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Abstract-Currently, many forensic techniques have been de­
veloped to determine which processing operations were used 
to manipulate a multimedia signal. Determining the order in 
which these operations were applied, however, remains an open 
challenge. Understanding this order is important because it not 
only provides greater insight into a signal's processing history, 
but it can also be used to determine a forger's behavior patterns 
or provide insight into who manipulated a signal. In this paper, 
we propose a new forensic detection framework that can be used 
determine the order in which manipulations were applied to a 
signal. Additionally, we introduce the notion of a conditional 
fingerprint to describe how a manipulation's fingerprints can 
change under subsequent processing. We identify the conditional 
fingerprints of contrast enhancement followed by resizing, and 
use our framework to develop an algorithm to determine the 
order in which resizing and contrast enhancement were applied 
to an image. 

I .  INTRODUCTION 

In today's society, the majority of multimedia content is 
captured and distributed in a digital format. The trend towards 
digitization has greatly increased the ease with which multime­
dia content can be shared with users all over the world. These 
gains, however, have come with a price; digital multimedia 
content can be easily manipulated and falsified. As a result, 
it is often difficult to trust digital multimedia content. This 
is problematic because many governmental, legal, and news 
media organizations rely on multimedia content to make a 
number of critical decisions . 

To combat this situation, researchers have developed a 
set of digital forensic techniques over the last decade to 
authenticate digital media content [ 1 ] .  An important subset 
of these forensic techniques are designed to identify the use 
of specific image processing operations and manipulations . 
These forensic techniques work by detecting the presence of 
unique artifacts, known as fingerprints, left by different signal 
processing operations. Researchers have designed forensic 
techniques capable of detecting operations such as contrast 
enhancement [2], resizing [3 ] ,  [4] ,  median filtering [5] , [6] , 
and multiple JPEG compression [7] , [8 ] .  

When creating a forgery, i t is l ikely that a forger will make 
use of multiple editing operations to manipulate a multimedia 
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file. While existing forensic techniques may be able to de­
tect which editing operations were used to create a forgery, 
determining the order in which these editing operations were 
applied remains an important open problem. Knowledge of 
the order in which editing operations were applied to a file 
can provide important information about its processing history. 
It may also provide insight into a forger's behavior and 
potentially aid in the identification of the party who created 
the forgery. 

Furthermore, while many forensic techniques are adept at 
detecting a single specific manipulation, they often encounter 
difficulties if a forger has applied any subsequent manipula­
tions to a media file. Artifacts left by editing operations that 
have been applied later in a signal's processing history can 
potentially alter or disguise fingerprints left by operations that 
were applied earlier. By understanding the interaction between 
mUltiple editing operations, it may be possible to improve 
the detectability of certain editing operations that have been 
applied earlier in a signal's processing history. 

In this paper, we present a framework for forensically deter­
mining the order in which a set of processing operations have 
been applied to a multimedia signal . We formulate detecting 
both the presence and order of multiple processing operations 
that may have been applied to a signal as a multiple hypothesis 
testing problem. To differentiate between these hypotheses, we 
introduce the concept of a conditional fingerprint to describe 
how a manipulation's fingerprint changes in the presence of 
subsequent processing. 

After we have presented our framework, we demonstrate its 
effectiveness by using it to examine the case of images which 
may have been manipulated using both contrast enhancement 
and resizing. We identify the conditional fingerprints of these 
operations and demonstrate how they can be used to improve 
detection performance and determine the order in which these 
operations were applied. 

I I .  ORDER OF OPERATIONS DETEC TION F RAMEWORK 

Consider the problem of forensically detecting the use of 
a specific editing operation mI .  When a forensic investigator 
examines a multimedia signal 1/; whose processing history is 
unknown, they know that 1/; must exist in one of two states ; 1/; 
has not been processed using ml or 1/; is a manipulated version 
of another file 1/;' . Typically, an investigator will frame the 
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detection of the use of ml as the following binary hypothesis 
testing problem 

Ho : 'ljJ is unaltered by ml , 
HI : 'ljJ = ml ('ljJ' ) ,  

( 1 )  

and design a forensic detector 01 in  the form of a decision 
rule to distinguish between these hypotheses. This decision 
rule operates by measuring the strength of some fingerprint 1Yl 
left in 'ljJ by ml , then comparing this measure to a decision 
threshold. 

