
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019 2665

Online Convex Optimization With Time-Varying
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Abstract—In this paper, online convex optimization prob-
lem with time-varying constraints is studied from the per-
spective of an agent taking sequential actions. Both the ob-
jective function and the constraint functions are dynamic
and unknown a priori to the agent. We first consider the
scenario of the gradient feedback, in which, the values and
gradients of the objective function and constraint functions
at the chosen action are revealed after an action is sub-
mitted. We propose a computationally efficient online algo-
rithm, which only involves direct closed-form computations
at each time instant. It is shown that the algorithm pos-
sesses sublinear regret with respect to the dynamic bench-
mark sequence and sublinear constraint violations, as long
as the drift of the benchmark sequence is sublinear, or in
other words, the underlying dynamic optimization problems
do not vary too drastically. Furthermore, we investigate the
scenario of the bandit feedback, in which, after an action
is chosen, only the values of the objective function and
the constraint functions at several random points close to
the action are announced to the agent. A bandit version
of the online algorithm is proposed and we also establish
its sublinear expected regret and sublinear expected con-
straint violations under the assumption that the drift of the
benchmark sequence is sublinear. Finally, two numerical
examples, namely online quadratic programming and on-
line logistic regression, are presented to corroborate the
effectiveness of the proposed algorithms and to confirm
the theoretical guarantees.

Index Terms—Bandit feedback, constrained optimization,
online convex optimization (OCO), stochastic optimization.

I. INTRODUCTION

IN THE last decade, online convex optimization (OCO) has
emerged as a promising paradigm and methodology for many

signal processing and control problems [1], [2]. Unlike the tradi-
tional static optimization problems [3], [4], OCO is a sequential
decision making procedure of an agent, who needs to choose an
action at each time. The time-varying objective function and/or
constraint functions are unknown to the agent a priori. Only
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after an action is chosen and submitted, (possibly partial) feed-
back information of the current objective/constraint functions
is revealed to the agent. Due to this lack of information, it is
impossible for OCO algorithms to find the exact optimal point
at every time instant. Rather, a major criterion of OCO algo-
rithms is regret, i.e., the performance gap between the actions
induced by the algorithm and some offline optima or benchmark
in hindsight. A sublinear regret is generally regarded as a good
performance because it implies that, in terms of time average,
the performance of the algorithm is no worse than that of the
benchmark asymptotically. Such an OCO framework arises in
many applications, in which, the underlying time-varying sys-
tem is subject to uncertainty. Examples include smart grids with
uncertain supply of renewable energy [5], [6] and data centers
with uncertain user demands [7]–[9].

In [10], Zinkevich initiated the study of unconstrained OCO
problems and proposed an online gradient descent algorithm,
which possessed a sublinear regret of O(

√
T ) (T is the length of

the time frame). The regret was further reduced to be O(log T )
by several online algorithms presented in [11]. While the offline
benchmark was static in [10] and[11], dynamic benchmarks
were adopted in [12]–[14], where algorithms with sublinear re-
grets were presented. In particular, improved regret bounds were
developed for dynamic benchmarks in [14] under the assump-
tion of strongly convex loss functions. In [10]–[12], each time
after an action is submitted, the gradient of the objective func-
tion at the chosen action is revealed, i.e., the agent receives the
gradient feedback. This assumption is too restrictive for many
applications, in which, gradients of the objective function are
hard to obtain. Instead, in these applications, only values of the
objective function at the chosen action or several points near the
action may be announced to the agent. This information sce-
nario is called bandit feedback. For instance, after making an
investment, a portfolio manager may only know the return of
this particular investment choice and is unaware of the gradient
of the return. Such a bandit version of the OCO problem was
studied in [15] for the single-point bandit feedback and an algo-
rithm with O(T

3
4 ) regret was proposed. Later, algorithms with

better regret performances were proposed in [16] for the multi-
point bandit feedback. Moreover, the OCO with action switching
costs and noisy predictions of objective functions was analyzed
by Chen et al. in [17] and [18].

The aforementioned papers were concentrated on the uncon-
strained OCO, while many practical optimization problems in-
volved constraints. This discrepancy motivated several works
on the constrained OCO. In [19], the constrained OCO with
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time-invariant constraints was studied by Mahdavi et al.. The
OCO with affine equality constraints was investigated in [20]
by using an online version of alternating direction method of
multipliers (ADMM), while distributed OCO problems over net-
works with consensus or proximity constraints were analyzed by
Koppel et al. in [21] and [22], respectively. In addition, an online
linear optimization problem was treated under either the gradi-
ent feedback or the bandit feedback in [23]. The constraints of
the OCO in all these works were time invariant and known in
advance. Thus, no feedback information associated with con-
straints was necessary. The constrained OCO with time-varying
constraints was studied by Paternain and Ribeiro in [24] for the
static optimal benchmark. Furthermore, constrained OCO with
time-varying constraints and dynamic benchmark sequence was
studied in [25] recently. There, complete feedback information
of the time-varying objective function and constraint functions
was needed and a modified online saddle point algorithm was
presented, which necessitated solving an optimization problem
at each time instant. These limitations made the algorithm of
[25] computationally inefficient and not suitable for the bandit
feedback. Recently, another line of research related to OCO was
a class of prediction–correction methods for time-varying opti-
mization [26]–[28]. Different from OCO, prediction–correction
methods needed information of the current objective/constraint
functions to update the decision variables in the correction step,
which prohibited their direct application to OCO. Besides, the
implementation of prediction–correction methods were more
computationally demanding than most OCO algorithms since
(inverse) Hessian matrices of the objective/constraint functions
were needed.

Therefore, in this paper, we are motivated to design and ana-
lyze computationally efficient algorithms for constrained OCO
with time-varying constraints in the scenarios of both gradient
feedback and bandit feedback. Specifically, our main contribu-
tions are summarized in the following.

1) For constrained OCO with time-varying constraints and
gradient feedback, we propose a computationally efficient
online algorithm (Algorithm 1), which only involves di-
rect closed-form computations at each time instant and
is amenable to a bandit setting with some modifications.
We theoretically establish that Algorithm 1 achieves sub-
linear regret and sublinear constraint violations simulta-
neously as long as the drift of the dynamic benchmark
sequence is sublinear, or in other words, the underlying
dynamic optimization problem does not vary too drasti-
cally across time (Theorem 1). In such a case, both the
time average regret and the time average constraint vio-
lations are asymptotically nonpositive.

2) For constrained OCO with time-varying constraints and
bandit feedback, we propose an online algorithm (Algo-
rithm 2) based on appropriate approximations and mod-
ifications of Algorithm 1. Sublinear expected regret and
sublinear expected constraint violations are also demon-
strated under the assumption of the sublinear drift of the
benchmark sequence (Theorem 2). In other words, the
time average expected regret and the time average ex-
pected constraint violations are asymptotically nonposi-
tive.

3) Two numerical examples, namely online quadratic pro-
gramming (OQP) and online logistic regression (OLR)
are presented to corroborate the effectiveness of the pro-
posed algorithms. We observe that, in both examples, as
time progresses, the time average regrets converge to zero
and the time average constraint violations become neg-
ative under both gradient feedback and bandit feedback.
This confirms the theoretical guarantees in Theorems 1
and 2.

The rest of this paper is organized as follows. In
Section II, constrained OCO with time-varying constraints is
formally formulated for both gradient feedback and bandit feed-
back. In Sections III and IV, we propose and analyze algorithms
for scenarios of gradient feedback and bandit feedback, respec-
tively. Numerical experiments are presented in Section V, fol-
lowing which we conclude this study in Section VI.

II. PROBLEM FORMULATION

In this section, we formulate OCO problems with time-
varying constraints. Based on different form of feedback in-
formation, we consider two scenarios: gradient feedback and
bandit feedback. The performance metrics in terms of objective
function values and constraint violations as well as the pertinent
assumptions and preliminaries are also presented.

A. Gradient Feedback

The classical unconstrained OCO problem can be described
as the following iterative procedure between an agent and the
nature [10]. Assume that time is discrete. At each time slot t, the
agent selects an action xt ∈ Rn from the action set X ⊂ Rn .
After the action xt is chosen, the nature announces the gradient
of the loss function ft : Rn �→ R at xt , i.e., ∇ft(xt), to the
agent, who experiences a loss of ft(xt) at time slot t. Such a
scenario is called the gradient feedback as the agent obtains
gradient information about the loss function after the action is
chosen. The goal of the agent is to minimize the total loss over
certain time frame. The action set X is known in advance to the
agent before the OCO procedure starts and remains unchanged
as the procedure progresses.

This classical OCO formulation, though being useful in many
situations, cannot deal with problems with constraints [19] and
especially time-varying constraints [24], [25], which naturally
arise in many practical applications. For instance, in smart grids,
with the high penetration of renewable energy such as solar
power and wind power, the energy supply can be very uncer-
tain and hard to predict. Thus, the controller of the power grid
often needs to schedule the electricity power with time-varying
and uncertain power supply in a real time manner, which can
be posed as online optimization problems with time-varying re-
source constraints [5], [6]. Therefore, in this paper, we are mo-
tivated to study constrained OCO problem with time-varying
constraints. Specifically, at each time t, after the agent chooses
an action xt ∈ X , the nature will announce not only ∇ft(xt),
but also the value and gradients of a vector-valued constraint
function gt : Rn �→ Rm at xt , i.e., gt(xt) and ∇gt(xt) (Jaco-
bian matrix), to the agent. The agent wants to minimize the loss
ft(xt) while satisfying the time-varying constraints gt(xt) � 0,
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which is equivalent to the computation of x∗
t defined as follows:

x∗
t ∈ arg min

x∈X
{ft(x)|gt(x) � 0}. (1)

However, solving problem (1) directly to choose action xt is
impossible in the online setting, here, as the loss function ft(·)
and constraint function gt(·) are unknown before the action
xt is chosen. In particular, since gt(·) is unknown a priori,
the constraint gt(xt) � 0 is hard to be satisfied in every time
slot t. Rather, the agent tries to satisfy the constraints in the
long run. In other words, the agent wants to ensure the long-
term constraint of

∑T
t=1 gt(xt) � 0 over some given period of

length T . This type of long-term constraint is appropriate in
many applications. For example, in a smart grid with renewable
energy sources, the grid controller wants to balance the power
demand by the renewable energy supply. Due to the uncertainty
of renewable energy, the controller cannot depend on it solely.
Instead, the controller needs to reserve some traditional energy
(e.g., coal and gas) to balance the temporary deficit of the power
supply from renewable energy. When the renewable energy has
surplus, the controller uses it to compensate the consumption
of traditional sources. As long as the renewable energy supply
and the power demand can be balanced in the long run, i.e.,
the controller does not need to infuse more and more traditional
energy into the grid in the long term, the controller should be
regarded as successful in operating a smart grid powered by
renewable energy.

