
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017 6217

Decentralized Sparse Multitask RLS Over Networks
Xuanyu Cao and K. J. Ray Liu, Fellow, IEEE

Abstract—Distributed adaptive signal processing has attracted
much attention in the recent decade owing to its effectiveness in
many decentralized real-time applications in networked systems.
Because many natural signals are highly sparse with most entries
equal to zero, several decentralized sparse adaptive algorithms
have been proposed recently. Most of them is focused on the single
task estimation problems, in which all nodes receive data associ-
ated with the same unknown vector and collaborate to estimate
it. However, many applications are inherently multitask oriented
and each node has its own unknown vector different from others.
The related multitask estimation problem benefits from collabo-
rations among the nodes as neighbor nodes usually share analo-
gous properties and thus similar unknown vectors. In this paper,
we study the distributed sparse multitask recursive least squares
(RLS) problem over networks. We first propose a decentralized
online alternating direction method of multipliers algorithm for
the formulated RLS problem. The algorithm is simplified for easy
implementation with closed-form computations in each iteration
and low storage requirements. Convergence analysis of the algo-
rithm is presented. Moreover, to further reduce the complexity, we
propose a decentralized online subgradient method with low com-
putational overhead. We theoretically establish its mean square
stability by providing upper bounds for the mean square devia-
tion and the excess mean square error. A related distributed online
proximal gradient method is presented and extension to clustered
multitask networks is also provided. The effectiveness of the pro-
posed algorithms is corroborated by numerical simulations and an
accuracy-complexity tradeoff between the proposed algorithms is
highlighted.

Index Terms—Distributed estimation, decentralized optimiza-
tion, adaptive signal processing.

I. INTRODUCTION

IN THE last decade, distributed adaptive signal processing
has emerged as a vital topic because of the vast applications

in need of decentralized real-time data processing over net-
worked systems. For multi-agent networks, distributed adaptive
algorithms only rely on local information exchange, i.e., infor-
mation exchange among neighbor nodes, to estimate the un-
knowns. This trait endows distributed adaptive algorithms with
low communication overhead, robustness to node/link failures
and scalability to large networks. In the literature, the centralized

Manuscript received February 21, 2017; revised June 19, 2017; accepted
September 3, 2017. Date of publication September 7, 2017; date of current
version September 29, 2017. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Qingjiang Shi.
(Corresponding author: Xuanyu Cao.)

X. Cao is with the Department of Electrical Engineering, Princeton Univer-
sity, Princeton, NJ 08544 USA (e-mail: x.cao@princeton.edu).

K. J. R. Liu is with the Department of Electrical and Computer Engineer-
ing, University of Maryland, College Park, MD 20742 USA (e-mail: kjrliu@
umd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2750110

least mean squares (LMS) and recursive least squares (RLS) [1]
have been extended to their decentralized counterparts [2]–[6]
to deal with estimation problems over networks. Furthermore,
many natural signals are inherently sparse with most entries
equal to zero such as the image signals and audio signals. Spar-
sity of signals are particularly conspicuous in the era of big data:
for many applications, redundant input features (e.g., a person’s
salary, education, height, gender, etc.) are collected to be fed
into a learning system to predict a desired output (e.g., whether
a person will resign his/her job). Most input features are unre-
lated to the output so that the weight vector between the input
vector and the output is highly sparse. As such, several sparse
adaptive algorithms have been proposed such as the sparse LMS
in [7], [8], the sparse RLS in [9], the distributed sparse LMS
in [10], [11], the distributed sparse total least-squares (TLS)
for noisy input data in [12], the decentralized sparsity-aware
adaptive learning based on projection techniques[13], and the
distributed sparse RLS in [14].

Most of the decentralized sparse adaptive algorithms are fo-
cused on the single task estimation problem, in which all nodes
receive data associated with the same unknown vector and col-
laborate to estimate it. On the contrary, many applications are
inherently multitask-oriented, i.e., each node has its own un-
known vector different from others’. For instance, in a sensor
network, each node may want to estimate an unknown vector
related to its specific location and thus different nodes have
different unknown vectors to be estimated. In fact, several de-
centralized multitask adaptive algorithms have been proposed in
the literature [15] including the multitask diffusion LMS in [16],
asynchronous multitask LMS in [17], sparse multitask LMS in
[18] and multitask LMS with linear equality constraints in [19].
In these works, networks are divided into clusters so that nodes
within each cluster share the same task (weight vector) and
connected clusters have similar tasks (usually embodied by a
squared l2 proximity regularization). An alternative family of
multitask network models has been examined in [20]–[23]. In
these works, the entire network has a set of tasks (unknown
vectors to be estimated) and each node only receives signals
related to a subset of these tasks. Nodes exchange information
with their neighbors to infer the overlapping tasks cooperatively.
This multitask model is named the node-specific parameter esti-
mation (NSPE) problem. Specifically, incremental-based LMS
and diffusion-based LMS are put forth in [22] and [21], re-
spectively, for NSPE. Furthermore, in [20], incremental-based
distributed RLS for NSPE has been studied, in which each node
needs to estimate a local vector of local interest as well as a
global vector shared by all nodes. Additionally, unsupervised
multitask learning has been investigated in [24], [25], where
each node is unaware of its cluster relations with its neighbors.

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

6218 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

In such a blind case, without the prior knowledge of cluster affil-
iations, each node has to infer the clusters and learn the weight
vectors simultaneously and adaptively. Moreover, applications
of multitask adaptive signal processing, including the study of
Parkinson’s disease [26], power system state estimation [27],
beamforming and localization [28], have been considered in
the literature. A comprehensive review of NSPE and multitask
networks is available in [23].

To the best of our knowledge, all the existing distributed
adaptive algorithms for sparse multitask estimation problems are
based on decentralized versions of LMS. The RLS based sparse
multitask estimation problems have not aroused much attention.
It is well known that the RLS possesses faster convergence speed
than the LMS does in both centralized adaptive filters [1] and
decentralized adaptive networks [29]. Hence, the RLS is more
suitable for applications in need of fast and accurate tracking
of the unknowns than the LMS, especially when the devices
are capable of dealing with computations of moderately high
complexity (which is the case as the computational capability
of devices is increasing drastically). This motivates us to study
the decentralized sparse multitask RLS problem over networks.
The main contributions of this paper are summarized as follows.

� A global networked RLS minimization problem is for-
mulated. In accordance with the multitask nature of the
estimation problem, each node has its own weight vector.
Since neighbor nodes often share analogous properties and
thus similar weight vectors, we add regularization term to
penalize deviations of neighbors’ weight vectors. To en-
force sparsity of the weight vectors, we further introduce
l1 regularization.

� A decentralized online alternating direction method of
multipliers (ADMM) algorithm [27], [30]–[34] is proposed
for the formulated sparse multitask RLS problem. The pro-
posed ADMM algorithm is simplified so that each itera-
tion consists of simple closed-form computations and each
node only needs to store and update one M ×M matrix
and six M dimensional vectors, where M is the dimen-
sion of the weight vectors. Convergence analysis of the
proposed ADMM algorithm is also provided.

� To overcome the relatively high computational cost of the
proposed ADMM algorithm, we further present a decen-
tralized online subgradient method, which enjoys lower
computational complexity. The mean square stability of
the proposed subgradient method is established by up-
per bounding its mean sqaure deviation and excess mean
square error. A related distributed online proximal gradi-
ent method is also presented and its connections with the
subgradient method is discussed. Extension to clustered
multitask networks is also considered.

� Numerical simulations are conducted to corroborate the ef-
fectiveness of the proposed algorithms. Their advantages
over the single task sparse RLS algorithm in [14] are high-
lighted. We also observe an accuracy-complexity tradeoff
between the proposed algorithms.

The roadmap of the remaining part of this paper is as fol-
lows. In Section II, the sparse multitask RLS problem is for-
mally formulated. In Section III, we propose and simplify a

decentralized online ADMM algorithm for the formulated RLS
problem. In Section IV, we propose a decentralized online sub-
gradient method for the formulated problem in order to reduce
computational complexity. In Section V, numerical simulations
are conducted. In Section VI, we conclude this work.

II. THE STATEMENT OF THE PROBLEM

We consider a network of N nodes and some edges between
these nodes. We assume that the network is a simple graph, i.e.,
the network is undirected with no self-loop and there is at most
one edge between any pair of nodes. Denote the set of neigh-
bors of node n (those who are linked with node n by an edge) as
Ωn . The network can be either connected or disconnected (there
does not necessarily exist a path connecting every pair of nodes).
Time is divided into discrete slots denoted as t = 1, 2, Each
node n has an unknown (slowly) time-variant M dimensional
weight vector w̃n (t) ∈ RM to be estimated. The formulated net-
work is therefore a multitask learning network since different
nodes have different weight vectors, as opposed to the traditional
single task learning network [5], which is usually transformed
into a consensus optimization problem framework [35]–[37].
Each node n has access to a sequence of private measurements
{dn (t),un (t)}t=1,2,... , where un (t) ∈ RM is the input regres-
sor at time t and dn (t) ∈ R is the output observation at time t.
The measurement data are private in the sense that node n has
access only to its own measurement sequence but not others’.
The data at node n are assumed to conform to a linear regression
model with (slowly) time-variant weight vector w̃n (t):

dn (t) = un (t)Tw̃n (t) + en (t), (1)

where en (t) is the output measurement noise at time t. In multi-
task learning networks, the benefit of cooperation between nodes
comes from the fact that neighboring nodes have similar weight
vectors [16], where similarity is embodied by some specific dis-
tance measures. By incorporating terms promoting similarity
between neighbors and enforcing cooperation in the network,
an estimator may achieve potentially higher performance than
its non-cooperative counterpart.

Moreover, many signals in practice are highly sparse, i.e.,
most entries in the signal are equal to zero, with examples en-
compassing image signals, audio signals, etc. The sparsity of
signals is especially conspicuous in today’s big data era because
redundant data are collected as input features among which most
are unrelated to the targeted output, leading to sparsity of the
corresponding weight vectors. Furthermore, as per convention
in adaptive algorithms [1], we assume that the weight vectors
w̃n (t) vary with time very slowly. This suggests that past data
are of great merit to estimate the current weight vector, which
justifies the advantage of the RLS (studied in this paper) over the
LMS (studied in most existing works on multitask estimation
[16]–[18], [26]) in terms of convergence speed.