If 'ljJ may have additionally been modified by another 
manipulation m2 , the most widely used detection approach 
is to frame this problem as another binary hypothesis testing 
problem in the same form as ( 1 ) .  A detector 02 can then be 
designed to detect the use of m2 by measuring the strength of 
the fingerprints 1Y2 left in 'ljJ by m2 . 

This detection approach has several potential drawbacks. 
One important limitation is that the use of only two binary 
decision rules is capable of resolving at most only the follow­
ing four forensic states . By contrast, if an investigator wishes 
to determine the order in which ml and m2 may have been 
applied, 'ljJ will actually take on one offive forensic states ; 'ljJ 
has not been processed using either ml or m2 , 'ljJ has been 
manipulated using only ml , 'ljJ has been manipulated using 
only m2 , 'ljJ has been manipulated first by ml then by m2 , or 
'ljJ has been manipulated first by m2 then by mI . 

The disparity between the number possible forensic of 
states and the number of states that this form of binary 
hypothesis tests can resolve only grows as the number of 
possible manipulations considered increases . As a result, this 
traditional approach to detection, i .e . testing individually for 
each possible operation, is incapable of resolving the order in 
which mUltiple manipulations have occurred. 

An additional problem with this approach to detection is 
that it does not properly account for the possibility that editing 
operations that occur later in 'ljJ 's processing history may cause 
changes to the fingerprints left by manipulations that occurred 
earlier in 'ljJ 's processing history. These changes may alter 
important properties of the earlier manipulations ' fingerprints, 
thus making it more difficult or impossible for detectors that 
measure the strength of unaltered fingerprints to identify these 
manipulations. For example, 01 may yield a positive detection 
for ml if 'ljJ = ml ('ljJ' ) but may yield a negative result if 
'ljJ = m2 (ml ('ljJ' ) ) .  

In order to determine the order in which multiple manipu­
lations were applied to multimedia signal and to increase the 
likelihood of detecting all manipulations applied that signal, 
we introduce the concept of a manipulation's conditional 
fingerprint. The conditional fingerprint of a manipulation m 
is defined as the fingerprint caused by m that is present 
in a signal after that signal has been modified by another 
operation or ordered sequence of operations. We adopt the 
notational convention that 1Yl I 1 , 2 refers to the fingerprint left in 
a multimedia signal by ml when 'ljJ has first been manipulated 
by ml then by m2 , i .e .  'ljJ = m2 (ml ('ljJ' ) ) .  By identifying 
a manipulation's conditional fingerprints under each possible 
sequence of manipulations, a forensic investigator can design a 

set of detectors to differentiate between forensic states that are 
indistinguishable if only traditional manipulation fingerprints 
are considered. 

To overcome the limitations of performing a set of indepen­
dent tests for the fingerprints of each individual manipulation, 
we propose framing manipulation detection as a multiple 
hypothesis test. When two editing operations, ml and m2 , may 
have been used to manipulate 'ljJ , this test takes the following 
form: 

Ho : 'ljJ has not been altered by ml or m2 , 
HI : 'ljJ = ml ('ljJ' ) , 
H2 : 'ljJ = m2 ('ljJ' ) , (2) 

H3 : 'ljJ = m2 (ml ('ljJ' ) ) ,  
H4 : 'ljJ = ml (m2 ('ljJ' ) ) .  

To differentiate between these states, we propose a "divide­
and conquer approach" in which a final forensic decision is 
made using a sequence of intermediate grouped hypothesis 
tests . Each intermediate stage searches for the presence of a 
specific fingerprint or conditional fingerprint in order to reduce 
the set of candidate states . Depending on the outcome of each 
intermediate stage, a different test is chosen to be performed 
at the next stage of detection. 

We adopt the notational convention that Hi(j l k l , . . .  , kt l  rep­
resents the ith hypothesis at the /" intermediate stage of de­
tection given that the outcomes of intermediate stages 1 ,  . . .  , l  
were hypotheses kl , . . .  , kl .  For example, H62 1 1 ) corresponds 
to hypothesis Ho for the 2nd stage of detection given that the 
outcome of the first stage of detection was H?) .  Additionally, 
we define O (j l k " . . .  , kt l  as the forensic detection rule applied at 
the jth intermediate stage of detection given that the outcomes 
of intermediate stages 1 ,  . . .  , l were hypotheses kl , . . .  , kl .  