Therefore, the goal of the agent becomes to minimize the
total loss

∑T
t=1 ft(xt) subject to the long-term constraint

∑T
t=1

gt(xt) � 0, which can be casted into the following optimization
problem:

Minimizex1 ,...,xT ∈X
T∑

t=1

ft(xt)

s.t.
T∑

t=1

gt(xt) � 0. (2)

Solving problem (2) exactly is still impossible in the online
setting, here, as the information about the loss functions and
constraint functions is unknown a priori. Instead, our goal is to
obtain a total loss

∑T
t=1 ft(xt) that is not too large compared

to some benchmark and meanwhile, to ensure that
∑T

t=1 gt(xt)
is not too positive, i.e., the long-term constraint is not violated
too much. As our original goal is to select the action xt ac-
cording to the solution of the problem (1), we choose {x∗

t}T
t=1

as the benchmark sequence and the first performance criterion
is the regret with respect to the benchmark, which is defined
as Reg(T ) :=

∑T
t=1[ft(xt) − ft(x∗

t )]. The second performance
metric is the constraint violation Vioi(T ) :=

∑T
t=1 gi

t(xt), i =
1, . . . , m, where gi

t (·) is the ith component of the vector-valued
constraint functiongt(·), i.e.,gt(x) = [g1

t (x), . . . , gm
t (x)]T. We

note that the aforementioned definitions of regret and constraint
violations are prevalent and widely accepted in the literature
of OCO [1], [2]. An ideal action sequence should possess both
small regret and small constraint violations. More precisely, the
regret and the constraint violations should be sublinear with
respect to T , i.e., Reg(T ) ≤ o(T ) and Vioi(T ) ≤ o(T ) ∀ i =
1, . . . , m. Hence, as T goes to infinity, Reg(T )

T ≤ o(1) → 0 and

Vioi (T )
T ≤ o(1) → 0. This means that, as the time length T goes

to infinity, the time-average regret Reg(T )
T and the time-average

constraint violation Vioi (T )
T either converge to zero or converge

to some negative numbers so that the performance of the se-
quence {xt} is no worse than that of the benchmark sequence
{x∗

t} in terms of asymptotic time average. Furthermore, we
note that another possible pair of definitions of regret and con-
straint violations are R̃eg(T ) =

∑T
t=1[ft(xt) − ft(x∗

t )]
+ and

Ṽio
i
(T ) =

∑T
t=1[g

i
t (xt)]+ so that negative individual terms do

not contribute to the sum any more, where y+ = max{y, 0}.
Nevertheless, these definitions of regret and constraint violations
are hard to handle and seldom used in the literature of OCO. The
corresponding sublinearity is difficult, if possible, to guarantee.
Thus, we do not consider these definitions in this paper.

A similar constrained OCO problem with time-varying con-
straints has been investigated in [25] recently. There, to facilitate
performance analysis, the authors propose a modified online
saddle point (MOSP) algorithm in which the primal update is
not an exact gradient descent of the Lagrangian. Instead, at
each time t, the primal update needs to solve an optimization
problem associated with the time-varying constraint function
gt−1(·). This can be unfavorable due to the following two rea-
sons. First, solving a nonlinear optimization problem (which
generally does not admit closed-form solution) at every time
instant is computationally demanding, especially, for devices
with low computational capability such as the cheap sensors
massively deployed in sensor networks. Second, at time t, to
perform update, the agent needs the complete information about
the function gt−1(·) rather than its gradient at a particular point,
rendering the approach not amenable to a bandit version of
the problem [15], which we will discuss more in the next sub-
section. We are, thus, aimed at proposing a computationally
efficient online algorithm for the constrained OCO problem and
analyzing its performance in terms of regret and constraint vi-
olations, which are detailed in Section III. Later in Section IV,
we demonstrate that, with some approximations, the proposed
algorithm can be modified to accommodate the scenario of the
bandit feedback.

B. Bandit Feedback

In the previous subsection, we formulate the constrained OCO
with the gradient feedback, i.e., values and gradients of the loss
function ft(·) and the constraint function gt(·) at xt are re-
vealed to the agent after the action xt is chosen. However, in
many practical applications, even after xt is chosen, the agent
still cannot access the gradients of the functions ft(·) and gt(·).
Instead, the agent only knows the values of ft(·) and gt(·) at the
particular point xt or several points close to xt . Such an infor-
mation feedback scenario is called bandit feedback, which has
broad applications. For instance, consider the portfolio manage-
ment problem with uncertain return. At time t, after the manager
makes an investment decision xt , the nature (e.g., the stock mar-
ket) will decide the loss (or negative profit) function ft(·) and
the manager will incur a loss of ft(xt). Afterwards, the manager
may only know the incurred loss ft(xt) or the values of the loss
function ft(·) at several points close to xt (based on the incurred
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loss ft(xt), the manager or expert may be able to predict the
loss if certain small changes to the investment xt are made, e.g.,
increasing slightly the investment of the stocks of a company
with stable behaviors recently). Nevertheless, the manager may
not know the gradient ∇ft(xt) accurately because she does not
have access to all the evaluations of ft(·) in the neighborhood
of xt . Similar arguments hold for the constraint function gt(·).

One challenge of the bandit feedback is that the agent cannot
evaluate the gradients of the loss function and the constraint
functions directly. Instead, the agent has to use some stochastic
approximation to substitute these gradients [15], [16]. As
such, the action sequence {xt} involves randomness and the
corresponding definitions of regret and constraint violations are
altered to be their expected version: Reg(T ) := E[

∑T
t=1 ft(xt)]

−∑T
t=1 ft(x∗

t ) and Vioi(T ) := E[
∑T

t=1 gi
t(xt)]. In

Section IV, we will propose an online algorithm for the
constrained OCO problem with the bandit feedback and show
that this algorithm achieves sublinear regret and constraint
violations.

C. Assumptions and Preliminaries

To facilitate later performance analysis, we make the fol-
lowing technical assumptions, all of which are standard in the
literature of OCO [2]. Denote the unit ball in Rn as B and
the unit sphere in Rn as S, i.e., B = {x ∈ Rn |‖x‖2 ≤ 1} and
S = {x ∈ Rn |‖x‖2 = 1}, where ‖ · ‖2 is the l2 norm.

Assumption 1: The action set X is a closed convex set.
Assumption 2: There exists two positive constants R and r

such that rB ⊂ X ⊂ RB.
Assumption 3: The loss function ft and constraint function

gi
t are convex for any i = 1, . . . , m and t = 1, 2, ....

Assumption 4: All loss functions ft and constraint functions
gi

t have uniformly bounded gradients, i.e., there exists some pos-
itive constant G such that ‖∇ft(x)‖2 ≤ G and ‖∇gi

t (x)‖2 ≤ G
for any x ∈ X , i = 1, . . . , m, t = 1, 2, ....

Assumption 5: All constraint functions gt are uniformly
bounded, i.e., there exists some positive constant D such that
‖gt(x)‖2 ≤ D for any x ∈ X , t = 1, 2, ....

Assumption 6: All loss functions ft have uniformly bounded
difference, i.e., there exists some positive constant F such that
|ft(x) − ft(x′)| ≤ F for any x,x′ ∈ X and t = 1, 2, ....

We note that the constant bounds G,D, and F in Assump-
tions 4–6 hold uniformly for all t. These uniform bounds can-
not be implied by simply imposing continuity or continuous
differentiability conditions on each individual function ft and
gt . Furthermore, Assumption 5 cannot follow from Assump-
tions 2–4. Consider a couterexample where n = m = 1 (all
variables are scalar), X = [−1, 1], and gt(x) = t + x for all
x ∈ X , t = 1, 2, .... We do not construct the loss functions {ft}
since Assumption 5 is only related to the constraint functions
{gt}. Clearly, Assumptions 2 and 3 hold. Since g′t(x) = 1 for
any x ∈ X , t = 1, 2, ..., Assumption 4 also holds. However,
Assumption 5 does not hold because supx∈X |gt(x)| = t + 1 →
∞, as t → ∞. In other words, there is no uniform bound for the
function sequence {gt}.

Additionally, the assumption that the origin is contained in
X (c.f., Assumption 2) can be made without loss of generality

as we can always translate X . In essence, we only require that
the action set X contains an interior point. The assumption that
the origin is contained in X is for ease of exposition. In fact,
this assumption is made in most works on OCO with the bandit
feedback, e.g., [15] and [16], to avoid cluttered notations. Next,
we define the projection operator as follows, which will be used
frequently later.

Definition 1: Suppose S is some closed convex set in Rn .
Then, for any y ∈ Rn , the optimization problem arg minx∈S
‖x − y‖2 has unique minimizer, which is called the projection
of y onto the set S and is denoted as ΠS(y).

Thus, according to Assumption 1, ΠX (·) is a well-defined
projection operator. We further notice the following property of
the projection operator [29], which is useful in the performance
analysis.