In all, we propose an RLS based estimator to track the un-
known weight vectors {w̃n (t)}n=1,2,...,N while enforcing sim-
ilarity between neighbors’ weight vectors and sparsity of all
weight vectors. The estimator at time T is the optimal solution

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6219

of the following optimization problem:

Minimizew1 ,...,wN

N
∑

n=1

T
∑

t=1

λT −t
(

dn (t)− un (t)Twn

)2

+ β

N
∑

n=1

∑

m∈Ωn

‖wn −wm‖22 + γ

N
∑

n=1

‖wn‖1 , (2)

where 0 < λ < 1, β > 0, γ > 0 are the forgetting factor of the
RLS algorithm, regularization coefficient for similarity between
neighbors’ weight vectors and regularization coefficient for
sparsity, respectively. If β =∞, then problem (2) enforces con-
sensus of weight vectors across nodes, and thus degenerates
to the sparse RLS problem in [14]. If the underlying network
is disconnected, then (2) can be equivalently decomposed into
parallel and independent subproblems, among which each sub-
problem is over one connected component of the original net-
work and is still of the form (2). In this sense, one can just focus
on solving (2) for connected networks only. In the following,
as the disconnectedness does not hurt the algorithms proposed
in this paper, to achieve a more unified analysis, we allow the
network to be either connected or disconnected. Note that the
measurement data {un (t), dn (t)} arrive in a sequential manner,
which necessitates an online (real time) algorithm to solve (2)
due to the prohibitive computation and storage cost of offline
methods. Further note that the private measurement data are dis-
tributed among network nodes. Thus, a distributed algorithm for
(2) is imperative as centralized algorithms are vulnerable to link
failures and can incur large communication costs, not to men-
tion the privacy concerns of the private data. Therefore, we are
aimed at finding distributed online algorithm for solving (2). In
the following two sections, we propose two different distributed
online algorithms with complementary merits in accuracy and
computational complexity.

Remark 1: We remark that the multitask sparse RLS problem
formulated in (2) is different from the multitask sparse learning
problem in [38] for particle filtering, which explicitly enforces
each particle to have the same sparsity pattern in the dictio-
nary. To this end, the optimization problem of [38] penalizes
the summation of some norm of vectors comprised of entries
at the same position of each weight vector. This formulation
couples every weight vector altogether and is not suitable for
a decentralized solution which we pursue here. In contrast, our
problem formulation (2) favors similar sparsity patterns of all
weight vectors in a different way by using proximity regulariza-
tion between neighbors so that the formulated problem remains
amenable to a distributed treatment. In addition, we note that a
related distributed online optimization problem with proximity
constraints has been examined in [39] recently. However, the
convergence of the saddle point algorithm proposed in [39] re-
lies on several restrictive assumptions which do not hold in the
generic adaptive signal processing problems and hence cannot
be applied to (2) in this paper. For example, the action set is
assumed to be bounded in [39] while the weight vectors in most
adaptive signal processing scenarios can be any vectors in the

entire Euclidean space. The cost functions in [39] are assumed to
be Lipschitz continuous which are not satisfied by the quadratic
cost functions widely used in signal processing.

III. THE DECENTRALIZED ONLINE ADMM

In this section, we propose an alternating direction method of
multipliers (ADMM) based decentralized online algorithm for
solving (2). It is further simplified so that its iteration consists
of simple closed-form computations and each node only needs
to store and update one M ×M matrix and six M dimensional
vectors. The convergence of the proposed ADMM algorithm
is also analyzed. Before the development of the algorithm, we
first present some rudimentary knowledge of ADMM in the
following section.

A. Preliminaries of ADMM

ADMM is an optimization framework widely applied to var-
ious signal processing applications, including wireless commu-
nications [32], network resource allocation [31], power systems
[33] and multi-agent coordination [34]. It enjoys fast conver-
gence speed under mild technical conditions [40] and is es-
pecially suitable for the development of distributed algorithms
[30], [41]. ADMM solves problems of the following form:

Minimizex,wf(x) + g(w) s.t. Ax + Bw = c, (3)

where A ∈ Rp×n ,B ∈ Rp×m , c ∈ Rp are constants and x ∈
Rn ,w ∈ Rm are optimization variables. f : Rn �→ R and g :
Rm �→ R are two convex functions. The augmented Lagrangian
can be formed as:

Lρ(x,w,y) = f(x) + g(w) + yT(Ax + Bw − c)

+
ρ

2
‖Ax + Bw − c‖22 , (4)

where y ∈ Rp is the Lagrange multiplier and ρ > 0 is some
constant. The ADMM then iterates over the following three
steps for k ≥ 0 (the iteration index):

xk+1 = arg min
x

Lρ

(

x,wk ,yk
)

, (5)

wk+1 = arg min
w

Lρ

(

xk+1 ,w,yk
)

, (6)

yk+1 = yk + ρ
(

Axk+1 + Bwk+1 − c
)

. (7)

The ADMM is guaranteed to converge to the optimal point
of (3) as long as f and g are convex [30], [41]. It is recently
shown that global linear convergence can be ensured provided
additional assumptions on problem (3) hold [40].

B. Development of Decentralized Online ADMM for (2)

To apply ADMM to (2), we first transform it to the form of
(3). We introduce auxiliary variables xn ∈ RM , n = 1, . . . , N,
and vn,i ∈ RM , n = 1, . . . N, i = 1, . . . , |Ωn |, where | · | de-
notes the cardinality of a set. Denote the index of the i-
th neighbor of node n as g(n, i). Thus, problem (2) can be

6220 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

equivalently transformed into the following problem:

Minimize

N
∑

n=1

T
∑

t=1

λT −t
(

dn (t)− un (t)Txn
)2

+ β
N
∑

n=1

⎡

⎢

⎣
|Ωn |‖xn‖22 − 2

⎛

⎝

|Ωn |
∑

i=1

vn,i

⎞

⎠

T

xn +
|Ωn |
∑

i=1

‖vn,i‖22

⎤

⎥

⎦

+ γ

N
∑

n=1

‖wn‖1

s.t. xn = wn , n = 1, . . . , N,

vn,i = wg (n,i) , n = 1 . . . , N, i = 1 . . . , |Ωn |, (8)

where the optimization variables are wn ,xn ,vn,i , n = 1, . . . ,
N, i = 1, . . . , |Ωn |. Note that optimization problem (8) is in the
form of (3) (regarding xn ’s and vn,i’s as the variable x in (3)
and wn ’s as the variable z in (3)). Thus, we can apply ADMM to
problem (8). Introducing Lagrange multiplier yn ∈ RM , zn,i ∈
RM , we can form the augmented Lagrangian of (8) as follows:

Lρ({xn ,vn,i ,wn ,yn , zn,i}n=1,...,N ,i=1,...,|Ωn |)

=
N
∑

n=1

T
∑

t=1

λT −t
(

dn (t)− un (t)Txn
)2

+ β

N
∑

n=1

⎡

⎢

⎣
|Nn |‖xn‖22 −2

⎛

⎝

|Ωn |
∑

i=1

vn,i

⎞

⎠

T

xn+
|Ωn |
∑

i=1

‖vn,i‖22

⎤

⎥

⎦

+ γ

N
∑

n=1

‖wn‖1 +
N
∑

n=1

yT
n (xn −wn)

+
N
∑

n=1

|Ωn |
∑

i=1

zT
n,i(vn,i −wgn , i) +

ρ

2

N
∑

n=1

‖xn −wn‖22

+
ρ

2

N
∑

n=1

|Ωn |
∑

i=1

‖vn,i −wg(n,i)‖22 (9)

In the following, for ease of notation, we use x to represent
all the {xn} and similarly for v,w,y, z. We apply the ADMM
updates (5), (6) and (7) to problem (8) as follows:

{

xk+1 ,vk+1} = arg min
x,v

Lρ

(

x,v,wk ,yk , zk
)

, (10)

wk+1 = arg min
w

Lρ

(

xk+1 ,vk+1 ,w,yk , zk
)

, (11)

yk+1
n = ykn + ρ

(

xk+1
n −wk+1

n

)

, (12)

zk+1
n,i = zkn,i + ρ

(

vk+1
n,i −wk+1

g(n,i)

)

. (13)

In the following, we detail how to implement the updates of the
primal variables, i.e., (10) and (11), in a distributed and online
fashion.

1) Updating x and v: The update of x and v in (10) can be
decomposed across nodes. For each node n, the subproblem is:

{

xk+1
n ,

{

vk+1
n,i

}

i=1,...,|Ωn |

}

= arg min
xn ,{vn , i }i= 1 , . . . , |Ω n |

Jkn (T),

(14)
in which the objective function Jkn (T) is defined as:

Jkn (T) =
T
∑

t=1

λT −t
(

dn (t)− un (t)Txn
)2

+ β

⎡

⎢

⎣
|Ωn |‖xn‖22 − 2

⎛

⎝

|Ωn |
∑

i=1

vn,i

⎞

⎠

T

xn +
|Ωn |
∑

i=1

‖vn,i‖22

⎤

⎥

⎦

+ ykT
n xn +

|Ωn |
∑

i=1

zkT
n,ivn,i +

ρ

2

∥

∥xn −wk
n

∥

∥

2
2

+
ρ

2

|Ωn |
∑

i=1

∥

∥

∥vn,i −wk
g(n,i)

∥

∥

∥

2

2
. (15)

Define the data dependent input correlation matrix and input-
output cross correlation vector of node n at time T to be:

Rn (T) =
T
∑

t=1

λT −tun (t)un (t)T, (16)

pn (T) =
T
∑

t=1

λT −tdn (t)un (t). (17)

Note that Jkn (T) is a convex quadratic function. Hence, the
necessary and sufficient condition for optimality of problem (14)
is that the gradient of Jkn (T) vanishes. The gradient of Jkn (T)
with respect to xn and vn,i can be computed as follows:

∇xn
Jkn (T) = (2Rn (T) + 2β|Ωn |I + ρI)xn − 2β

|Ωn |
∑

i=1

vn,i

− 2pn (T) + ykn − ρwk
n , (18)

∇vn , i
Jkn (T) = − 2βxn + (2β + ρ)vn,i + zkn,i − ρwk

g(n,i) .