To provide a brief example of what one stage of this form of 
detection would look like, suppose ml has little effect on the 
fingerprints of m2 so that 1Y2 1 2 , 1 = 1Y2 . Additionally, let us also 
suppose that m2 changes the fingerprints left by ml so that 
1Y1 I 1 , 2 i- 1Yl . In this scenario, a forensic investigator would de­
sign the first stage of detection to determine if 'ljJ was modified 
using m2 by distinguishing between H61) = {Ho ,  Hd and 
Hil) = {H2 ' H3 , H4} .  Subsequent stages would use different 
detectors to determine if 'ljJ was modified using ml depending 
on the outcome of the first stage. 

In the remainder of this paper, we apply this framework to 
the problem of detecting contrast enhancement and resizing 
in digital images. We use these two operations to provide 
concrete examples of conditional fingerprints and of how our 
framework is used to design a detection algorithm to determine 
the order in which two operations were applied. Further­
more, we show that the conditional fingerprints of contrast 
enhancement can be used to detect contrast enhancement under 
conditions that previously appeared problematic . 

III . EXI S TING ApPROACHES TO CONTRA S T  

ENHANCEMENT A N D  RE SIZING DETECTION 

In this section, we provide a brief review of existing ap­
proaches to both contrast enhancement and resizing detection. 
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Fig. 1. Pixel value histograms of (a) an unaltered image, (b) a contrast enhanced image, and (c) an image that has been contrast enhanced then resized. 

(a) (b) (c) 

Fig. 2.  The magnitude of the DFT of the p-map from (a) an unaltered image, (b) an image that has been resized by a factor of 1 .5 ,  and (c) an image that 
has been resized by a factor of 1 . 5  then contrast enhanced. Note the bright spectral peaks corresponding to resizing fingerprints in (b) and (c). 

A. Contrast Enhancement 

Contrast enhancement operations work by applying a non­
decreasing nonlinear mapping to the pixel values of an image . 
Locally contractive regions of these mappings will cause 
certain sets of distinct input pixel values to map to the 
same output value . This will introduce impulsive peaks in the 
histogram of a contrast enhanced image at the pixel value 
locations where two input values are mapped to the same 
output value. Similarly, locally expansive regions of these 
mappings will cause two adjacent pixel values to map to 
output values separated by at least one intermediate value . 
This will result in sudden zeros or gaps in a contrast enhanced 
image 's pixel value histogram. These impulsive peaks and 
gaps in a contrast enhanced image's pixel value histogram are 
the standard fingerprints left by contrast enhancement [2] . An 
example of contrast enhancement fingerprints can be seen in 
Fig. l. 

The strength of these fingerprints can be easily measured 
using a frequency domain representation of an image 's nor­
malized pixel value histogram [2] . Since an unaltered image 's 
pixel value histogram is typically smooth, the majority of 
the energy in its Fourier transform will be concentrated in 
low frequency regions. By contrast, contrast enhancement 
fingerprints will result in significant high frequency content 
due to their impulsive nature . Contrast enhancement detection 
is performed using a frequency domain measure of these 
fingerprints according to the following procedure . 

First, an image 's normalized pixel value histogram h(x) is 
multiplied by a 'pinchoff function' p(x) to obtain the modified 
histogram [2] 

g (x) = h(x)p(x) . (3) 

This is done to suppress any histogram artifacts caused by 
high-end or low-end saturation that may interfere with detec­
tion. Next, a measure of the energy in the high frequency 
components of the modified histogram is computed using the 
equation 

F = L 1 ,B (k )G(k) l , (4) 
k 

where G(k) is the DFT of g (x) and ,B(k)  is a frequency 
weighting function. A commonly used weighting function is 
,B(k)  = 1 for c :s; k :s; 128 and 0 elsewhere, where c is a user 
specified frequency cutoff. 

Finally, an image is classified as unaltered or contrast 
enhanced using the decision rule 

<5 _ { not contrast enhanced 
ee - contrast enhanced 

where Tee is a decision threshold. 
B. Resizing 

if F < Tee ,  
if F ?: Tee ,  (5) 

Image resizing is performed by first determining a new 
image sampling grid, then by interpolating values on this 
grid that are not directly observed. Typically, interpolation is 
performed using a linear operator. Several techniques have 
been developed to perform resizing detection, however the 
most widely used techniques are based off of the observation 
that when an image is resized, interpolated pixels will be more 
highly correlated with their neighbors than directly observed 
pixels [3 ] .  