Lemma 1: Suppose S ⊂ Rn is a closed convex set and ΠS(·)
is the associated projection operator. Then, for any x ∈ S and
y ∈ Rn , we have

‖x − ΠS(y)‖2 ≤ ‖x − y‖2 . (3)

III. CONSTRAINED OCO WITH GRADIENT FEEDBACK

In this section, we develop an online algorithm for the con-
strained OCO problem with gradient feedback, i.e., ∇ft(xt),
∇gt(xt),gt(xt) are revealed to the agent after the action xt is
chosen. The algorithm is computationally efficient as the update
at each time only involves direct closed-form computations. The
algorithm is also amenable to a bandit version of the problem,
which will be detailed in Section IV. Performance analysis of
the algorithm is presented, indicating that the algorithm can
achieve sublinear regret and sublinear constraint violations si-
multaneously.

A. Algorithm Development

Recall the per-slot optimization problem (1). Define the mod-
ified Lagrangian of (1) to be

Lt(x,λ) = ft(x) + λTgt(x) − δη

2
‖λ‖2

2 (4)

where λ is the Lagrangian multiplier; η > 0 is the stepsize of
the algorithm to be used later; and δ is some positive number
to be determined by later analysis. The difference between the
modified Lagrangian in (4) and the classical Lagrangian is the
last term of (4), which is added to prevent λ from becoming too
large. The proposed algorithm is an online saddle point algo-
rithm associated with the modified Lagrangian Lt . Specifically,
the algorithm maintains and updates the primal variable xt and
the dual variable λt as follows. After xt ,λt are chosen, the na-
ture reveals the loss function ft and the constraint function gt

to the agent. Then, the agent will perform a primal descent
step for the modified Lagrangian Lt to obtain the new primal
variable (i.e., the new action) xt+1 as

xt+1 = ΠX (xt − η∇xLt(xt ,λt)) (5)

= ΠX

(

xt − η

(

∇ft(xt) +
m∑

i=1

λi
t∇gi

t (xt)

))

. (6)
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Algorithm 1: The Algorithm for Constrained OCO With
Gradient Feedback.

1: Initialize x1 ∈ X and λ1 = 0.
2: for t = 1, 2, . . . , T do
3: Submit the action xt .
4: Receive the loss function ft(·) and the constraint

function gt(·).
5: Update the primal variable, i.e., the action, according

to (6) to obtain the new action xt+1 .
6: Update the dual variable according to (8) to obtain

the new dual variable λt+1 .
7: end for

The projection onto X is to ensure that xt+1 is a proper action
in the action set. In addition, the agent performs a dual ascent
step for Lt to compute the new dual variable λt+1 as

λt+1 = ΠRm
+

(λt + η∇λLt(xt ,λt)) (7)

= ΠRm
+

(λt + η (gt(xt) − δηλt)) (8)

where Rm
+ denotes the nonnegative orthant, i.e., Rm

+ = {x ∈
Rm |x � 0}. The projection onto the nonnegative orthant is to
make sure that the dual variable is always dual feasible. Based on
the updates specified in (6) and (8), we summarize the proposed
algorithm for the constrained OCO with gradient feedback in
Algorithm 1. We note that the updates (6) and (8) only involve
closed-form computations and do not need to solve any opti-
mization problems, indicating a high computational efficiency
of Algorithm 1.

B. Performance Analysis

Now, we proceed to analyze the performance of Algorithm 1
and show that it can achieve sublinear regret and constraint
violations as long as the drift (to be defined in Lemma 3) of
the benchmark sequence {x∗

t} is sublinear. We first present a
lemma on the evolution of the modified Lagrangian.

Lemma 2: For any x ∈ X , λ � 0, t = 1, 2, ..., we have

Lt(xt ,λ) − Lt(x,λt)

≤ 1
2η

(‖x − xt‖2
2 − ‖x − xt+1‖2

2 + ‖λ − λt‖2
2 − ‖λ − λt+1‖2

2)

+
η

2
(‖∇xLt(xt ,λt)‖2

2 + ‖∇λLt(xt ,λt)‖2
2
)
. (9)

�
Proof: The proof is presented in Appendix A.
Before proceeding, we give a definition of the drift of the

benchmark sequence.
Definition 2: Define Δ(T ) :=

∑T
t=2 ‖x∗

t−1 − x∗
t‖2 to be the

drift of the benchmark sequence {x∗
t}T

t=1 .
Based on Lemma 2, making use of the notion of drift, we can

further bound the gradients of the modified Lagrangian Lt to
obtain the following result.

Lemma 3: For any λ � 0, we have

T∑

t=1

[Lt(xt ,λ) − Lt(x∗
t ,λt)]

≤ 1
2η

(
5R2 + 2RΔ(T ) + ‖λ‖2

2
)

+
ηT

2
[
(m + 1)G2 + 2D2]

+
η

2
[
(1 + m)G2 + 2δ2η2]

T∑

t=1

‖λt‖2
2 . (10)

Proof: The proof is given in Appendix B. �
We are now ready to show that the action sequence generated

by Algorithm 1 possesses sublinear regret and constraint viola-
tions provided that the drift of the benchmark sequence {x∗

t} is
sublinear.

Theorem 1: Suppose the drift sequence {Δ(T ′)}∞T ′=1 is sub-
linear, i.e., limT ′→∞

Δ(T ′)
T ′ = 0. Assume T is large enough

such that Δ(T )
T ≤ 1

2((m+1)G2 +1)2 . Set η =
√

Δ(T )
T and δ =

(m + 1)G2 + 1. Then, we have

T∑

t=1

[ft(xt) − ft(x∗
t )]

≤ 5R2

2

√
T

Δ(T )
+
(

R +
m + 1

2
G2 + D2

)
√

TΔ(T )

= O
(√

TΔ(T )
)

(11)

and for any i = 1, . . . , m

T∑

t=1

gi
t(xt)

≤
√
√
√
√2

(

((m + 1)G2 + 1)
√

TΔ(T ) +

√
T

Δ(T )

)

×

√
√
√
√FT +

5R2

2

√
T

Δ(T )
+
(

R +
m + 1

2
G2 + D2

)
√

TΔ(T )

(12)

= O
(
T

3
4 Δ(T )

1
4

)
. (13)

Proof: Substituting the definition of the modified Lagrangian
Lt in (4) into (10) in Lemma 3 and rearranging terms, we have,
for any λ � 0

T∑

t=1

[ft(xt) − ft(x∗
t )] +

m∑

i=1

T∑

t=1

[
λigi

t (xt) − λi
tg

i
t (x

∗
t )
]

− δηT

2
‖λ‖2

2 (14)

≤ η

2
[
(1 + m)G2 + 2δ2η2 − δ

] T∑

t=1

‖λt‖2
2

+
1
2η

(
5R2 + 2RΔ(T ) + ‖λ‖2

2
)
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+
ηT

2
[
(m + 1)G2 + 2D2] (15)

≤ 1
2η

(
5R2 + 2RΔ(T ) + ‖λ‖2

2
)

+
ηT

2
[(m + 1)G2 + 2D2 ].

(16)

The last step (16) results from the fact (1 + m)G2 + 2δ2η2 −
δ ≤ 0. This is true due to the choice of δ = (m + 1)G2 + 1
and that T is large enough such that Δ(T )

T ≤ 1
2((m+1)G2 +1)2 .

Rearranging terms in (14) and (16), we obtain

T∑

t=1

[ft(xt) − ft(x∗
t )]

+
m∑

i=1

[

λi
T∑

t=1

gi
t(xt) −

(
δηT

2
+

1
2η

)
(
λi
)2

]

(17)

≤
m∑

i=1

T∑

t=1

λi
tg

i
t (x

∗
t ) +

1
2η

(
5R2 + 2RΔ(T )

)

+
ηT

2
[
(m + 1)G2 + 2D2] (18)

≤ 1
2η

(
5R2 + 2RΔ(T )

)
+

ηT

2
[
(m + 1)G2 + 2D2] (19)

where the last step is due to gt(x∗
t ) � 0 and λt � 0. Note

that the relation between (17) and (19) holds for any λ � 0.
Define x+ := max{x, 0} for x ∈ R. Maximizing the second

term of (17) over λ � 0, i.e., choosing λi = [
∑ T

t = 1 g i
t (xt )]+

δηT + 1
η

,

i = 1, . . . , m, we obtain

T∑

t=1

[ft(xt) − ft(x∗
t )] +

m∑

i=1

([∑T
t=1 gi

t(xt)
]+

)2

2(δηT + 1
η )

≤ 1
2η

(
5R2 + 2RΔ(T )

)
+

ηT

2
[
(m + 1)G2 + 2D2] . (20)

Hence

T∑

t=1

[ft(xt) − ft(x∗
t )]

≤ 1
2η

(
5R2 + 2RΔ(T )

)
+

ηT

2
[
(m + 1)G2 + 2D2] . (21)

Substituting the choice η =
√

Δ(T )
T into (21) yields the de-

sired result of the regret in (11). In addition, according to
Assumption 6, we have ft(xt) − ft(x∗

t ) ≥ −F . Therefore, for
any i = 1, . . . , m

− FT +

([∑T
t=1 gi

t (xt)
]+

)2

2(δηT + 1
η )

≤ 1
2η

(
5R2 + 2RΔ(T )

)
+

ηT

2
[
(m + 1)G2 + 2D2] . (22)

Hence, we have

T∑

t=1

gi
t(xt) (23)

≤
[

T∑

t=1

gi
t(xt)

]+

(24)

≤
√

2
(

FT +
1
2η

(5R2 + 2RΔ(T )) +
ηT

2
[(m + 1)G2 + 2D2 ]

)

×
√(

δηT +
1
η

)

. (25)

Substituting η =
√

Δ(T )
T into (25) yields the desired result of

the constraint violations in (12) and (13). �
The last equality of (11) follows from the fact that the cumula-

tive drift Δ(T ) is at least Ω(1), i.e., it is no smaller than constant
in order sense. In addition, as T goes to infinity, the stepsize η
converges to zero in the limit since Δ(T ) is sublinear. This di-
minishing stepsize is common in the literature of optimization
[3], [4]. Furthermore, two remarks are given as follows.