(19)

Letting the gradients with respect to xn and vn,i be zero, we
rewrite the update in (14) as (20) shown at the bottom of the next
page. To inverse the matrix in (20), we need to use the following
matrix inversion lemma.

Lemma 1: For arbitrary matrices A ∈ Rm×m ,B ∈ Rm×n ,
C ∈ Rn×m ,D ∈ Rn×n such that all the matrix inversions at the
R.H.S. of (21) exist, the (21) holds. (21) shown at the bottom of
the next page.

Define a new matrix:

Fn (T) =
[

2Rn (T) +
(

ρ+
2βρ|Ωn |
2β + ρ

)

I
]−1

. (22)

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6221

By invoking the matrix inversion lemma (21), we can solve for
the update (20) in closed form:

xk+1
n = Fn (T)

(

2pn (T)− ykn + ρwk
n

)

+
2β

2β + ρ
Fn (T)

|Ωn |
∑

i=1

(

−zkn,i + ρwk
g(n,i)

)

, (23)

vk+1
n,i =

2β
2β + ρ

Fn (T)
(

2pn (T)− ykn + ρwk
n

)

+
1

2β + ρ

(

−zkn,i + ρwk
g(n,i)

)

+
(

2β
2β + ρ

)2

Fn (T)
|Ωn |
∑

j=1

(

−zkn,j + ρwk
g(n,j)

)

. (24)

2) Updating w: We note that the update for w in (11) can
be decomposed not only across nodes but also across entries of
the vector wn . For each node n, the l-th entry of wn can be
updated as follows:

wk+1
n (l) = arg min

wn (l)

{

γ|wn (l)| − ykn (l)wn (l)

−
⎛

⎝

∑

g (m,i)=n

zkm,i(l)

⎞

⎠wn (l) +
ρ

2
[

wn (l)− xk+1
n (l)

]2

+
ρ

2

∑

g (m,i)=n

[

wn (l)− vk+1
m,i (l)

]2

}

(25)

= arg min
wn (l)

{

γ|wn (l)|+ ρ

2
(1 + |Ωn |)

[

wn (l)

− 1
ρ(1 + |Ωn |)

(

ykn (l) + ρxk+1
n (l)

+
∑

g (m,i)=n

(

zkm,i(l) + vk+1
m,i (l)

)

)]2}

(26)

= S γ
ρ (1 + |Ω n |)

(

1
ρ(1 + |Ωn |)

(

ykn (l) + ρxk+1
n (l)

+
∑

g (m,i)=n

(

zkm,i(l) + vk+1
m,i (l)

)

))

, (27)

where the soft-threshold function S is defined for a ∈ R, κ > 0
as follows:

Sκ(a) =

⎧

⎪

⎨

⎪

⎩

a− κ, ifa > κ,

0, if|a| ≤ κ,
a+ κ, if a < −κ.

(28)

In (27), we have made use of the following fact.
Lemma 2: For any λ > 0, ρ > 0, v ∈ R, we have:

S λ
ρ
(v) = arg min

x

(

λ|x|+ ρ

2
(x− v)2

)

. (29)

Once we extend the definition of S to vectors in a entrywise
way, we can write the update for wn compactly as:

wk+1
n = S γ

ρ (1 + |Ω n |)

(

1
ρ(1 + |Ωn |)

(

ykn + ρxk+1
n

+
∑

g(m,i)=n

(

zkm,i + vk+1
m,i

)

))

. (30)

3) Online Algorithm with Varying T : So far, the derived
ADMM algorithm is only suitable for one particular time shot
T . Since it takes iterations for ADMM to converge to the opti-
mal point, for each time T , we ought to run multiple rounds of
ADMM iterations k = 1, . . . ,K for some sufficiently large K.
After the ADMM has converged for this particular time T , we
update the data related quantities (Rn (T) and pn (T)) and move
to the next time slot. However, since the underlying weight vec-
tors are varying across time (i.e., the underlying linear system is
non-stationary), it is meaningless to estimate the weight vectors
very accurately for every time slot. Thus, in the following, we
choose K = 1, i.e., only one iteration of ADMM update is exe-
cuted in each time slot. This is inspired by many existing adap-
tive algorithms such as the LMS algorithm, where only one step
of gradient descent is performed at each time slot [1]. As such,
we replace k with T− 1 in the previously derived updates (23),
(24), (30) and get updates that are suitable for varying time T :

xn (T) = Fn (T) (2pn (T)− yn (T − 1) + ρwn (T − 1))

+
2β

2β + ρ
Fn (T)

|Ωn |
∑

i=1

(−zn,i(T − 1) + ρwg(n,i)(T − 1)
)

,

(31)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2Rn (T) + 2β|Ωn |I + ρI −2βI −2βI · · · −2βI
−2βI (2β + ρ)I

−2βI (2β + ρ)I 0
...

. . .
−2βI 0 (2β + ρ)I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xk+1
n

vk+1
n,1

vk+1
n,2
...

vk+1
n,|Ωn |

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2pn (T)− ykn + ρwk
n

−zkn,1 + ρwk
g(n,1)

−zkn,2 + ρwk
g(n,2)

...
−zkn,|Ωn | + ρwk

g(n,|Ωn |)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

[

A B
C D

]−1

=

[

(

A−BD−1C
)−1 − (A−BD−1C

)−1 BD−1

−D−1C
(

A−BD−1C
)−1 D−1 + D−1C

(

A−BD−1C
)−1 BD−1

]

. (21)

6222 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

vn,i(T) =
2β

2β + ρ
Fn (T)(2pn (T)− yn (T − 1)

+ ρwn (T− 1)) +
1

2β + ρ

(−zn,i(T − 1) + ρwg(n,i)(T − 1)
)

+
(

2β
2β + ρ

)2

Fn (T)
|Ωn |
∑

j=1

(−zn,j (T − 1) + ρwg(n,j)(T − 1)
)

,

(32)

wn (T) = S γ
ρ (1 + |Ω n |)

(

1
ρ(1 + |Ωn |)

(

yn (T − 1) + ρxn (T)

+
∑

g(m,i)=n

(zm,i(T − 1) + vm,i(T))

))

. (33)

Moreover, the updates (12) and (13) for dual variables can be
rewritten as:

yn (T) = yn (T − 1) + ρ (xn (T)−wn (T)) , (34)

zn,i(T) = zn,i(T − 1) + ρ
(

vn,i(T)−wg(n,i)(T)
)

. (35)

The correlation matrices and cross-correlation vectors can be
updated as follows:

Rn (T + 1) = λRn (T) + un (T + 1)un (T + 1)T, (36)

pn (T + 1) = λpn (T) + dn (T + 1)un (T + 1). (37)

And Fn (T) is computed according to (22).
Remark 2: The computation of Fn (T) in (22) necessitates

inversion of an M ×M matrix, which incurs a computational
complexity ofO(M 3) unless special structure is present. For the
special case ofλ = 1 (which is suitable for time-invariant weight
vectors), this burden can be alleviated as follows. According to
(22), (36) and the condition that λ = 1, we have:

Fn (T)

=
[

2
(

Rn (T − 1) + un (T)un (T)T)+
(

ρ+
2βρ|Ωn |
2β + ρ

)

I
]−1

=
[

F−1
n (T − 1) + 2un (T)un (T)T]−1

= Fn (T − 1)− Fn (T − 1)un (T)un (T)TFn (T − 1)
1
2 + un (T)TFn (T − 1)un (T)

. (38)

However, in the general case where λ < 1, the matrix inversion
incurred by the computation of Fn (T) is inevitable, which is
the most computationally intensive part of the proposed ADMM
algorithm. In fact, when λ < 1, from (22), (36), we have:

Fn (T)

=
[

2λRn (T − 1) +
(

ρ+
2βρ|Ωn |
2β + ρ

)

I + 2un (T)un (T)T
]−1

.

(39)

As λ < 1, the sum of the first two terms inside the inversion
of (39) is not equal to Fn (T − 1)−1 (c.f. (22)). Therefore, the
update of (38) does not hold any more. Note that the matrix
inversion in (22) is different from the one involved in classical
centralized RLS [1]. In classical RLS, we are interested in the

inversion of the input data correlation matrix Rn (T) only, which
can be computed recursively via a rank one update (c.f. (36)). In
such a case, even whenλ < 1, we can still apply matrix inversion
lemma to avoid explicit computation of matrix inversion. In
contrast, in the matrix inversion (22) that we encounter in this
paper, a scalar multiple of I appears inside the matrix to be
inverted so that the rank one update no longer holds for the
matrix to be inverted. This prohibits application of the matrix
inversion lemma unless in the special case of λ = 1.

4) Simplification of the ADMM Updates: So far, the ADMM
updates involve primal variables {vn,i} and dual variables
{z}n,i . For each node n, {vn,i} and {z}n,i include 2|Ωn | M -
dimensional vectors, which is costly to sustain in terms of com-
munication and storage overhead, especially when the numbers
of neighbors (degrees) are large. This motivates us to simplify
the ADMM updates (31)–(37) so that the number of vectors
at each node is independent of its degree. To this end, we first
define the following auxiliary variables:

zn (T) =
|Ωn |
∑

i=1

zn,i(T), (40)

zn (T) =
∑

g(m,i)=n

zm,i(T), (41)

vn (T) =
|Ωn |
∑

i=1

vn,i(T), (42)

vn (T) =
∑

g(m,i)=n

vm,i(T), (43)

wn (T) =
∑

m∈Ωn

wm (T), (44)

ηn (T) = Fn (T)(2pn (T)− yn (T − 1) + ρwn (T − 1)),
(45)

θn (T) = Fn (T)(−zn (T − 1) + ρwn (T − 1)), (46)

ηn (T) =
∑

m∈Ωn

ηm (T), (47)

θn (T) =
∑

m∈Ωn

θm (T). (48)

Thus, the update for x in (31) can be rewritten as:

xn (T) = ηn (T) +
2β

2β + ρ
θn (T). (49)

Using (32) yields the update for vn (T) and vn (T):

vn (T) =
2β|Ωn |
2β + ρ

ηn (T) +
(

2β
2β + ρ

)2

|Ωn |θn (T)

+
1

2β + ρ
(−zn (T − 1) + ρwn (T − 1)). (50)

vn (T) =
2β

2β + ρ
ηn (T) +

(

2β
2β + ρ

)2

θn (T)