Initial work in resizing detection operates by using the 
Expectation-Maximization (EM) algorithm to jointly estimate 
a linear predictor for each pixel value along with the probabil­
ity that a pixel is correlated with its neighbors [3 ] .  If an image 

- 1 64 -



has been resized by a rational factor, this set of probabilities, 
known as a p-map, will be periodic. While this approach to 
detection is effective, the EM algorithm is computationally 
expensive to implement. 

To overcome this shortcoming, a computationally efficient 
alternative approach toward estimating the p-map has been 
developed [4] .  This approach obtains the p-map by first 
predicting the value of each pixel using a predetermined linear 
filter 0:. The prediction residual e is then determined by 
subtracting each predicted pixel value from the true value and 
used to calculate the p-map p according to the equation 

Pi ,j = A exp (- l ei ,j I M la) ,  (6) 

where A, fL 2: 1, and a > 0 are controlling parameters. If 
an image has been resampled, distinct spectral peaks will be 
present in the 2D DFT of the p-map, as can be seen in Fig. 2 .  

Resizing detection is performed by first using the 2D DFT 
of P to calculate the cumulative periodogram C of the p-map. 
A detection statistic p is calculated using the equation 

(7) 

and resizing detection is performed according to the following 
decision rule 

o _ { not resized 
rs - resized 

where Trs is a decision threshold. 

if p < Trs ,  

if p 2: Trs , 

IV. C ONDI TIONAL FINGERPRINTS OF RE S IZING AND 

C ONTRA S T  ENHANCEMENT 

(8) 

While techniques have been designed to detect both contrast 
enhancement and resizing, little work has examined the effect 
that subsequent operations other than JPEG compression will 
have on the fingerprints of these manipulations . 

Fig. 2( c) shows the DFT of the p-map of an image which 
has undergone resizing followed by a form of contrast en­
hancement known as gamma correction. The spectral peaks 
corresponding to resizing fingerprints can still clearly be seen 
in this figure, thus suggesting contrast enhancement has little 
effect on resizing fingerprints . As we can see from this figure, 
contrast enhancement has essentially no effect on existing 
resizing fingerprints. Therefore, if we let rs represent resizing 
and ce represent contrast enhancement, we can state that 
<Prs l rs , ee = <Prs . This means that resizing fingerprints are 
independent of subsequent contrast enhancement operations. 

By contrast, Fig. l (c) shows the normalized pixel value his­
togram of an image that has undergone contrast enhancement 
followed by resizing. From this figure, we can see that resizing 
has caused contrast enhancement fingerprints to remain largely 
absent from the image's pixel value histogram. As a result, 
images that have been resized after they have undergone 
contrast enhancement will appear to the detector oee given 
in (5) as if they had not been contrast enhanced at all. We 
can clearly see that the conditional fingerprints of contrast 
enhancement followed by resizing are not the same as the 
standard fingerprints of contrast enhancement. 

To identify the conditional fingerprints of contrast enhance­
ment followed by resizing, we must first closely examine how 
resizing alters an image. When a digital image is captured, 
each pixel value corresponds to a sample of the illumination 
intensity at that pixel's spatial location. If the image is subse­
quently resized, a new sampling grid is fonned and values are 
assigned to the pixels at each of these new locations. These 
locations are determined by the scaling factor s ,  which for 
the purposes of this paper we assume can be expressed as a 
rational number s = n I d such that n, d E N. If we adopt the 
convention that each pixel in the original image is spaced one 
unit apart, then the pixels in the resized image will be spaced 
din units apart. 

Once the new pixel locations are determined, interpolation 
is used to calculate the pixel values at these locations. It 
can be shown, however, that every rih pixel in the resized 
image will occur at the same spatial location as a pixel in 
the original image. As a result, the value of each of these 
pixels will directly correspond to the value the pixel at the 
same spatial location in the image before it was resized. If an 
image 'i/J = rs ('i/J

'
) , we can form the set � of pixels in a resized 

image 'i/J that directly correspond to pixels in 'i/J' as 

� = {'i/Ji,j l i mod n = l , j  mod n = I } ,  (9) 

where mod is the modulo operator. 
If we now suppose that 'i/J' = ce ( 'i/J" )  so that 'i/J = 

rs ( ce ('i/J
"

) ) , we can see that each pixel in � will correspond 
to a pixel in the contrast enhanced version of 'i/J" .  As a result, 
traditional contrast enhancement fingerprints will be present 
in the normalized pixel value histogram of � . 