Remark 1: Since the drift sequence Δ(·) is sublinear, (11)
and (13) are both sublinear and so are the regrets Reg(T ) =
∑T

t=1[ft(xt) − ft(x∗
t )] and the constraint violationsVioi(T ) =

∑T
t=1 gi

t(xt), i = 1, . . . , m. The hypothesis that the drift Δ(·)
is sublinear is reasonable in order to guarantee sublinear regret
and constraint violations of any online algorithm. Otherwise,
the drift is linear or superlinear, indicating that the benchmark
sequence {x∗

t} evolves at a constant speed at least. Note that
when determining action xt , an online algorithm does not know
ft and gt , which are necessary to compute x∗

t in (1). An online
algorithm has to estimate {x∗

t} based on the available infor-
mation about f1 , . . . , ft−1 and g1 , . . . ,gt−1 , which is not very
helpful because x∗

t deviates from the past significantly (at a
constant speed at least). As such, the online algorithm cannot
track the benchmark sequence {x∗

t} well or more precisely, the
performance metrics, i.e., the regret Reg(T ) and the constraint
violations Vioi(T ) may not be sublinear. Furthermore, we note
that the prediction–correction methods in [26]–[28] do not need
assumptions on the drift of the benchmark to guarantee con-
vergence. The main reason is that, when computing the new
variables xt+1 , the prediction–correction methods make use of
the new objective/constraint functions ft+1 and gt+1 in the cor-
rection step. In contrast, in the proposed Algorithm 1, to com-
pute xt+1 and λt+1 , we only need information about the past
objective/constraint functions ft andgt (c.f. (6) and (8)). This in-
formation advantage of prediction–correction methods renders
them easier in tracking the benchmark so that no assumption
on the drift of the benchmark is necessary to ensure conver-
gence. Nevertheless, these methods are infeasible for OCO of
this paper, in which (partial) information about ft+1 and gt+1
is revealed only after xt+1 is determined.

Remark 2: As discussed in Section II-A, the sublinearity of
the regret Reg(T ) and the constraint violations Vioi(T ) guar-
anteed in Theorem 1 implies that the time average regret Reg(T )

T
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and the time average constraint violations Vioi (T )
T are asymp-

totically non-positive as the length of the time frame T goes to
infinity. This suggests that, asymptotically, the action sequence
generated by Algorithm 1 has performance no worse than the
dynamic benchmark {x∗

t} does.
In Theorem 1, the stepsize is chosen as η =

√
Δ (T )

T , which de-
pends on the drift Δ(T ). We note that Δ(T ) may not be known
to the agent precisely. Nevertheless, as long as η = Θ(

√
Δ (T )

T ),
i.e., η has the same order as

√
Δ (T )

T does, the order bounds of the
regret and the constraint violations in Theorem 1 will hold. So,
when selecting the stepsize, we only need an estimate of the or-
der of Δ(T ) with a possible constant factor error to ensure sub-
linear regret and constraint violations. Furthermore, even if such
an estimate of the order of the drift Δ(T ) is not available, we can
still choose stepsize η to ensure sublinearity of regrets and con-
straint violations, as specified in the following. We presume that
a sublinear upper bound of Δ(T ) is known. That is, we know

a sublinear positive sequence Δ̃(T ), i.e., limT →∞
Δ̃(T )

T = 0,

such that Δ(T ) ≤ Δ̃(T ) for T large enough (there can be a
positive constant factor on either side of the inequality, which
does not affect statements in order sense). Since Δ(T ) is sub-
linear, such a sublinear upper bound Δ̃(T ) must exist and can
be known in advance in many scenarios. If the agent has little
knowledge about Δ(T ) besides sublinearity, she can choose a
very conservative sublinear upper bound Δ̃(T ), e.g., T ζ , where
ζ < 1 is very close to 1. With such a sublinear upper bound
Δ̃(T ) known prior to the start of the OCO, we can choose the

stepsize to be η =
√

Δ̃ (T )
T . Then, after minor adaption of the

proof of Theorem 1, the regret bound becomes O(
√

T Δ̃(T )),
while the constraint violation bound becomes O(T

3
4 Δ̃(T )

1
4 ).

Since Δ̃(T ) is sublinear, so are the regret and constraint viola-
tions. We summarize the aforementioned points in the following
corollary.

Corollary 1: Suppose the drift sequence Δ(T ) is sublinear.
Furthermore, presume that, before the start of the OCO, the agent
knows a sublinear positive sequence Δ̃(T ) such that Δ(T ) ≤
Δ̃(T ) for T large enough. Set η =

√

Δ̃ (T )
T and δ = (m + 1)G2 +

1. Then, we have

T∑

t=1

[ft(xt) − ft(x∗
t )] ≤ O

(√

T Δ̃(T )
)

(26)

and for any i = 1, . . . , m

T∑

t=1

gi
t(xt) ≤ O

(
T

3
4 Δ̃(T )

1
4

)
. (27)

Clearly, the smaller or tighter the upper bound Δ̃(T ) is, the
smaller or tighter the upper bounds for the regret and the con-
straint violations in (26) and (27) are. If the order of Δ(T ) is
known in advance, one can simply replace Δ̃(T ) with Δ(T )
(with possible additional constant factor). Then, the bounds for
the regret and the constraint violations are the tightest, and they
indeed degenerate to their original forms in Theorem 1. There-
fore, the more knowledge the agent has about Δ(T ), the better
the chosen stepsize and the performance guarantees are.

IV. CONSTRAINED OCO WITH BANDIT FEEDBACK

In this section, by exploiting some stochastic approximations
and modifications, we develop a bandit version of Algorithm 1
to solve the constrained OCO with bandit feedback. The pro-
posed algorithm only needs feedback information of the loss
functions and constraint functions evaluated at two points close
to the chosen actions and does not need gradients of these func-
tions. We analyze the performance of the proposed algorithm
and demonstrate that it possesses sublinear expected regret and
sublinear expected constraint violations simultaneously.

A. Preliminaries

In the bandit setup, the agent only has access to the values
of the loss and constraint functions at several points and does
not know the gradients of these functions. As most optimization
algorithms need gradients of the involved functions, a direct
challenge of online algorithms with bandit feedback is how to
estimate gradients based on the values of the functions at some
finite number of points. To this end, given a function φ : Rn �→
R and some small ξ > 0, define φ̂(x) := Ev∼U(B) [φ(x + ξv)]
to be a smoothed version or approximation of φ at x, where
U(C) denotes uniform distribution over some set C and B is the
unit Euclidean ball in Rn . In [15], the following result regarding
the gradient of φ̂ was shown.

Lemma 4: Let S denote the unit Euclidean sphere in Rn .
Then, we have

∇φ̂(x) =
n

ξ
Eu∼U(S) [φ(x + ξu)u]. (28)

Since φ̂ is a smoothed approximate version of φ, ∇φ̂ can
also be regarded as an approximation of ∇φ. Thus, from
Lemma 4, a reasonable estimate of ∇φ(x) (and also ∇φ̂(x))
is n

ξ φ(x + ξu)u, where u is some random vector uniformly
distributed on S. We shall make use of this estimate to develop
an algorithm for constrained OCO with bandit feedback later.
Prior to the formal development of the algorithm, we first present
two straightforward lemmas regarding the properties of φ̂ in the
following.

Lemma 5: If φ : Rn �→ R is convex, then so is φ̂.
Lemma 6: If φ : Rn �→ R is Lipschitz continuous with con-

stant L, i.e., |φ(x) − φ(y)| ≤ L‖x − y‖2∀x,y, then so is φ̂.
Furthermore, we note the following two lemmas from [15]

and [19], respectively, which are useful in later analysis.
Lemma 7: [15]. For any 0 < α < 1 and y ∈ (1 − α)X ,

we have B(y, αr) ⊂ X , where B(x, a) denotes the Eu-
clidean ball centered at x with radius a, i.e., B(x, a) = {z ∈
Rn |‖z − x‖2 ≤ a}.

Lemma 8: [19]. If φi is Lipschitz continuous with constant
Ci , i = 1, . . . , m, then φ(x) = maxi=1,...,m φi(x) is Lipschtiz
continuous with constant C = maxi=1,...,m Ci .

By Assumption 4, we readily know that all loss functions ft

and constraint functions gi
t are Lipschitz continuous with the

same constant G. In other words, we have

|ft(x) − ft(x′)| ≤ G‖x − x′‖2 (29)

|gi
t(x) − gi

t(x
′)| ≤ G‖x − x′‖2 (30)
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for any x,x′ ∈ X , i = 1, . . . , m, t = 1, 2, .... Define g̃t(x) :=
maxi=1,...,m gi

t(x), f̂t(x) := Ev∼U(B) [ft(x + ξv)], and ĝt(x)
:= Ev∼U(B) [g̃t(x + ξv)]. According to the aforementioned

lemmas, we know that g̃t , f̂t , and ĝt are all convex and Lips-
chitz continuous with constant G.