+
1

2β + ρ
(−zn (T − 1) + ρ|Ωn |wn (T − 1)). (51)

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6223

The update for wn (T) can be rewritten as:

wn (T) = S γ
ρ (1 + |Ω n |)

(

1
ρ(1 + |Ωn |) (yn (T − 1) + ρxn (T)

+ zn (T − 1) + ρvn (T))

)

. (52)

Similarly, from (35), we can spell out the updates for zn (T) and
zn (T):

zn (T) = zn (T − 1) + ρ(vn (T)−wn (T)), (53)

zn (T) = zn (T − 1) + ρ(vn (T)− |Ωn |wn (T)). (54)

Now, we are ready to formally present the proposed decentral-
ized online ADMM algorithm for solving (2), which is summa-
rized in Algorithm 1. Notice that the algorithm is completely
distributed: each node only needs to communicate with its neigh-
bors. It is also online (real-time): each node only needs to store
and update one M ×M matrix Rn (T) and six M dimen-
sional vectors pn (T),wn (T),wn (T),yn (T), zn (T), zn (T).
All other involved quantities in Algorithm 1 are interme-
diate and can be derived from these stored matrices and
vectors. For each node n, the most computationally inten-
sive part is the matrix inversion in (22), which needs to be
done once in each time slot with computational complexity
of O (M 3

)

. The rest part of Algorithm 1 incurs computa-
tional complexity of 7M 2 + (38 + 3|Ωn |)M for each node n.
Hence, in total, the computational complexity of each node
n is O (M 3

)

+ 7M 2 + (38 + 3|Ωn |)M = O (M 3 + |Ωn |M
)

.
In most scenarios, M 2 is much larger than |Ωn |, i.e., the num-
ber of neighbors of node n. In such a case, the computational
complexity of each node is O (M 3

)

. Furthermore, the com-
munication complexity of Algorithm 1 at each node is 3M , as
each node n needs to broadcast three M -dimensional vectors
ηn (T),θn (T),wn (T) to its neighbors at each time T .

We note that the online versions of ADMM have been investi-
gated in [42] for the centralized scenario and in [43], [44] for the
decentralized scenario. The generic online algorithms proposed
in these works, analogous to the classical static ADMM in [30],
necessitate solving nonlinear optimization problems in each it-
eration and are unfavorable in many online applications due to
the high computational overhead. In this paper, by exploiting
the special structure of the multitask sparse RLS problem in (2)
and reformulating it into an appropriate equivalent form (8), the
proposed online distributed ADMM algorithm only requires di-
rect closed-form computations in each iteration, which reduces
the computational complexity. To further lower the computa-
tional overhead, we simplify the ADMM updates so that each
node only needs to maintain and update oneM ×M matrix and
six M -dimensional vectors regardless of its degree (number of
neighbors).

C. Convergence of the Algorithm 1

In this section, we analyze the convergence of Algorithm 1.
To facilitate analysis, we make the following assumptions.

Algorithm 1: The proposed decentralized online ADMM
algorithm.
Inputs:

Measurement data stream at each node {un (t), dn (t)},
n = 1, 2, . . . , N , t = 1, 2, . . .

Outputs:
Estimates of the unknown weight vectors at each node
{wn (T)}, T = 1, 2, . . .

1: Initialize Rn (0) = 0M×M and pn (0) = wn (0) = wn

(0) = yn (0) = zn (0) = zn (0) = 0M . T = 0.
2: Repeat:
3: T ← T + 1.
4: Each node n updates its correlation matrix and cross-

correlation vector once receiving the new data un (T),
dn (T):

Rn (T) = λRn (T − 1) + un (T)un (T)T, (55)

pn (T) = λpn (T − 1) + dn (T)un (T). (56)

5: Each node n computes Fn (T) according to (22).
6: Each node n computes ηn (T) and θn (T) according to

(45) and (46) and then broadcasts its results to its
neighbors.

7: Each node n receives ηm (T) and θm (T) from its
neighbors m ∈ Ωn and forms ηn (T) and θn (T) based
on (47) and (48).

8: Each node n computes xn (T),vn (T),vn (T) according
to (49), (50) and (51), respectively.

9: Each node n computes wn (T) based on (52) and
broadcasts the result to its neighbors.

10: Each node n receives wm (T) from its neighbors
m ∈ Ωn and forms wn (T) according to (44).

11: Each node n updates yn (T), zn (T), zn (T) according to
(34), (53) and (54).

Assumption 1: The true weight vector w̃n is time-invariant,
i.e., the linear regression data model is dn (t) = un (t)Tw̃n +
en (t).

Assumption 2: For each node n, the input process {un
(t)}t=1,2,... is independent across time with time-invariant cor-
relation matrix Rn = E

[

un (t)un (t)T
]

.
Assumption 3: For each node n, the noise process {en

(t)}t=1,2,... has zero mean, i.e., E[en (t)] = 0 and is independent
across time and independent from the input process {un (t)}.

Note that all of these assumptions are standard when ana-
lyzing the performance of adaptive algorithms in the literature
[1]. Recall that λ is assumed to be strictly smaller than 1 in the
problem formulation in Section II. Later, this will be used to
establish the convergence of Rn (T) and pn (T) (c.f. (16) and
(17)) by invoking the strong law of large numbers. For a positive
definite matrix Θ and a vector ω, we define ‖ω‖Θ :=

√
ωTΘω.

Define w(T) =
[

w1(T)T, . . . ,wN (T)T
]T

. Then, we have the
following result regarding the convergence of Algorithm 1.

Theorem 1: Suppose Assumptions 1–3 hold. Then, the out-
put of Algorithm 1, i.e., w(T), converges to the optimal point

6224 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

of the following optimization problem almost surely:

Minimizew
1

1− λ
N
∑

n=1

‖wn − w̃n‖2Rn

+ β

N
∑

n=1

∑

m∈Ωn

‖wm −wn‖22 + γ

N
∑

n=1

‖wn‖1 .

(57)

Proof: The proof is presented in Appendix A. �

Algorithm 2: The proposed decentralized online subgradient
algorithm.

Inputs:
Measurement data stream at each node {un (t), dn (t)},
n = 1, 2, . . . , N , t = 1, 2, . . .

Outputs:
Estimates of the unknown weight vectors at each node
{wn (T)}, T = 1, 2, . . .

1: Initialize Rn (0) = 0M×M , pn (0) = wn (0) = wn (0) =
0M , T = 0.

2: Repeat:
3: T ← T + 1.
4: Each node n updates its correlation matrix and cross-

correlation vector once receiving the new data un (T),
dn (T):

Rn (T) = λRn (T − 1) + un (T)un (T)T, (58)

pn (T) = λpn (T − 1) + dn (T)un (T). (59)

5: Each node n updates wn (T):

wn (T) =wn (T− 1)− α
[

2Rn (T)wn (T− 1)− 2pn (T)

+ 4β(|Ωn |wn (T − 1)−wn (T − 1))

+ γ sgn(wn (T − 1))

]

. (60)

6: Each node n broadcasts its wn (T) to its neighbors.
7: Each node n receives wm (T) from its neighbors m∈Ωn

and forms wn (T) as follows:

wn (T) =
∑

m ∈Ωn

wm (T). (61)

IV. THE DECENTRALIZED ONLINE SUBGRADIENT METHOD

The implementation of the proposed Algorithm 1 necessitates
an inversion of an M ×M matrix at each time and each node,

which may not be suitable for nodes with low computational
capability. In fact, a relatively high computational overhead is
a general drawback of dual domain methods (e.g., ADMM) in
optimization theory [36]. On the contrary, primal domain meth-
ods such as gradient descent method, though having relatively
slow convergence speed, enjoys low computational complexity
[45]. As such, in this section, we present a distributed online
subgradient method for problem (2) to trade off convergence
speed and accuracy for low computational complexity.

A. Development of the Decentralized Online
Subgradient Method

Recall the optimization problem at time T , i.e., problem (2).
Denote the objective function of (2) as HT (w). We derive the
subdifferential (the set of subgradients [46]) ofHT at w in (62),
shown at the bottom of this page, where the sign (set) function
is defined as:

sgn(x) =

⎧

⎨

⎩

1, if x > 0,
−1, if x < 0,
[−1, 1], if x = 0.

(63)

The extension of the sgn function to vectors is entrywise.
The subgradient method is to simply use the iteration w(T) =
w(T − 1)− αg, where g ∈ ∂HT (w(T − 1)) is any subgradi-
ent of HT at w(T − 1) and α > 0 is the step size [46]. This
naturally leads to the following decentralized online update:

wn (T) = wn (T − 1)− α
[

2Rn (T)wn (T − 1)− 2pn (T)

+ 4β
∑

m∈Ωn

(wn (T − 1)−wm (T− 1)) + γ sgn(wn (T− 1))

]

,

(64)

where sgn(0) is any number within the interval [−1, 1]1. By
introducing an auxiliary variable wn (T), we propose the de-
centralized online subgradient method for (2) in Algorithm 2.
We observe that Algorithm 2 is completely decentralized as ev-
ery node only communicates with its neighbors. It is also online
since each node only needs to store and update one M ×M
matrix and threeM dimensional vectors. More importantly, Al-
gorithm 2 is free of any matrix inversion, which is a major com-
putational burden of Algorithm 1. The computational complex-
ity of each node n in each time slot is 4M 2 + (12 + |Ωn |)M =
O (M 2 + |Ωn |M

)

. When M is larger than |Ωn | (which is usu-
ally the case), the computational complexity becomesO (M 2

)

.

1There is a standard abuse of notation for the sgn function: in (62) and (63),
sgn(0) is defined to be the interval [−1, 1] while in (64), sgn(0) is defined to
be any arbitrary number within [−1, 1]. In the following, the latter definition
will be used.

∂HT (w) =

⎡

⎢

⎣

2R1(T)w1 − 2p1(T) + 2β
(

2|Ω1 |w1 − 2
∑

m∈Ω1
wm

)

+ γ sgn(w1)
...

2RN (T)wN − 2pN (T) + 2β
(

2|ΩN |wN − 2
∑

m∈ΩN
wm

)

+ γ sgn(wN)

⎤

⎥

⎦
, (62)

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6225

In addition, the communication complexity of each node n at
each time isM as it only needs to broadcast oneM -dimensional
vector wn (T) to its neighbors at each time T . From these com-
plexity analyses, we can see that the computation and commu-
nication complexity of Algorithm 2 is smaller than those of
Algorithm 1.

