarding probability, even though changing its forwarding
probability results in slightly lower efficiency in that particular
node but increases the other nodes’ efficiencies significantly.
Due to this greedy and unguided optimization, the learning
with flooding achieves inferior average efficiency per node,
compared to the learning using utility prediction which obtains
information from routing information and performs better
learning.

Next, we investigate the performances of the learning al-
gorithms in the dense flow with different number of nodes in
the random network. Table IV shows the average efficiency
per node (25) for different sizes of the network normalized
with the average efficiency obtained by the optimal solution.
We can observe that as the number of nodes increases, the
optimal average efficiency per node decreases. This is because
the total power required for self-transmission and packet-
forwarding increases much faster compared to the successful
self-transmission power, as the number of nodes increases.
Therefore, the stage utility for each node (7) decreases as
the number of nodes increases in the dense flow. As the
result, the average efficiency per node decreases as the node
increases. We also observe that the learning with utility
prediction achieves 96% ~ 100% of the average efficiency
per node achieved by the optimal solution for various sizes
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TABLE IV
NORMALIZED AVERAGE EFFICIENCY PER NODE FOR DIFFERENT NODES IN THE RANDOM NETWORK WITH DENSE TRAFFIC

| Number of nodes ] 9 | 6 [ 25 ] 3 | 49 [ 6 [ 8 |
Average efficiency per node 0.7438 0.7581 0.5930 0.5574 0.5629 0.5316 0.4916
(Optimal solution)
Normalized learning 99.63% | 99.91% | 99.39% 100% 100% 100% 99.94%
perfect observability
Normalized learning 84.79% | 71.45% | 72.81% | 65.36% | 68.56% | 58.21% | 59.40%
using flooding
Normalized learning 100% 97.91% | 98.98% | 99.27% | 96.59% | 99.88% | 96.70%
using utility prediction

of the network. On the other hand, the learning with flooding
achieves 60% ~ 85% of the average efficiency obtained by
the optimal solution. We note that the learning using flooding
achieves lower efficiency as the number of nodes is larger,
this is due to the unguided optimization. As the number
of nodes becomes larger, it is more probable to get into
the situation where only small portion of nodes have high
efficiency but the rest have very low efficiencies. In contrast,
the performance of learning using utility prediction slightly
decreases but achieves a very close performance compared
to the learning with perfect observability for various sizes of
the network as shown in Table IV. The decrease is because
as the number of nodes becomes larger, the utility prediction
becomes less accurate.

VI. CONCLUSIONS

In this paper, we propose a distributed mechanism for
enforcing and learning the cooperation points among selfish
nodes in wireless networks. Our proposed scheme consists
of a repeated-game framework to enforce cooperation and
learning algorithms to search for better cooperation points.
From the analysis and simulations, we show that our proposed
framework is very effective to enforce cooperation among
greedy/selfish nodes. In practice, selfish nodes with local
information may not know how to cooperate even though
they are willing to do so. We propose learning algorithms
to guide the distributed nodes to find better cooperating
points. Depending on the information structures, the proposed
learning algorithm by flooding and with utility prediction
achieve 60% ~ 85% and 96% ~ 100% of the efficiency that
is obtained by the optimal solution with global information
and centralized optimization.
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