B. Algorithm Development

The per-slot problem can be rewritten as min{ft(x)|g̃t(x) ≤
0}. Define a modified Lagrangian associated with this problem

L̂t(x, λ) := f̂t(x) + λĝt(x) − ηδ

2
λ2 . (31)

The proposed algorithm maintains and updates the primal vari-
able (i.e., the action) xt ∈ Rn and the dual variable λt ∈ R. At
time t, after xt is chosen, the nature reveals the values of ft and
g̃t at xt + ξut and xt − ξut , where ut is some random vector
uniformly distributed over the unit sphere S. Then, the agent
performs a saddle point type of update to obtain xt+1 and λt+1 .
To this end, we compute the gradients of L̂t as

∇x L̂t(xt , λt) = ∇f̂t(xt) + λt∇ĝt(xt) (32)

∂

∂λ
L̂t(xt , λt) = ĝt(xt) − ηδλt . (33)

According to Lemma 4, we have∇f̂t(xt) = n
ξ Eu∼U(S) [ft(xt +

ξu)u], which can be approximated as n
2ξ [ft(xt + ξut) −

ft(xt − ξut)]ut . The approximation is indeed an unbiased es-
timator of ∇f̂t(xt) conditioning on xt as follows:

n

2ξ
E{[ft(xt + ξut) − ft(xt − ξut)]ut |xt} = ∇f̂t(xt). (34)

Similarly, ∇ĝt(xt) = n
ξ Eu∼U(S) [g̃t(xt + ξu)u] can be approx-

imated by n
2ξ [g̃t(xt + ξut) − g̃t(xt − ξut)]ut , which is also an

unbiased estimator of ∇ĝt(xt), as follows:
n

2ξ
E{[g̃t(xt + ξut) − g̃t(xt − ξut)]ut |xt} = ∇ĝt(xt). (35)

Furthermore, for small ξ, ĝt(xt) = Ev∼U(B) [g̃t(xt + ξv)] is
close to g̃t(xt), which can be approximated as 1

2 [g̃t(xt + ξut) +
g̃t(xt − ξut)]. Combining the aforementioned approximations,
we define pt as an approximation of ∇x L̂t(xt , λt) in the fol-
lowing

pt =
n

2ξ
[ft(xt + ξut) − ft(xt − ξut)

+ λt(g̃t(xt + ξut) − g̃t(xt − ξut))]ut . (36)

We further define qt as an approximation of ∂
∂λ

L̂t(xt , λt) in the
following

qt =
1
2
[g̃t(xt + ξut) + g̃t(xt − ξut)] − ηδλt . (37)

The agent performs an approximated primal descent to compute
xt+1 as follows:

xt+1 = Π(1−α)X (xt − ηpt) (38)

where α ∈ [ ξ
r , 1).1 We initialize x1 ∈ (1 − α)X so that xt ∈

(1 − α)X for any t = 1, 2, .... According to Lemma 7, we

1This is a proper interval for T large enough since we will later set ξ = o(1).

Algorithm 2: The Algorithm for Constrained OCO with
Bandit Feedback.

1: Initialize x1 ∈ (1 − α)X and λ1 = 0.
2: for t = 1, 2, . . . , T do
3: Submit the action xt .
4: Generate ut according to a uniform distribution on

the unit sphere S.
5: Query the values ft(xt ± ξut) and g̃t(xt ± ξut).
6: Compute pt and qt based on (36) and (37)
7: Update the primal variable, i.e., the action, according

to (38) to obtain the new action xt+1 .
8: Update the dual variable according to (39) to obtain

the new dual variable λt+1 .
9: end for

thus have B(xt , αr) ⊂ X . So, xt ± ξut ∈ X , i.e., xt ± ξut are
proper actions, on which ft and gt are well defined. Note that,
even if the origin is not contained in the action set X , i.e., As-
sumption 2 does not hold, the primal update (38) can still be
used with minor modification as long as X contains an interior
point. In such a case, for the projection set of the primal update
(38), we only need to shrink the set X by a factor of 1 − α with
respect to this interior point instead of the origin.

In addition, the agent updates the dual variable by an approx-
imated dual ascent to obtain λt+1 as

λt+1 = ΠR+ (λt + ηqt). (39)

The proposed online algorithm for constrained OCO with bandit
feedback is summarized in Algorithm 2. Later, we will set ξ =
o(1), i.e., ξ converges to 0 as T goes to infinity. Thus, for large
T , xt ± ξut are two points very close to xt . After xt is chosen,
Algorithm 2 only needs the values of the loss function ft and
the maximum constraint function g̃t at xt ± ξut to compute
the primal/dual variables at next round, i.e., xt+1 and λt+1 . In
other words, to operate Algorithm 2, the agent only needs bandit
feedback information at two points very close to the action xt

and does not need gradients of the loss function and constraint
functions.

C. Performance Analysis

In this subsection, we endeavor to analyze the performance of
Algorithm 2 and show that it possesses sublinear regret and con-
straint violations as long as the drift of the benchmark sequence
Δ(T ) :=

∑T
t=2 ‖x∗

t−1 − x∗
t‖2 is sublinear.

Define the function Ht : Rn × R �→ R as

Ht(x, λ) := L̂t(x, λ) + (pt −∇x L̂t(xt , λt))Tx

+
(

qt − ∂

∂λ
L̂t(xt , λt)

)

λ. (40)

For any given λ ≥ 0, Ht(·, λ) is convex in x. For any given x,
Ht(x, ·) is concave in λ. Furthermore, one can easily show that
∇xHt(xt , λt) = pt and ∂

∂λ
Ht(xt , λt) = qt . Thus, analogous

to Lemma 2, we obtain the following lemma, the proof of which
is omitted.
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Lemma 9: For any x ∈ X , λ ≥ 0, t = 1, 2, ..., we have

Ht(xt , λ) − Ht((1 − α)x, λt)

≤ 1
2η

[‖(1 − α)x − xt‖2
2 − ‖(1 − α)x − xt+1‖2

2

+ (λ − λt)2 − (λ − λt+1)2]+
η

2
(‖pt‖2

2 + q2
t ). (41)

Based on Lemma 9, we can further prove the following
lemma.

Lemma 10: For any λ ≥ 0, we have

T∑

t=1

[Ht(xt , λ) − Ht((1 − α)x∗
t , λt)]

≤ 4 + (1 − α)2

2η
R2 +

(1 − α)RΔ(T )
η

+
λ2

2η

+ ηT
(
n2G2 + D2) + η(n2G2 + η2δ2)

T∑

t=1

λ2
t . (42)

Proof: The proof is presented in Appendix C. �
We are now ready to show that the action sequence gener-

ated by Algorithm 2 possesses sublinear regret and constraint
violations provided that the drift sequence Δ(·) is sublinear.

Theorem 2: Suppose the drift sequence {Δ(T ′)}∞T ′=1 is sub-
linear, i.e., limT ′→∞

Δ(T ′)
T ′ = 0. Assume T is large enough such

that Δ(T )
T ≤ 1

2(2n2 G2 +1)2 . Set ξ = 1
T , α = 1

rT , δ = 2n2G2 + 1

and η =
√

Δ(T )
T . Then, we have

E

[
T∑

t=1

ft(xt)

]

−
T∑

t=1

ft(x∗
t ) (43)

≤ (
R + n2G2 + D2)√TΔ(T )

+
(

5R2

2
+

2GD

2n2G2 + 1
+

GD

2n2G2 + 1

(
R

r
+ 1

))√
T

Δ(T )

+ 2G +
GR

r
(44)

= O
(√

TΔ(T )
)

(45)

and for any i = 1, . . . , m, the constraint violations satisfy (46)–
(49) shown at the bottom of this page.

Proof: From the definition of H in (40), one can easily show
that for any λ ∈ R

L̂t(xt , λ) − L̂t((1 − α)x∗
t , λt)

= Ht(xt , λ) − Ht((1 − α)x∗
t , λt)

+ (xt − (1 − α)x∗
t )

T(∇x L̂t(xt , λt) − pt)

+ (λ − λt)
(

∂

∂λ
L̂t(xt , λt) − qt

)

. (50)

Summing (50) over t = 1, . . . , T and taking expectation, we
obtain

E

{
T∑

t=1

[L̂t(xt , λ) − L̂t((1 − α)x∗
t , λt)]

}

(51)

= E

{
T∑

t=1

[Ht(xt , λ) − Ht((1 − α)x∗
t , λt)]

}

+ E

{
T∑

t=1

[

(xt − (1 − α)x∗
t )

T(∇x L̂t(xt , λt) − E[pt |xt , λt ])

+ (λ − λt)
(

∂

∂λ
L̂t(xt , λt) − E[qt |xt , λt ]

)]}

(52)

where the outer expectation of the second term is with respect
to xt and λt . We note

E[pt |xt , λt ] = ∇f̂t(xt) + λt∇ĝt(xt) = ∇x L̂t(xt , λt). (53)

E

[
T∑

t=1

gi
t(xt)

]

(46)

≤ E

[
T∑

t=1

g̃t(xt)

]

(47)

≤ 3G +

√
√
√
√2

(

(2n2G2 + 1)
√

TΔ(T ) +

√
T

Δ(T )

)

×

√
√
√
√FT + (R + n2G2 + D2)

√
TΔ(T ) +

(
5R2

2
+

2GD

2n2G2 + 1
+

GD

2n2G2 + 1

(
R

r
+ 1

))√
T

Δ(T )
+ G

(

2 +
R

r

)

(48)

= O
(
T

3
4 Δ(T )

1
4

)
. (49)
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In addition

(λ − λt)
(

∂

∂λ
L̂t(xt , λt) − E[qt |xt , λt ]

)

≤ |λ − λt |E
[∣
∣
∣
∣

∂

∂λ
L̂t(xt , λt) − qt

∣
∣
∣
∣

∣
∣
∣
∣
∣
xt , λt

]

. (54)

We may bound λt as follows. According to (39) and (37), we
have

λt+1 ≤ |λt + ηqt | (55)

=
∣
∣
∣(1 − η2δ)λt +

η

2
[g̃t(xt + ξut) + g̃t(xt − ξut)]

∣
∣
∣ (56)

≤ (
1 − η2δ

)
λt + ηD. (57)

Applying the aforementioned inequalities iteratively, we get

0 ≤ λt

≤ (
1 − η2δ

)t−1
λ1

+ ηD
[
1 +

(
1 − η2δ

)
+ · · · + (

1 − η2δ
)t−2

]
≤ D

ηδ
. (58)