B. Convergence Analysis of Algorithm 2

In this section, we analyze the convergence behavior of
Algorithm 2. Specifically, we will establish the mean square
stability of Algorithm 2 by upper bounding the mean square de-
viation (MSD) and the excess mean square error (EMSE) under
Assumptions 1–3 and the assumption that the step sizeα is small
enough. Denote the stacked vector of {wn (T)}Nn=1 as w(T) ∈
RNM and the stacked vector of {w̃n}Nn=1 as w̃ ∈ RNM . Define
the block Laplacian matrix L ∈ RNM×NM :

Lij =

⎧

⎪

⎨

⎪

⎩

|Ωi |I, if i = j,

−I, if j ∈ Ωi ,

0, o.w.,

(65)

where Lij is the (i, j)-thM ×M block of matrix L. From basic
spectral graph theory, we know that L is positive semidefinite.
Define a block diagonal matrix R = diag(R1 ,R2 , . . . ,Rn).
Denote the smallest eigenvalue of R, the largest eigenvalue of
R and the largest eigenvalue of L as μ1 , μ2 , μ3 , respectively. We
have μ2 ≥ μ1 > 0 (each Rn is positive definite) and μ3 ≥ 0.
Furthermore, we define two non-negative constants δ and Γ as:

δ = max
{∣

∣

∣

∣

1− 2αμ2

1− λ − 4αβμ3

∣

∣

∣

∣

,

∣

∣

∣

∣

1− 2αμ1

1− λ
∣

∣

∣

∣

}

, (66)

Γ = 4αβμ3‖w̃‖2 + αγ
√
MN. (67)

Then, we have the following results regarding the mean square
stability of Algorithm 2.

Theorem 2: Suppose Assumptions 1–3 hold. Further assume
that the step size α satisfies:

α <
1

μ2
1−λ + 2βμ3

. (68)

Then the constant δ is strictly smaller than 1 and we have the
following bounds for the steady state mean square deviation
(MSD) and the steady state excess mean square error (EMSE):

MSD := lim sup
T→∞

E
[‖w(T)− w̃‖22

] ≤ Γ2

(1− δ)2 , (69)

EMSE

:= lim sup
T→∞

E

[

N
∑

n=1

(

un (T)Twn (T − 1)− un (T)Tw̃n

)2

]

≤
[

max
n=1,...,N

tr(Rn)
]

Γ2

(1− δ)2 . (70)

Proof: The proof is presented in Appendix B. �
Remark 3: The assumption (68) requires the step size α to

be small enough, which is a standard requirement for the con-
vergence of both centralized and decentralized adaptive filters

in general [1], [5]. In practice, the choice of α should be neither
too small nor too large. If α is too large and (68) is violated, the
performance of Algorithm 2 degrades or may even be unstable.
Ifα is too small, Algorithm 2 still converges but the convergence
speed may be very slow. The requirement (68) suggests that a
reasonable value of α may depend on lots of factors, including
the data/signal statistics, the network topology and the problem
parameters.

C. The Decentralized Online Proximal Gradient Method

An optimization algorithm closely related to the subgradient
method is the proximal gradient method [47], which relies on
the proximal operator defined as:

proxf (v) = arg min
x

(

f(x) +
1
2
‖x− v‖22

)

, (71)

in which v ∈ Rk and f : Rk �→ R is some convex function.
Suppose φ : Rk �→ R and ψ : Rk �→ R are two convex func-
tions, among which φ is differentiable. Consider the following
convex optimization problem:

Minimizex φ(x) + ψ(x). (72)

Then, the proximal gradient method for solving problem (72)
is:

xi+1 = proxαψ
(

xi − α∇φ (xi)) , (73)

where i is the iteration index and α > 0 is the step size. Under
certain technical assumptions (e.g., Lipschitz continuity of∇φ),
convergence of the proximal gradient method is guaranteed [48].
We can apply the proximal gradient method to problem (2) by
letting φ and ψ be the first two summation terms and the last
summation term of (2), respectively. Specifically, the proximal
gradient update at node n is:

wn (T) = Sαγ
(

wn (T − 1)− α[2Rn (T)wn (T − 1)

− 2pn (T) + 4β(|Ωn |wn (T − 1)−wn (T − 1))]
)

,
(74)

where S is the soft thresholding function defined in (28)
and wn (T) :=

∑

m∈Ωn
wm (T). The proximal gradient method

specified in (74) is clearly online and distributed. It is indeed
analogous to the subgradient method update in (60). The only
difference is that, instead of using a sgn function in the descent
direction in (60), the proximal gradient method applies a soft
thresholding operator in (74). This similarity suggests that the
two methods may have analogous empirical performance, which
will be verified in Section V.

D. Extension to Clustered Multitask Networks

In this section, we extend Algorithm 2 to clustered multitask
networks [16]. In clustered multitask networks, nodes belonging
to the same cluster share the same weight vector and connected
clusters have similar weight vectors (two clusters are connected
if there is at least one edge linking a node from one cluster to a
node in the other cluster). Specifically, all nodes are divided into
Q non-overlapping clusters: {1, . . . , N} = ∪Qq=1Cq , Ci ∩ Cj =

6226 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

∅,∀i �= j. Denote the index of the cluster that node n belongs
to as h(n), i.e., n ∈ Ch(n) . Then, the clustered multitask sparse
RLS problem is:

Minimizew ,w#

N
∑

n=1

T
∑

t=1

λT −t
(

dn (t)− un (t)Twn

)2

+
N
∑

n=1

∑

m ∈Ωn \Ch (n)

βnm‖wm −wn‖22

+
N
∑

n=1

γn‖wn‖1

s.t. wn = w#
q ,∀q = 1, . . . , Q, n ∈ Cq . (75)

The constraints of problem (75) enforce every node in a cluster
Cq to share the same weight vector w#

q . The second summa-
tion term in the objective function of (75) promotes proximity
between the weight vectors of neighbors belonging to different
clusters, which leads to similarity between the weight vectors
of connected clusters. We note that in problem (75), the prox-
imity regularization parameter βnm > 0 is edge dependent and
the sparsity regularization parameter γn > 0 is node dependent.
This dependence can be exploited to capture the prior knowl-
edge of the model, e.g., the extent of proximity between two
connected clusters and the extent of sparsity of the weight vec-
tor of a cluster. To solve problem (75) in a distributed and online
manner, we resort to the distributed subgradient method for con-
sensus optimization [45] (as nodes within the same cluster needs
to reach consensus) and propose a variant suitable for multitask
online processing [16]. To this end, we first define a combi-
nation coefficient matrix C ∈ RN×N with non-negative entries
(cnm ≥ 0,∀n,m = 1, . . . , N) and the following properties:

N
∑

m=1

cnm = 1,∀n = 1, . . . , N, (76)

cnm = 0,∀m /∈ n ∪ {Ωn ∩ Ch(n)}, n = 1, . . . N. (77)

Denote the objective function of problem (75) as FT (w). Thus,
the subdifferential of FT (w) with respect to wn is:

∂wn
FT (w) = 2Rn (T)wn − 2pn (T)

+
∑

m∈Ωn \Ch (n)

(βnm + βmn)(2wn − 2wm)

+ γn sgn(wn). (78)

Then, the distributed online subgradient method for problem
(75) at each node n is to perform the following update:

wn (T) =
N
∑

m=1

cnmwm (T − 1)− α∂wn
FT (w(T − 1)),

(79)
in which the linear combination (the first term) is only between
neighbor nodes belonging to the same cluster. For simplification,

Fig. 1. The network topology.

we define:

βn :=
∑

m ∈Ωn \Ch (n)

(βmn + βnm), (80)

wn (T) :=
∑

m ∈Ωn \Ch (n)

(βmn + βnm)wm (T). (81)

Thus, the update of the distributed online subgradient method
at each node n becomes:

wn (T) =
N
∑

m=1

cnmwm (T − 1)

− α[2Rn (T)wn (T − 1)− 2pn (T)

+ 2βnwn (T − 1)− 2wn (T − 1)

+ γn sgn(wn (T − 1))]. (82)

The matrix Rn (T) and the vector pn (T) can also be updated
according to (58) and (59) respectively when new data arrive.

V. NUMERICAL EVALUATION

In this section, numerical simulations are conducted to verify
the effectiveness of the proposed decentralized online ADMM
algorithm (or ADMM algorithm in short), Algorithm 1, and
the proposed decentralized online subgradient method (or sub-
gradient method in short), Algorithm 2. The performance of
the global offline optimization of problem (2) (global optimizor
henceforth) is shown as a benchmark. The performance of the
proposed distributed online proximal gradient method is also
reported. For the sake of comparison, the performance of the
distributed single task sparse RLS algorithm in [14] (DSPARLS
henceforth) is presented as well to highlight the impact of mul-
titask.

We consider a network with N = 20 nodes and 40 random
edges so that the average node degree is 4. The network topol-
ogy is illustrated in Fig. 1. The dimension of the input data
is M = 20. Each entry of the input data sequence {un (t)} is
generated according to the uniform distribution over the interval
[0, 1] independently. The noise sequence {en (t)} is generated
according to the uniform distribution on [0, N0] independently,
where N0 is a constant controlling the noisy level of the obser-
vations. To achieve sparsity, we let 18 entries (whose positions
are randomly selected) of the true weight vectors w̃n (t) be zero.
The two remaining entries w̃part

n (0) ∈ R2 of the initial weight

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6227

vectors are generated in a way that enforces similarity between
neighbors. Specifically, we first generate N i.i.d. two dimen-
sional random vectors {φn}n=1,...,N uniformly distributed on
[0, 1]2 . Then, we solve the following optimization problem to
obtain w̃part

n (0):

{w̃part
n (0)}n=1,...,N

= arg min
wn ∈R2 ,n=1,...,N

{

N
∑

n=1

‖wn − φn‖22

+
1
2

N
∑

n=1

∑

m ∈Ωn

‖wn −wm‖22
}

, (83)

which promotes similarity between neighbors and can be easily
solved as the objective function is a convex quadratic function.
To capture the slowly time-variant trait of the weight vectors, the
increment from w̃n (t) to w̃n (t+ 1), i.e., w̃n (t+ 1)− w̃n (t) is
generated by uniform distribution on [−0.5N1 , 0.5N1] indepen-
dently across time and nodes, whereN1 is a constant controlling
the varying rate of the weight vectors.

Now, we choose the regularization parameters and forgetting
factor as β = γ = 1, λ = 0.995. We consider two scenarios in
terms of the noise level N0 and the varying rate of weight vec-
tors N1 . In Scenario 1, N0 = 0.1, N1 = 0.02 while in Scenario
2, N0 = 0.3, N1 = 0.05. The latter scenario has noisier obser-
vations and weight vectors which vary faster. Thus, the weight
vectors of Scenario 2 are more difficult to track than those of
Scenario 1. In particular, we note that the noises and the sig-
nals are roughly of the same scale in Scenario 2. In such a
scenario, the average value of the signal un (t)Tw̃n (t) is ap-
proximately equal to 2× 0.5× 0.5 = 0.5 (note that only two
entries of the true weight vector are nonzero) while the noise
is drawn from the interval [0, 0.3]. In addition, the scale of the
temporal variations of the true weight vectors is smaller than
that of the true weight vectors themselves by only one order
of magnitude, which can be regarded as a fast time-varying
scenario. For the proposed ADMM algorithm, the proposed
subgradient method, the proposed proximal gradient method,
the DSPARLS algorithm in [14] and the global optimizor, we
plot the relative errors (defined to be ‖w(t)− w̃(t)‖2/‖w̃(t)‖2 ,
where w(t) and w̃(t) are concatenations of wn (t) and w̃n (t)
of all nodes, respectively) as functions of time indices, i.e., the
learning curves, under Scenario 1 (Fig. 2(a)) and Scenario 2
(Fig. 2(b)), respectively. Each learning curve is the average of
300 independent trials. Several interesting observations can be
made from Fig. 2. First, the relative errors of both the proposed
ADMM algorithm and the proposed subgradient method can
converge to that of the global optimizor, i.e., the performance
benchmark, as the observation data accumulate. On the contrary,
the relative error of DSPARLS does not converge to that of the
global optimizor. This highlights the effectiveness of the two
proposed algorithms when tracking multitask weight vectors,
which cannot be tracked well by existing method (DSPARLS
in this case) for the single task situation. Second, comparisons
between the learning curves of the proposed two algorithms in-
dicate that the proposed ADMM algorithm needs much fewer

Fig. 2. Learning curves of different algorithms in different scenarios.

observations, or equivalently much less time (about 100 time
units), to track the weight vectors accurately than the proposed
subgradient method does (about 600 time units). This is not sur-
prising as dual domain methods generally converge faster than
primal domain methods in the literature of optimization theory
[36]. However, the advantage of the proposed ADMM algorithm
in convergence speed comes at the cost of higher computational
overhead per time unit than the proposed subgradient method.
This accuracy-complexity tradeoff makes the proposed two al-
gorithms appropriate for different applications depending on the
computational capability of devices and needed tracking accu-
racy. Besides, for comparison purpose, we remark that hundreds
of time units are typical amount of time needed for convergence
of distributed adaptive algorithms for either single-task or multi-
task networks [2], [10]–[13], [16], [18], [29]. Third, as one ex-
pects, Scenario 1 has better tracking performance than Scenario
2: the ultimate relative error of the proposed algorithms in Sce-
nario 1 is about 0.067 while that of Scenario 2 is about 0.17.
So, higher noise level and faster varying speed of the weight
vectors do result in lower tracking accuracy. We also observe
that, in either scenario, the performance of the proximal gradi-
ent method is very similar to that of the subgradient method.
This similarity in performance is reasonable as the algorithms
of the two methods do not differ much. Lastly, in Fig. 2(c), we
report the learning curves of the multitask diffusion LMS with
l1 regularization [16] in both Scenario 1 and Scenario 2. The
value ofα is increased to 0.01 to accelerate convergence (further
increasing α will increase errors or even lead to instability). We
remark that, in either scenario, the LMS method incurs larger
tracking errors than the proposed RLS based Algorithms 1 and 2
and needs more time (about 1500 and 2000 for Scenarios 1 and
2, respectively) to converge. This highlights the convergence
advantage of RLS over LMS, which comes at the expense of
higher computational complexity [1], [29].

Next, we investigate the tracking performance of each indi-
vidual node. To this end, in Fig. 3, we show the relative track-
ing errors of each node at time 200 and 500 under Scenario
1 and Scenario 2. Several remarks are in order. First, we note
that in all four cases of Fig. 3, the red curve (the proposed
ADMM algorithm) and the blue curve (the global optimizor)
coincide precisely for every node. This further confirms the
previous observation from Fig. 2 that the performance of the

6228 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

Fig. 3. Relative tracking errors of each node.

proposed ADMM can converge to that of the global optimizor
quickly. Second, the proposed subgradient method, though per-
forms poorly at time 200, has relative errors close to those of the
global optimizor at time 500. This suggests that the proposed
subgradient method eventually has performance close to the
benchmark (the global optimizor). But this good performance
necessitates longer time (or equivalently more data) compared
to the proposed ADMM algorithm. Third, the performance of
the single task learning algorithm DSPARLS never converge to
that of the global optimizor. In particular, from Fig. 3(b) and (d),
the performance of DSPARLS is worst at node 5 and node 17.
Recall the network topology in Fig. 1 and we see that these two
nodes are loosely connected to other nodes, i.e., their degree is
low. Thus, the weight vectors at these two nodes can potentially
deviate far from the weight vectors at the rest of the nodes and
thus violate the single task assumption of DSPARLS the most
among all nodes. This partially explains the poor performance
of DSPARLS at nodes 5 and 17. Last, we observe that the per-
formance of the proximal gradient method is very analogous to
that of the subgradient method at every node in either scenario,
confirming the similarity between the proximal gradient method
and the subgradient method again.

Previous experiments indicate that the proposed ADMM al-
gorithm possesses faster and more accurate tracking perfor-
mance than the proposed subgradient method. Next, we conduct
a more thorough performance comparison between the proposed
two algorithms for different regularization parameters β, γ and
different forgetting factors λ. We note that the global optimi-
zor usually converges well before time 1000 and we denote the
steady relative error of the global optimizor at time 1000 as ě.
We say a simulation trial of an algorithm (either the proposed
ADMM algorithm or the proposed subgradient method) is suc-
cessful if, before time 1000, there exists a time window (i.e.,
interval) of length 20 over which the average relative error of
the algorithm is lower than 1.1ě. The basic parameter setup is
γ = β = 1, λ = 0.995. In each of the subfigures in Fig. 4(a),
(c), and (e), we vary one parameter while keep the remaining
two parameters the same as the basic setup. For each parameter
setup, we conduct 100 independent trials and plot the number
of successful trials in Fig. 4(a), (c), and (e). We observe that
(i) the proposed ADMM algorithm is always successful, i.e., it
can always converge to the steady performance of the global

Fig. 4. Number of successful trials and the average time needed to reach
success among successful trials.

optimizor; (ii) the proposed subgradient method is successful in
most trials as long as the forgetting factor λ is sufficiently close
to 1, which is the case in most applications (e.g., λ = 0.995)
as the weight vectors are varying very slowly and a large λ
is needed for tracking them. Moreover, we investigate the av-
erage time needed to reach success (defined to be the middle
point of the first time window over which the average relative
error is less than 1.1ě) among successful trials. The results are
shown in Fig. 4(b), (d), and (f). We remark that the proposed
ADMM mostly needs no more than 150 time units to be suc-
cessful, i.e., be close to the steady performance of the global
optimizor, while it takes the proposed subgradient method a
much longer time (around 600 time units) to be successful.
This further confirms our previous assertion that the proposed
ADMM algorithm possesses faster tracking performance than
the proposed subgradient method.

Next, we endeavor to validate the effectiveness of the
proposed distributed online subgradient method for clustered
multitask networks with edge dependent β and node dependent
γ (Section IV-D). We consider a clustered multitask network
with N = 10 nodes and Q = 4 clusters (Fig. 5(a)), the same as
the one used in [16]. As before, we still set the data dimension
to be M = 20, among which only two random positions cor-
respond to non-zero entries. Initially, the two nonzero entries
of the true weight vectors of the four clusters are set to be
w̃#

1,part = [1.53,−0.98]T, w̃#
2,part = [1.5,−1]T, w̃#

3,part = [1.48,
−1.02]T, w̃#

4,part = [1.55,−1.04]T. The evolution of the time-
varying true weight vectors, the generation of input sequences
and the generation of the noise sequences are similar to the
scenario used for Fig. 2. We still choose λ = 0.995. The
proximity regularization parameters βnm and the sparsity

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6229

Fig. 5. Clustered multitask networks with edge dependent β and node depen-
dent γ .

Fig. 6. The learning curves for dynamic networks with different evolution
rates.

regularization parameters γn are randomly generated within the
interval [0.8, 1.2]. In Fig. 5(b) and (c), we report the learning
curve, i.e., the global relative error defined previously for
Fig. 2, and the steady state relative errors at each individual
node, respectively. The performance of the global optimizor
is also shown as a centralized offline benchmark. We observe
that, similar to the non-clustered multitask network (c.f. Figs. 2
and 3), the performance of the distributed online subgradient
method will ultimately converge to that of the global optimizor
and it needs around 600 time units to achieve this convergence.
This indicates the robustness of the subgradient method to
clustering of multitask networks.

In the following, we want to test the robustness of the pro-
posed Algorithms 1 and 2 when the network topology varies
across time. To this end, we randomly delete old nodes from
the network and add new nodes to the network. Specifically, the
initial network topology is given by Fig. 1. Then, after every τ
time units, we either delete an existing node randomly or add
a new node with four random links, as the average degree of
the initial graph in Fig. 1 is four. The parameter τ controls how
fast the network evolves. The learning curves (relative errors) of
the proposed ADMM algorithm and the proposed subgradient
method are shown in Fig. 6 for τ = 20 and τ = 5. Comparing
the learning curves of dynamic network in Fig. 6 with those
of static network in Fig. 2, we observe that the performance of
the proposed ADMM algorithm is basically not affected by the
evolution of networks in terms of both convergence time and the
steady state errors. The performance of the proposed subgradient
method is not influenced much either when τ = 20. When the
network evolves faster, i.e., τ = 5, the convergence time of the

subgradient method increases to around 800 (the convergence
time for static network is about 600) and the steady state relative
error also increases slightly. Overall, we can conclude that the
proposed two algorithms are robust to the temporal variations
of network topologies.