Moreover, we have

E

[∣
∣
∣
∣

∂

∂λ
L̂t(xt , λt) − qt

∣
∣
∣
∣

∣
∣
∣
∣
∣
xt , λt

]

= E

[∣
∣
∣
∣ĝt(xt) − 1

2
[g̃t(xt + ξut) + g̃t(xt − ξut)]

∣
∣
∣
∣

∣
∣
∣
∣
∣
xt , λt

]

(59)

and
∣
∣
∣
∣ĝt(xt) − 1

2
[g̃t(xt + ξut) + g̃t(xt − ξut)]

∣
∣
∣
∣ (60)

≤ 1
2
|ĝt(xt) − g̃t(xt + ξut)| + 1

2
|ĝt(xt) − g̃t(xt − ξut)|

(61)

≤ 1
2

Ev∼U(B) [|g̃t(xt + ξv) − g̃t(xt + ξut)|]

+
1
2

Ev∼U(B) [|g̃t(xt + ξv) − g̃t(xt − ξut)|] (62)

≤ 2Gξ. (63)

Thus

E

[∣
∣
∣
∣

∂

∂λ
L̂t(xt , λt) − qt

∣
∣
∣
∣

∣
∣
∣
∣
∣
xt , λt

]

≤ 2Gξ. (64)

Combining (54), (58), and (64) yields, for any λ ∈ R

(λ − λt)
(

∂

∂λ
L̂t(xt , λt) − E[qt |xt , λt ]

)

≤
(

|λ| + D

ηδ

)

· 2Gξ. (65)

Substituting (65) and (53) into (52), we have for any λ ∈ R

E

{
T∑

t=1

[L̂t(xt , λ) − L̂t((1 − α)x∗
t , λt)]

}

(66)

≤ E

{
T∑

t=1

[Ht(xt , λ) − Ht((1 − α)x∗
t , λt)]

}

+ 2GξT

(

|λ| + D

ηδ

)

. (67)

By further using Lemma 10, we obtain that for any λ ≥ 0

E

{
T∑

t=1

[L̂t(xt , λ) − L̂t((1 − α)x∗
t , λt)]

}

≤ 4 + (1 − α)2

2η
R2 +

(1 − α)RΔ(T )
η

+
λ2

2η

+ ηT
(
n2G2 + D2) + η(n2G2 + η2δ2)E

[
T∑

t=1

λ2
t

]

+ 2GξT

(

λ +
D

ηδ

)

. (68)

Substituting the definition of the modified Lagrangian L̂t in (31)
into (68) and rearranging terms, we get

E

{
T∑

t=1

[f̂t(xt) − f̂t((1 − α)x∗
t )]

}

+ λE

[
T∑

t=1

ĝt(xt)

]

− E

[
T∑

t=1

λt ĝt((1 − α)x∗
t )

]

− ηδT

2
λ2 +

ηδ

2
E

[
T∑

t=1

λ2
t

]

≤ 4 + (1 − α)2

2η
R2 +

(1 − α)RΔ(T )
η

+
λ2

2η

+ ηT
(
n2G2 + D2) + η(n2G2 + η2δ2)E

[
T∑

t=1

λ2
t

]

+ 2GξT

(

λ +
D

ηδ

)

. (69)

According to our choice of δ and η, it can be easily verified that
η(n2G2 + η2δ2) − ηδ

2 ≤ 0. Hence, for any λ ≥ 0

E

{
T∑

t=1

[f̂t(xt) − f̂t((1 − α)x∗
t )]

}

+ λE

[
T∑

t=1

ĝt(xt)

]

− E

[
T∑

t=1

λt ĝt((1 − α)x∗
t )

]

− ηδT

2
λ2

≤ 4 + (1 − α)2

2η
R2 +

(1 − α)RΔ(T )
η

+
λ2

2η

+ ηT
(
n2G2 + D2) + 2GξT

(

λ +
D

ηδ

)

. (70)

To relate the left-hand side (L.H.S.) of (70) with the regret
Reg(T ) and the constraint violations Vioi(T ), we endeavor to
replace f̂t and ĝt on the L.H.S. of (70) with ft and g̃t , respec-
tively. To this end, we have

|f̂t(xt) − ft(xt)| ≤ Ev∼U(B) [|ft(xt + ξv) − ft(xt)|] ≤ ξG.
(71)
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So

f̂t(xt) ≥ ft(xt) − ξG. (72)

In addition

|f̂t((1 − α)x∗
t ) − ft(x∗

t )| (73)

≤ |f̂t((1 − α)x∗
t ) − ft((1 − α)x∗

t )|
+ |ft((1 − α)x∗

t ) − ft(x∗
t )| (74)

≤ |Ev∼U(B) [ft((1 − α)x∗
t + ξv) − ft((1 − α)x∗

t )]|
+ Gα‖x∗

t‖2 (75)

≤ Gξ + GαR. (76)

Thus

f̂t((1 − α)x∗
t ) ≤ ft(x∗

t ) + GαR + Gξ. (77)

Similarly, we can show

ĝt(xt) ≥ g̃t(xt) − Gξ (78)

and

ĝt((1 − α)x∗
t ) ≤ g̃t(x∗

t ) + GαR + Gξ. (79)

Multiplying both sides of (79) with λt ≥ 0, summing over t =
1, . . . , T and noting that g̃t(x∗

t ) ≤ 0, we get

T∑

t=1

λt ĝt((1 − α)x∗
t )

≤
T∑

t=1

λt g̃t(x∗
t ) + (GαR + Gξ)

T∑

t=1

λt

≤ (GαR + Gξ)
T∑

t=1

λt . (80)

Substituting (72), (77), (78), and (80) into (70), noting that
E[
∑T

t=1 λt ] ≤ DT
ηδ due to (58), and rearranging terms, we have

for any λ ≥ 0

E

{
T∑

t=1

[ft(xt) − ft(x∗
t )]

}

−
(

ηδT

2
+

1
2η

)

λ2

+

(

E

[
T∑

t=1

g̃t(xt)

]

− 3GξT

)

λ

≤ 4 + (1 − α)2

2η
R2 +

(1 − α)RΔ(T )
η

+ ηT
(
n2G2 + D2)

+
2GξTD

ηδ
+ (2ξG + GαR)T + (GαR + Gξ)

DT

ηδ
. (81)

Setting λ = 0 in (81) and substituting the ξ, α, η, and δ with
the specified values in the statement of the theorem, we obtain
the desired bound on regret in (44) and (45). In addition, set-

ting λ = (E[
∑ T

t = 1 g̃ t (xt )]−3GξT )+

ηδT + 1
η

(calculated by maximizing the

L.H.S. of (81) with respect to λ ≥ 0) in (81) and noting that∑T
t=1[ft(xt) − ft(x∗

t )] ≥ −FT due to Assumption 6, with the
specified values for ξ, α, η, and δ, we can get the desired bound
on constraint violations in (48) and (49). �

Remark 3: Theorem 2 asserts that Algorithm 2 achieves
the same performance scaling (in terms of regret and con-
straint violations) for constrained OCO with bandit feedback as
Algorithm 1 does for gradient feedback. This implies that bandit
feedback about loss/constraint functions does not hurt much for
constrained OCO with time-varying constraints.

Analogous to Theorem 1, the choice of the stepsize η in
Theorem 2 also relies on the drift Δ(T ), which may not be
known to the agent. Nevertheless, similar to Corollary 1, if a
sublinear upper bound on Δ(T ), denoted as Δ̃(T ), is available to
the agent, we can still guarantee the sublinearity of the regret and
constraint violations of Algorithm 2 by changing the stepsize

to be η =
√

Δ̃ (T )
T . Formally, this is summarized in the following

corollary.
Corollary 2: Suppose the drift sequence Δ(T ) is sublinear.

Furthermore, presume that, before the start of the OCO, the agent
knows a sublinear positive sequence Δ̃(T ) such that Δ(T ) ≤
Δ̃(T ) for T large enough. Set ξ = 1

T , α = 1
rT , δ = 2n2G2 + 1,

and η =
√

Δ̃ (T )
T . Then, we have

E

[
T∑

t=1

ft(xt)

]

−
T∑

t=1

ft(x∗
t ) ≤ O

(√

T Δ̃(T )
)

(82)

and for any i = 1, . . . , m

E

[
T∑

t=1

gi
t(xt)

]

≤ O
(
T

3
4 Δ̃(T )

1
4

)
. (83)

The remarks of Corollary 1 also applies to Corollary 2. If
the agent has more knowledge of the drift Δ(T ), a smaller or
tighter upper bound Δ̃(T ) is available, which in turn leads to
better performance guarantees in (82) and (83). If the agent
knows little about Δ(T ) besides sublinearity, she can choose a
conservative but still sublinear upper bound Δ̃(T ), e.g., T ζ with
ζ < 1 close to 1. In such a case, sublinearity of the regret and
the constraint violations can still be guaranteed.

V. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to
corroborate the effectiveness of the proposed algorithms for
the constrained OCO with gradient feedback (Algorithm 1)
or bandit feedback (Algorithm 2). Specifically, we study two
numerical examples: OQP and OLR. We empirically observe
that, in either example, for both gradient feedback and bandit
feedback, as time goes to infinity, the time average regrets con-
verge to zero and the time average constraint violations become
negative, confirming the theoretical guarantees in Theorems 1
and 2.

A. Online Quadratic Programming (OQP)

In this subsection, we study a numerical example of the OQP.
The optimization problem of the OQP at time t is

Minimize
x∈X

xTAtx + bT
t x

s.t. Ctx � dt (84)
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where x ∈ Rn is the optimization variable; At ∈ Rn×n is
some positive semidefinite matrix; bt ∈ Rn , Ct ∈ Rm×n , and
dt ∈ Rm ; and X = {x|‖x‖2 ≤ R} is the action set with R
some positive number. The problem (84) is in the form of (1)
with ft(x) = xTAtx + bT

t x and gt(xt) = Ctx − dt . As stated
in Section II, at time t, when making decision xt , the agent is
unaware of the problem data, i.e., At , bt , Ct , and dt . With the
gradient feedback, after xt is submitted, all problem data At ,
bt , Ct , and dt will be revealed to the agent. In contrast, with
the bandit feedback, after xt is submitted, only ft(xt ± ξut)
and g̃t(xt ± ξut) are announced to the agent. Such an OQP for-
mulation has broad applications in many signal processing and
control problems. For instance, in dynamic resource allocation,
the OQP is to minimize some quadratic costs while satisfying
some linear resource constraints. The cost functions and re-
source constraints are time varying and unknown a priori due
to factors such as the uncertainty of renewable energy supply
and electricity market prices in smart grids. As another applica-
tion, the OQP can also correspond to dynamic linear regression
with linear constraints where the fitting data or observations are
time varying and unknown a priori (possibly due to the delay
of data/observations).

The time-varying problem data are generated as follows.
With At ,bt ,Ct , and dt in hands, our goal is to generate
At+1 ,bt+1 ,Ct+1 , and dt+1 . To obtain At+1 , we first gen-
erate Ãt := At + Wt , where Wt is some symmetric distur-
bance matrix. For 1 ≤ i ≤ j ≤ n, Wt,ij is generated according
to uniform distribution on [− 1

2t ,
1
2t ] independently. For i > j,

Wt,ij = Wt,ji . Afterwards, At+1 is the projection of Ãt onto
the positive semidefinite cone, i.e., the set of positive semidef-
inite matrices. This projection involves eigendecomposition of
Ãt . To obtain bt+1 and Ct+1 , we similarly add disturbance
vectors/matrices onto bt and Ct , respectively, and each entry
of the disturbance vectors/matrices is uniformly distributed on
[− 1

2t ,
1
2t ]. To update the sequence of dt , we introduce an aux-

iliary sequence x#
t ∈ Rn , where x#

t+1 is the sum of x#
t and

a disturbance vector with each entry uniformly distributed on
[− 1

2t ,
1
2t ]. Then, dt is computed as dt = Ctx

#
t + rt , where

each entry of rt is uniformly distributed on [0, 1]. The prob-
lem data are initialized as follows. A1 = I. Each entry of
b1 is uniformly distributed on [−0.5, 0.5]. Each entry of C1

is uniformly distributed on [0, 1]. Each entry of x#
1 is uni-

formly distributed on [−1, 0]. The parameters are set accord-
ing to the specifications in Theorems 1 and 2 as follows:
m = 3, n = 10, T = 1000, R = 5, η = 1√

T
, δ = 10, ξ = 1

T ,

r = R
2 , and α = 1

rT . In particular, since the data evolution rate is
1
t , so is the order of the gap between adjacent benchmark optima,
i.e., ‖x∗

t−1 − x∗
t‖2 = Θ(1

t ). Thus, according to the definition

of drift, we know Δ(T ) =
∑T

t=2 ‖x∗
t−1 − x∗

t‖2 = Θ(log T ).
So, the stepsize prescribed by Theorems 1 and 2 is

√
Δ (T )

T =

Θ(
√

l o g T
T ), which will lead to sublinear regret bound of order

O(
√

TΔ(T )) = O(
√

T log T ) and sublinear constraint viola-
tion bound of order O(T

3
4 Δ(T )

1
4 ) = O(T

3
4 (log T )

1
4 ). We note

that the logarithmic term does not affect the stepsize much due
to the presence of T in the denominator. So, we can omit the
term log T and simply set the stepsize as η = 1√

T
, which can

still ensure sublinear regrets and constraint violations (adding
logarithmic terms into the regret and constraint violation bounds
will not affect their sublinearity).

We apply the proposed algorithms, i.e., Algorithms 1 and 2,
to the OQP and the time average regrets Reg(t)

t and time aver-

age constraint violations Vioi (t)
t are shown in Fig. 1(a) and (b),

respectively. The scenarios of both gradient feedback and ban-
dit feedback are considered. In both scenarios, we observe that,
as time progresses, the time average regrets converge to zero
and the time average constraint violations become negative, in
accordance with the analytical results in Theorems 1 and 2. To
investigate the impact of the evolution rate of the time-varying
problem data, we alter the distribution of all the disturbances
to be uniform distribution over the interval [− 1

2
√

t
, 1

2
√

t
], which

increases the evolution speed of the problem data. According

to Theorems 1 and 2, the stepsize η =
√

Δ(T )
T is changed to

be 0.2T− 1
4 , since in this scenario, ‖x∗

t−1 − x∗
t‖2 = Θ( 1√

t
) and

Δ(T ) =
∑T

t=2 ‖x∗
t−1 − x∗

t‖2 = Θ(
√

T ). This will lead to sub-
linear regret bound of order O(T

3
4 ) and sublinear constraint

violation bound of order O(T
7
8 ) theoretically. The correspond-

ing time average regrets and time average constraint violations
are reported in Fig. 1(c) and (d), respectively. In Fig. 1(c), we
observe that the time average regrets are larger than that of the 1

t
evolution rate [see Fig. 1(a)], especially for the scenario of the
bandit feedback. However, the time average regrets can still con-
verge to zero, as guaranteed theoretically. Comparing Fig. 1(d)
with 1(b), we remark that the constraint violations do not change
much and are still negative as time approaches infinity.

The numerical results for the bandit feedback shown in Fig. 1
are for one particular realization of the random query points at
which the values of the loss/constraint functions are revealed. In
Fig. 2, we further study the average performance of Algorithm 2
for the bandit feedback by 1000 independent Monte-Carlo trials.
The data evolution rate is set to be 1√

t
and the corresponding

performance of Algorithm 1 for the gradient feedback is also
shown for comparison. We observe that, similar to the one-
shot realization results in Fig. 1, the averaged (over multiple
trials) time-average regrets of the bandit feedback still converge
to zero and the averaged time-average constraint violations of
bandit feedback are still asymptotically nonpositive. In addition,
the average performance of the bandit feedback is very close to
that of the gradient feedback, verifying that the bandit feedback
does not affect the performance of constrained OCO much (c.f.,
Remark 3).

B. Online Logistic Regression (OLR)

In this subsection, we investigate a numerical example of
OLR. The optimization problem of OLR at time t is

Minimize
x∈X

k∑

i=1

log
(
1 + exp

(−li,tuT
i,tx

))

s.t. ‖x‖1 ≤ at (85)

where ui,t ∈ Rn is the ith training point at time t and li,t ∈
{−1, 1} is the corresponding label. at is a threshold on the
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Fig. 1. Regrets and constraint violations for OQP with different problem data evolution rates. Scenarios of both gradient feedback and bandit
feedback are considered. (a) Regrets of OQP with problem data evolution rate equal to 1

t . (b) Constraint violations of OQP with problem data
evolution rate equal to 1

t . (c) Regrets of OQP with problem data evolution rate equal to 1√
t
. (d) Constraint violations of OQP with problem data

evolution rate equal to 1√
t
.

Fig. 2. Regrets and constraint violations for OQP with data evolution
rate equal to 1√

t
, in which the results for the bandit feedback are aver-

aged over 1000 Monte-Carlo trials. (a) Regrets of OQP. (b) Constraint
violations of OQP.

l1 norm of the weight vector x to enforce sparsity. X =
{x ∈ Rn |‖x‖∞ ≤ M} is the action set and M is some pos-
itive number. Such an OLR problem (85) is in the form of

(1) with ft(x) =
∑k

i=1 log(1 + exp(−li,tuT
i,tx)) and gt(x) =

‖x‖1 − at . When deciding xt , the agent does not know the
problem data {ui,t , li,t}k

i=1 and at , possibly due to the delay of
the training data.

The problem data ui,t , li,t , and at are generated according
to the following procedure. ui,t+1 = ui,t + βi,t , where each
entry of βi,t ∈ Rn is uniformly distributed over [− 1

2t ,
1
2t ].

at+1 = (at + γt)+ , where x+ := max{0, x} and γt is uni-
formly distributed over [− 1

2t ,
1
2t ]. Additionally, we generate an

auxiliary true weight vector sequence x#
t ∈ Rn for the OLR.

The true weight vector sequence is updated as follows. Given
x#

t , we compute x̌t = x#
t + τ t , where each entry of τ t ∈ Rn

is uniformly distributed over the interval [− 1
2t ,

1
2t ]. Compute

x̃t = ΠX (x̌t). Then, if ‖x̃t‖1 ≤ at+1 , we set x#
t+1 = x̃t . Oth-

erwise, set x#
t+1 = at + 1

‖x̃t ‖1
x̃t . The parameters of the problem

are set as follows: n = 5, k = 20, T = 10000, η = 0.2 1√
T

, δ =
10, ξ = 1

T , r = M = 30, and α = 1
rT .

We apply the proposed algorithms, i.e., Algorithms 1 and 2,
to the OLR and the time average regrets Reg(t)

t and time av-

erage constraint violations Vioi (t)
t are shown in Fig. 3(a) and

(b), respectively. We remark that, for both gradient feedback
and bandit feedback, as time goes to infinity, the time average
regrets converge to zero and the time average constraint viola-
tions become negative. This confirms the theoretical guarantees
in Theorems 1 and 2 again. Furthermore, we investigate the
tracking errors with respect to the true weight vectors x#

t . In
Fig. 3(c), we plot the tracking errors of the gradient feedback
(‖xt − x#

t ‖2 , where xt is generated by Algorithm 1 with gradi-
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Fig. 3. Regrets, constraint violations, and errors with respect to the true weight vectors for OLR. (a) Regrets of OLR. (b) Constraint violations of
OLR. (c) Errors with respect to the true weight vectors x#

t .

ent feedback), bandit feedback (‖xt − x#
t ‖2 , where xt is gener-

ated by Algorithm 2 with bandit feedback), and the benchmark
sequence (‖x∗

t − x#
t ‖2 , where x∗

t is the optimal point of (85),
i.e., the benchmark or the posteriori optima). From Fig. 3(c), we
observe that, for both gradient feedback and bandit feedback,
the proposed algorithms can track the true weight vectors well
after about 500 time slots. We remark that, once stable, the track-
ing errors of the proposed algorithms are less than that of the
benchmark sequence x∗

t . The reason is that the proposed online
algorithms take information (training data) from previous time
into account, while the benchmark x∗

t is computed solely based
on the data of the current time instant.