Finally, we apply the proposed ADMM and subgradient
algorithms to distributed cooperative spectrum sensing [49].
Consider a cognitive radio network (CRN) with N secondary
users (SUs). A link between two SUs indicate that they are
close in physical locations and are willing to cooperate to
sense the spectrum. Aftering spectrum sensing, SUs can ex-
ploit the spectrum temporarily unused by the primary users
(PUs). There are M frequency bands in total, among which
the m-th band is centered at frequency point fm ∈

[− 1
2 ,

1
2

]

.
Suppose the power spectrum of signals transmitted on the m-th
band can be represented (or approximated) as scalar multiple

of the signature spectrum Sm (f) = exp
(

− (f−fm)2

2σ 2
m

)

. Define

s(f) = [S1(f), . . . , SM (f)]T. Each PU uses at most one fre-
quency band at each time and the number of active PUs is much
smaller than M , i.e., the number of bands (otherwise, it is hard
for SUs to get opportunities to use the spectrum and a CRN is
not suitable here). At each time t, each SU n senses the received
power spectrum at frequency point f̌n,t and observes an output
dn (t) given as follows:

dn (t) = w̃n (t)Ts
(

f̌n,t
)

+ en (t), (84)

where w̃n (t) specifies the received signal strengths at all bands
by node n and en (t) is the noise. The goal of SU n is to infer
w̃n (t) so that she can exploit the temporarily unused frequency
bands. w̃n (t) is determined by the transmitted signal strength
at each band and the path losses from the signal sources (or
PUs) to SU n. Thus, for different nodes, the unknown w̃n (t)’s
are generally different due to the difference in physical loca-
tions and path losses. Since the number of active PUs is much
smaller than M , w̃n (t)’s are sparse vectors. Besides, if SU n
and SU n′ are neighbors in the CRN, w̃n (t) and w̃n ′(t) should
be similar because the two SUs are close in physical locations
and should have similar path losses. A reasonable way to en-
force this proximity is to minimize the squared l2 norm of the
difference. Therefore, by defining un (t) = s

(

f̌n,t
)

, we see that
the signal model (84) is in the form of (1) and the distributed
sparse multitask RLS problem in (2) can be used to estimate
w̃n (t)’s. The CRN topology is set to be the same as the network
in Fig. 1. The number of frequency bands is M = 20 and there
are two active PUs, i.e., two nonzero entries in each w̃n (t). The
centers of the frequency bands, i.e., fm ,m = 1, . . . ,M , are uni-
formly distributed over the interval

[− 1
2 ,

1
2

]

while the sample
frequency points f̌n,t are randomly generated within

[− 1
2 ,

1
2

]

.
Other details of the setup are the same as those specified previ-
ously for Fig. 2. The learning curves (global relative errors) and
the steady state relative errors at each individual node are shown
in Fig. 7(a) and (b), respectively. We also plot the performance
of the global optimizor as a centralized offline benchmark. The
convergence of ADMM is faster than that of the subgradient
method at an expense of higher computational complexity.

6230 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

Fig. 7. Distributed cooperative spectrum sensing.

VI. CONCLUSION

In this paper, we study the decentralized sparse multitask
RLS problem. We first propose a decentralized online ADMM
algorithm for the formulated RLS problem. We simplify the al-
gorithm so that each node only needs to store and update one
M ×M matrix and sixM dimensional vectors. Convergence of
the proposed ADMM algorithm is also established. Moreover,
to further reduce the computational complexity, we propose a
decentralized online subgradient method. Mean square stablitiy
of the subgradient method is guaranteed by deriving explicit
upper bounds on its mean square deviation and excess mean
square error. Compared with the ADMM algorithm, the sub-
gradient method enjoys lower computational complexity at the
expense of slower convergence speed. The proposed algorithms
are corroborated by numerical experiments.

APPENDIX A
PROOF OF THEOREM 1

From the definition of Rn (T) and pn (T), we know that
they are weighted sum of i.i.d. terms. According to the strong
law of large numbers for weighted sums [9], [50], as T →∞,
Rn (T) converges to limT→∞ E[Rn (T)] = Rn

1−λ almost surely.

Similarly, pn (T) converges to limT→∞ E[pn (T)] = Rn w̃n

1−λ al-
most surely. Algorithm 1 is to apply ADMM to the dynamic
(time-varying) optimization problem (8), which converges al-
most surely to the following static optimization problem:

Minimizex,w ,v

1
1− λ

N
∑

n=1

(

xT
nRnxn − 2w̃T

nRnxn
)

+ β
N
∑

n=1

⎡

⎢

⎣
|Ωn |‖xn‖22 − 2

⎛

⎝

|Ωn |
∑

i=1

vn,i

⎞

⎠

T

xn +
|Ωn |
∑

i=1

‖vn,i‖22

⎤

⎥

⎦

+ γ

N
∑

n=1

‖wn‖1

s.t. xn = wn , n = 1, . . . , N,

vn,i = wg (n,i) , n = 1 . . . , N, i = 1 . . . , |Ωn |. (85)

We note that problem (85) is in the form of (3). Hence, ac-
cording to the convergence of ADMM for static convex opti-
mization problems of the form (3), we know that the output of
Algorithm 1, i.e., w(T), converges almost surely to the optimal
point of (85). Eliminating the dummy variables x and v, we can

equivalently rewrite problem (85) as:

Minimizew
1

1− λ
N
∑

n=1

‖wn − w̃n‖2Rn

+ β
N
∑

n=1

∑

m ∈Ωn

‖wn −wm‖22 + γ
N
∑

n=1

‖wn‖1 .

(86)

Therefore, we conclude that wn (T) converges to the optimal
point of problem (86) almost surely.

APPENDIX B
PROOF OF THEOREM 2

As demonstrated in Appendix A, for large T , we can approx-
imate Rn (T) by Rn

1−λ and pn (T) by Rn w̃n

1−λ . Define the error
vector of node n at time T to be:

fn (T) = wn (T)− w̃n . (87)

Thus, substituting (87) into the definition of wn (T − 1) yields:

wn (T − 1) =
∑

m ∈Ωn

(w̃m + fm (T − 1)) . (88)

Hence, using (60), (87) and the approximation of Rn (T),pn
(T), we can derive a recursive equation for the error vector:

fn (T) = wn (T − 1)− w̃n − α
[

2Rn (T) (w̃n + fn (T − 1))

− 2pn (T) + 4β

(

|Ωn | (w̃n + fn (T − 1))

−
∑

m∈Ωn

(w̃m + fm (T − 1))

)

+ γ sgn(wn (T − 1))

]

(89)

≈ fn (T − 1)− α
[

2Rn

1− λ (w̃n + fn (T − 1))− 2Rn w̃n

1− λ

+ 4β

(

|Ωn |w̃n −
∑

m∈Ωn

w̃m + |Ωn |fn (T − 1)

−
∑

m∈Ωn

fm (T − 1)

)

+ γ sgn(wn (T − 1))

]

(90)

=
(

I− 2αRn

1− λ
)

fn (T − 1)

− 4αβ

(

|Ωn |fn (T − 1)−
∑

m∈Ωn

fm (T − 1)

)

− 4αβ

(

|Ωn |w̃n −
∑

m∈Ωn

w̃m

)

− αγ sgn(wn (T − 1)).

(91)

CAO AND LIU: DECENTRALIZED SPARSE MULTITASK RLS OVER NETWORKS 6231

Define f(T) =
[

f1(T)T, . . . , fN (T)T
]T

and ξ(T) = −4αβ
Lw̃ − αγ sgn(w(T − 1)). Stacking (91) for all nodes n, we
obtain:

f(T) =
(

I− 2α
1− λR− 4αβL

)

f(T − 1) + ξ(T). (92)

Define Ψ = I− 2α
1−λR− 4αβL and thus:

f(T) = Ψf(T − 1) + ξ(T). (93)

From the definitions of μi, i = 1, 2, 3, we know that μ1I � R �
μ2I and 0 � L � μ3I. Substituting these bounds into the ex-
pression of Ψ, we get:
(

1− 2αμ2

1− λ − 4αβμ3

)

I � Ψ �
(

1− 2αμ1

1− λ
)

I. (94)

According to the assumption in (68), we know that 1− 2αμ2
1−λ −

4αβμ3 > −1. Hence, the eigenvalues of Ψ satisfy:

−1 < 1− 2αμ2

1− λ − 4αβμ3 ≤ λi(Ψ) ≤ 1− 2αμ1

1− λ < 1,

∀i = 1, . . . , NM.
(95)

Therefore,

‖Ψ‖2 = ρ(Φ)

≤ max
{∣

∣

∣

∣

1− 2αμ2

1− λ − 4αβμ3

∣

∣

∣

∣

,

∣

∣

∣

∣

1− 2αμ1

1− λ
∣

∣

∣

∣

}

= δ < 1, (96)

where ‖Ψ‖2 and ρ(Φ) = maxi=1,...,NM {|λi(Ψ)|} denote the
maximum singular value and the spectral radius of Ψ, respec-
tively. Applying (93) recursively yeilds:

f(T) = ΨT f(0) +
T −1
∑

t=0

Ψtξ(T − t), (97)

in which the superscript T denotes time instead of transposition.
Note that ξ(T) can be uniformly bounded as follows:

‖ξ(T)‖2 ≤ 4αβ‖Lw̃‖2 + αγ
√
MN

≤ 4αβμ3‖w̃‖2 + αγ
√
MN = Γ. (98)

Taking norms on both sides of (97) gives:

‖f(T)‖2 ≤ ‖Ψ‖T2 ‖f(0)‖2 +
T −1
∑

t=0

‖Ψ‖t2‖ξ(T − t)‖2 (99)

≤ δT ‖f(0)‖2 +
T −1
∑

t=0

δt · Γ (100)

≤ δT ‖f(0)‖2 +
Γ

1− δ . (101)

Taking expected squares of the both sides of (101), we obtain:

E
[‖f(T)‖22

]

≤ δ2T E
[‖f(0)‖22

]

+
2δT Γ
1− δE [‖f(0)‖2] +

Γ2

(1− δ)2 . (102)

Note the first two terms of the R.H.S. of (102) converge to
zero as T goes to infinity. Thus, the steady state mean square
deviation (MSD) satisfies:

MSD = lim sup
T→∞

E
[‖f(T)‖22

] ≤ Γ2

(1− δ)2 . (103)

Furthermore, we derive:

E

[

N
∑

n=1

(

un (t)Tfn (t− 1)
)2

]

(104)

≤ E

[

N
∑

n=1

‖un (t)‖22‖fn (t− 1)‖22
]

(105)

=
N
∑

n=1

E
[‖un (t)‖22

]

E
[‖fn (t− 1)‖22

]

(106)

≤
[

max
n=1,...,N

tr(Rn)
]

E
[‖f(t− 1)‖22

]

, (107)

where (106) is due to the fact that un (t) and fn (t− 1) are
independent. Taking limits on both sides of (107) and making
use of (103), we get the following bound for the steady state
excess mean square error (EMSE):

EMSE = lim sup
t→∞

E

[

N
∑

n=1

(

un (t)Tfn (t− 1)
)2

]

≤
[

max
n=1,...,N

tr(Rn)
]

Γ2

(1− δ)2 . (108)

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 1996.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[3] F. S. Cattivelli and A. H. Sayed, “Diffusion lms strategies for distributed
estimation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048,
Mar. 2010.