VI. CONCLUSION

In this paper, we study constrained OCO problems with time-
varying constraints. For the gradient feedback, we propose a
computationally efficient online algorithm (Algorithm 1), which
only involves direct closed-form computations at each time in-
stant. We establish sublinear regret and constraint violations of
Algorithm 1 under the assumption that the drift of the benchmark
sequence is sublinear, i.e., the underlying dynamic optimization
problem does not vary too fast. Moreover, we investigate a ban-
dit version of the constrained OCO problem and propose an
online algorithm (Algorithm 2) for the bandit feedback. Analo-
gous sublinear results for the expected regrets and the expected
constraint violations of Algorithm 2 are demonstrated. Finally,
numerical examples of OQP and OLR are presented to validate
the effectiveness of the proposed algorithms.

APPENDIX A
PROOF OF LEMMA 2

Given any λ′ � 0, Lt(·,λ′) is convex in x. Hence

Lt(x,λt) ≥ Lt(xt ,λt) + ∇xLt(xt ,λt)T(x − xt). (86)

Similarly, given any x′, Lt(x′, ·) is concave in λ. Thus

Lt(xt ,λ) ≤ Lt(xt ,λt) + ∇λLt(xt ,λt)T(λ − λt). (87)

Combining (86) and (87) yields

Lt(xt ,λ) − Lt(x,λt)

≤ ∇xLt(xt ,λt)T(xt − x) + ∇λLt(xt ,λt)T(λ − λt). (88)

According to the update of the primal variable in (5), Lemma 1,
and x ∈ X , we obtain

‖x − xt+1‖2
2 ≤ ‖x − xt + η∇xLt(xt ,λt)‖2

2 (89)

which can be rewritten as

2η(xt − x)T∇xLt(xt ,λt)

≤ ‖x − xt‖2
2 − ‖x − xt+1‖2

2 + η2‖∇xLt(xt ,λt)‖2
2 . (90)

Similarly, based on the update of the dual variable in (7),
Lemma 1, and λ � 0, we obtain

‖λ − λt+1‖2
2 ≤ ‖λ − λt − η∇λLt(xt ,λt)‖2

2 (91)

which can be rewritten as

2η(λ − λt)T∇λLt(xt ,λt)

≤ ‖λ − λt‖2
2 − ‖λ − λt+1‖2

2 + η2‖∇λLt(xt ,λt)‖2
2 . (92)

Substituting (90) and (92) into (88) yields the desired result
in (9).

APPENDIX B
PROOF OF LEMMA 3

According to Lemma 2 and noting that x∗
t ∈ X , we have

Lt(xt ,λ) − Lt(x∗
t ,λt)

≤ 1
2η

(‖x∗
t − xt‖2

2 − ‖x∗
t − xt+1‖2

2 + ‖λ − λt‖2
2 − ‖λ

− λt+1‖2
2
)

+
η

2
(‖∇xLt(xt ,λt)‖2

2 + ‖∇λLt(xt ,λt)‖2
2
)
.

(93)

Summing (93) over the time period of length T , at the right-
hand side, we can make use of the telescoping sum

∑T
t=1(‖λ −
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λt‖2
2 − ‖λ − λt+1‖2

2) = ‖λ − λ1‖2
2 − ‖λ − λT +1‖2

2 ≤ ‖λ‖2
2

due to the initial condition λ1 = 0 and the nonnegativity of
‖λ − λT +1‖2

2 . Thus, we have

T∑

t=1

[Lt(xt ,λ) − Lt(x∗
t ,λt)]

≤ 1
2η

T∑

t=1

(‖x∗
t − xt‖2

2 − ‖x∗
t − xt+1‖2

2
)

+
1
2η

‖λ‖2
2

+
η

2

T∑

t=1

(‖∇xLt(xt ,λt)‖2
2 + ‖∇λLt(xt ,λt)‖2

2
)
. (94)

For the first term of (94), we have

T∑

t=1

(‖x∗
t − xt‖2

2 − ‖x∗
t − xt+1‖2

2
)

= ‖x∗
1 − x1‖2

2 − ‖x∗
T − xT +1‖2

2

+
T∑

t=2

(‖xt − x∗
t‖2

2 − ‖xt − x∗
t−1‖2

2
)

(95)

≤ ‖x∗
1 − x1‖2

2 +
T∑

t=2

2xT
t (x∗

t−1 − x∗
t )

+
T∑

t=2

(‖x∗
t‖2

2 − ‖x∗
t−1‖2

2
)

(96)

≤ ‖x∗
1 − x1‖2

2 + ‖x∗
T ‖2

2 + 2
T∑

t=2

‖xt‖2‖x∗
t−1 − x∗

t‖2 (97)

≤ 5R2 + 2RΔ(T ) (98)

where we make use of Assumption 2 in the last step. As for the
last term regarding gradients of the modified Lagrangian, we
have

‖∇xLt(xt ,λt)‖2
2

=

∥
∥
∥
∥
∥
∇ft(xt) +

m∑

i=1

λi
t∇gi

t (xt)

∥
∥
∥
∥
∥

2

2

(99)

≤
(

‖∇ft(xt)‖2 +
m∑

i=1

λi
t‖∇gi

t (xt)‖2

)2

(100)

≤ (1 + m)

[

‖∇ft(xt)‖2
2 +

m∑

i=1

(
λi

t

)2 ‖∇gi
t (xt)‖2

2

]

(101)

≤ (1 + m)G2(1 + ‖λt‖2
2) (102)

where we use Assumption 4 in the last step. Additionally

‖∇λLt(xt ,λt)‖2
2

= ‖gt(xt) − δηλt‖2
2 (103)

≤ 2
(‖gt(xt)‖2

2 + δ2η2‖λ‖2
2
)

(104)

≤ 2
(
D2 + δ2η2‖λt‖2

2
)

(105)

where we use Assumption 5 in the last step. Substituting (98),
(102), and (105) into (94) and rearranging terms yield the desired
result in (10).

APPENDIX C
PROOF OF LEMMA 10

According to Lemma 9, for any λ ≥ 0, we have

Ht(xt , λ) − Ht((1 − α)x∗
t , λt)

≤ 1
2η

[‖(1 − α)x∗
t − xt‖2

2 − ‖(1 − α)x∗
t − xt+1‖2

2

+ (λ − λt)2 − (λ − λt+1)2]+
η

2
(‖pt‖2

2 + q2
t ). (106)

Summing (106) over t = 1, . . . , T and making use of the tele-
scoping sum

∑T
t=1[(λ − λt)2 − (λ − λt+1)2] = (λ − λ1)2 −

(λ − λT +1)2 ≤ λ2 (since λ1 = 0), we obtain

T∑

t=1

[Ht(xt , λ) − Ht((1 − α)x∗
t , λt)]

≤ 1
2η

T∑

t=1

[‖(1 − α)x∗
t − xt‖2

2 − ‖(1 − α)x∗
t − xt+1‖2

2
]

+
λ2

2η
+

η

2

T∑

t=1

(‖pt‖2
2 + q2

t ). (107)

Furthermore, we have

T∑

t=2

[‖(1 − α)x∗
t − xt‖2

2 − ‖(1 − α)x∗
t−1 − xt‖2

2
]

(108)

= (1 − α)2 [‖x∗
T ‖2

2 − ‖x∗
1‖2

2
]
+ 2(1 − α)

T∑

t=2

xT
t (x∗

t−1 − x∗
t )

(109)

≤ (1 − α)2R2 + 2(1 − α)
T∑

t=2

‖xt‖2‖x∗
t−1 − x∗

t‖2 (110)

≤ (1 − α)2R2 + 2(1 − α)RΔ(T ). (111)

Hence, for the first term of (107), we have

T∑

t=1

[‖(1 − α)x∗
t − xt‖2

2 − ‖(1 − α)x∗
t − xt+1‖2

2
]

(112)

= ‖(1 − α)x∗
1 − x1‖2

2 − ‖(1 − α)x∗
T − xT +1‖2

2

+
T∑

t=2

[‖(1 − α)x∗
t − xt‖2

2 − ‖(1 − α)x∗
t−1 − xt‖2

2
]

(113)

≤ 4R2 + (1 − α)2R2 + 2(1 − α)RΔ(T ). (114)

According to (36)

‖pt‖2

=
n

2ξ
|ft(xt + ξut) − ft(xt − ξut)

+ λt(g̃t(xt + ξut) − g̃t(xt − ξut))| (115)
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≤ n

2ξ
|ft(xt + ξut) − ft(xt − ξut)|

+
nλt

2ξ
|g̃t(xt + ξut) − g̃t(xt − ξut)| (116)

≤ nG

2ξ
· 2ξ +

nGλt

2ξ
· 2ξ (117)

= nG(1 + λt) (118)

where we make use of Assumption 4 to get (117). So

‖pt‖2
2 ≤ 2n2G2(1 + λ2

t ). (119)

In addition, according to (37), we know

|qt | ≤ 1
2
|g̃t(xt + ξut) + g̃t(xt − ξut)| + ηδλt ≤ D + ηδλt

(120)

where we have used Assumption 5. Thus

q2
t ≤ 2

(
D2 + η2δ2λ2

t

)
. (121)

Substituting (114), (119), and (121) into (107), we get the de-
sired result in (42).
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