[4] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans.
Signal Process., vol. 56, no. 5, pp. 1865–1877, May 2008.

[5] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4,
pp. 460–497, Apr. 2014.

[6] C. Jiang, Y. Chen, and K. J. R. Liu, “Distributed adaptive networks: A
graphical evolutionary game-theoretic view,” IEEE Trans. Signal Process.,
vol. 61, no. 22, pp. 5675–5688, Nov. 2013.

[7] G. Su, J. Jin, Y. Gu, and J. Wang, “Performance analysis of l0 norm
constraint least mean square algorithm,” IEEE Trans. Signal Process.,
vol. 60, no. 5, pp. 2223–2235, May 2012.

[8] J. Jin, Y. Gu, and S. Mei, “A stochastic gradient approach on compres-
sive sensing signal reconstruction based on adaptive filtering framework,”
IEEE J. Sel. Top. Signal Process., vol. 4, no. 2, pp. 409–420, 2010.

[9] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The Sparse RLS
algorithm,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4013–4025,
Aug. 2010.

[10] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based
on diffusion adaptation,” IEEE Trans. Signal Process., vol. 61, no. 6,
pp. 1419–1433, Mar. 2013.

[11] Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over
networks,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4480–4485,
Aug. 2012.

[12] S. Huang and C. Li, “Distributed sparse total least-squares over networks,”
IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2986–2998, Jun. 2015.

6232 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 23, DECEMBER 1, 2017

[13] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A sparsity
promoting adaptive algorithm for distributed learning,” IEEE Trans. Signal
Process., vol. 60, no. 10, pp. 5412–5425, Oct. 2012.

[14] Z. Liu, Y. Liu, and C. Li, “Distributed sparse recursive least-squares over
networks,” IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1386–1395,
Mar. 2014.

[15] R. Nassif, “Distributed adaptive estimation over multitask networks,”
Ph.D. thesis, Université Côte d’Azur, Provence-Alpes-Côte d’Azur,
France, 2016.

[16] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over
networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–4144,
Aug. 2014.

[17] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion
adaptation over asynchronous networks,” IEEE Trans. Signal Process.,
vol. 64, no. 11, pp. 2835–2850, Aug. 2014.

[18] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask
learning over networks with sparsity-inducing coregularization,” IEEE
Trans. Signal Process., vol. 64, no. 23, pp. 6329–6344, Dec. 2016.

[19] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Diffusion LMS for
multitask problems with local linear equality constraints,” IEEE Trans.
Signal Process., vol. 65, no. 19, pp. 4979–4993, Oct. 2017.

[20] J. Plata-Chaves, N. Bogdanovic, and K. Berberidis, “Distributed
incremental-based RLS for node-specific parameter estimation over adap-
tive networks,” in Proc. IEEE 21st Eur. Signal Process. Conf., 2013,
pp. 1–5.

[21] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed diffusion-
based LMS for node-specific adaptive parameter estimation,” IEEE Trans.
Signal Process., vol. 63, no. 13, pp. 3448–3460, Jul. 2015.

[22] N. Bogdanovic, J. Plata-Chaves, and K. Berberidis, “Distributed
incremental-based LMS for node-specific adaptive parameter estimation,”
IEEE Trans. Signal Process., vol. 62, no. 20, pp. 5382–5397, Oct. 2014.

[23] J. Plata-Chaves, A. Bertrand, M. Moonen, S. Theodoridis, and A.
M. Zoubir, “Heterogeneous and multitask wireless sensor networks—
Algorithms, applications, and challenges,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 3, pp. 450–465, Apr. 2017.

[24] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over multitask
networks,” IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2733–2748,
Jun. 2015.

[25] X. Zhao and A. H. Sayed, “Distributed clustering and learning over net-
works,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3285–3300,
Jul. 2015.

[26] S. Monajemi, K. Eftaxias, S. Sanei, and S.-H. Ong, “An informed mul-
titask diffusion adaptation approach to study tremor in Parkinson’s Dis-
ease,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 7, pp. 1306–1314,
Oct. 2016.

[27] V. Kekatos and G. B. Giannakis, “Distributed robust power system state
estimation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1617–1626,
May 2013.

[28] A. Hassani, J. Plata-Chaves, M. H. Bahari, M. Moonen, and A. Bertrand,
“Multi-task wireless sensor network for joint distributed node-specific
signal enhancement, lcmv beamforming and doa estimation,” IEEE J. Sel
Topics Signal Process., vol. 11, no. 3, pp. 518–533, Apr. 2017.

[29] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Distributed recursive
least-squares for consensus-based in-network adaptive estimation,” IEEE
Trans. Signal Process., vol. 57, no. 11, pp. 4583–4588, Nov. 2009.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learni., vol. 3, no. 1, pp. 1–122,
2011.

[31] W.-C. Liao, M. Hong, H. Farmanbar, X. Li, Z.-Q. Luo, and H. Zhang,
“Min flow rate maximization for software defined radio access networks,”
IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1282–1294, Jun. 2014.

[32] C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, “Distributed ro-
bust multicell coordinated beamforming with imperfect CSI: An ADMM
approach,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2988–3003,
Jun. 2012.

[33] J. Zhang, S. Nabavi, A. Chakrabortty, and Y. Xin, “Admm optimization
strategies for wide-area oscillation monitoring in power systems under
asynchronous communication delays,” IEEE Trans. Smart Grid, vol. 7,
no. 4, pp. 2123–2133, Jul. 2016.

[34] T.-H. Chang, “A proximal dual consensus admm method for multi-agent
constrained optimization,” IEEE Trans. Signal Process., vol. 64, no. 14,
pp. 3719–3734, Jul. 2016.

[35] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the ADMM in decentralized consensus optimization,” IEEE Trans.
Signal Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[36] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 63, no. 15, pp. 4051–4064, Aug. 2015.

[37] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2,
pp. 944–966, 2015.

[38] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via
multi-task sparse learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2012, pp. 2042–2049.

[39] A. Koppel, B. Sadler, and A. Ribeiro, “Proximity without consensus in
online multi-agent optimization,” IEEE Trans. Signal Process., vol. 65,
no. 12, pp. 3062–3077, Jun. 2017.

[40] W. Deng and W. Yin, “On the global and linear convergence of the general-
ized alternating direction method of multipliers,” J. Sci. Comput., vol. 66,
no. 3, pp. 889–916, 2016.

[41] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, vol. 23. Englewood Cliffs, NJ, USA: Prentice-Hall,
1989.

[42] H. Wang and A. Banerjee, “Online alternating direction method,” in Proc.
Int. Conf. Mach. Learn., 2012, pp. 1119–1126.

[43] H.-F. Xu, Q. Ling, and A. Ribeiro, “Online learning over a decentral-
ized network through ADMM,” J. Oper. Res. Soc. China, vol. 3, no. 4,
pp. 537–562, 2015.

[44] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization through the
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1185–1197, Mar. 2014.

[45] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automat. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[46] S. Boyd and A. Mutapcic, “Subgradient methods,” Stanford Univ., Stan-
ford, CA, USA, Lecture Notes EE364b, vol. 2007, 2006.

[47] N. Parikh et al., “Proximal algorithms,” Found. Trends Optim., vol. 1,
no. 3, pp. 127–239, 2014.

[48] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. New York, NY, USA: Springer, 2011, pp. 185–212.

[49] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” IEEE Commun. Surv. Tuts., vol. 11, no. 1,
pp. 116–130, Jan.–Mar. 2009.

[50] Y. Chow and T. Lai, “Limiting behavior of weighted sums of independent
random variables,” Ann. Probab., vol. 1, pp. 810–824, 1973.

Xuanyu Cao received the Bachelor’s degree from
Shanghai Jiao Tong University, Shanghai, China, in
2013, and the Ph.D. degree from the University of
Maryland, College Park, MD, USA, in 2017, both in
electrical engineering. He is currently a Postdoctoral
Research Associate in the Electrical Engineering De-
partment, Princeton University, Princeton, NJ, USA.
His research lies in the intersection (or union) of op-
timization, game theory, statistical signal processing,
probabilistic analysis, and their applications in net-
worked multi-agent systems.

K. J. Ray Liu (F’03) was named a Distinguished
Scholar-Teacher of University of Maryland, College
Park, MD, USA, in 2007, where he is Christine Kim
Eminent Professor of Information Technology. He
leads the Maryland Signals and Information Group
conducting research encompassing broad areas of in-
formation and communications technology with re-
cent focus on smart radios for smart life.

He received the 2016 IEEE Leon K. Kirchmayer
Technical Field Award on graduate teaching and men-
toring, the IEEE Signal Processing Society 2014

Society Award, and the IEEE Signal Processing Society 2009 Technical
Achievement Award. Recognized by Thomson Reuters as a Highly Cited Re-
searcher, he is a Fellow of AAAS. He is a member of IEEE Board of Director as
Division IX Director. He was the President of IEEE Signal Processing Society,
where he has served as Vice President Publications and Board of Governor. He
has also served as the Editor-in-Chief of IEEE SIGNAL PROCESSING MAGAZINE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