The reason that we do not observe contrast enhancement 
fingerprints in the pixel value histogram of 'i/J as a whole is 
that all pixels in 'i/J that are not part of � are interpolated. Since 
interpolation is performed by computing a linear combination 
of all of the pixels in 'i/J' that fall within the interpolation 
filter window, each interpolated pixel value could potentially 
lie anywhere in the convex hull of these pixel values . This 
effectively smooths the histogram of 'i/J, thus masking contrast 
enhancement fingerprints . Additionally, this will cause the 
normalized pixel value histogram of � to differ significantly 
from the normalized pixel value histogram of 'i/J since � will 
contain contrast enhancement fingerprints that are not present 
in 'i/J as a whole. 

Using this infonnation, we can characterize the conditional 
fingerprints 'i/Jee l ee ,rs of contrast enhancement followed by 
resizing as the presence of impulsive peaks and gaps in the 
normalized pixel value histogram of the set � coupled with 
a significant difference between the normalized pixel value 
histograms of � and 'i/J as a whole. We can now use these fin­
gerprints to perform improved contrast enhancement detection 
and to detennine the order in which contrast enhancement and 
resizing has been applied to an image . 

V. DETERMINING THE ORDER OF C ONTRA S T  

ENHANCEMENT AND RE S IZING 

Now that we know the conditional fingerprints <Prs l rs , ee 

and <Pee l ee , r s ,  we can use the framework that we proposed 

- 1 65 -



in Section II to design an algorithm to detect both contrast 
enhancement and resizing along with the order in which they 
were applied to an image 'VJ. The first step in this process is 
to formulate our problem as the following multiple hypothesis 
testing problem 

Ho : 'VJ has not been altered using contrast 
enhancement or resizing, 

HI : 'VJ = rs ('VJ ' ) , 

H2 : 'VJ = ce ('VJ ' ) , 

H3 : 'VJ = rs ( ce ( 'VJ') ) .  
H4 : 'VJ = ce ( rs ( 'VJ' ) )  , 

( 1 0) 

Since contrast enhancement fingerprints are masked by the 
subsequent use of resizing but not vice versa, we use the first 
stage of detection to determine if 'VJ has undergone resizing at 
any point. To do this, we choose our groufed hypotheses at 
stage 1 of our detection algorithm to be H61 = {Ho ,  H2 } and 
Hi1) = {HI , H3 , H4 } .  Because resizing fingerprints are inde­
pendent of subsequent applications of contrast enhancement, 
we can use 6rs to differentiate between these hypotheses. As 
a result, we use 6 ( 1 ) = 6rs . 

If resizing fingerprints are detected in the first stage (i .e . 6 ( 1 ) 
yields the result HP) ) ,  we choose our next set of hypotheses 
as H62 1 1 ) = {H1 , H4}  and Hi2 1 1 ) = {H3 } .  This is equivalent 
to testing specifically for the conditional fingerprints <Pee l ee ,rs 

left by contrast enhancement followed by resizing. We have 
intentionally chosen to separate out hypothesis H3 at this 
stage because in certain instances, images that have undergone 
contrast enhancement followed by resizing (H3) will still 
have pixel value histograms containing enough high frequency 
content to be misclassified as images that have undergone 
resizing followed by contrast enhancement (H4). 

To differentiate between hypotheses H62 1 1 ) and Hi2 1 l ) ,  we 
first calculate the normalized pixel value histogram h of 'VJ 
along with the normalized pixel value histogram h� of the 
set �. We obtain a measure F� of the strength of contrast 
enhancement fingerprints in � by substituting hE, for h in (3) 
and (4) . Additionally, we measure the distance v between the 
normalized histograms h and h� according to the equation 

v = L I h (x) - h� (xW · ( 1 1 )  
x 

We then use the following decision rule to differentiate be­
tween each hypothesis at this stage { (2 1 1 ) , (2 1 1 ) _ Ho 

u - H(2 1 1 ) 1 

otherwise, 
if FE, ?: 7(2 1 1 ) and v ?: T) ,  

( 1 2) 

where 7(2 1 1 ) and T) are decision thresholds . We note that by 
making use of the conditional fingerprint <Pee l ee ,rs , this stage of 
our algorithm is able to detect the use of contrast enhancement 
under conditions that previously would have likely resulted in 
a missed detection. 

If the result of 6 (2 1 1 ) yields Hi2 1 1 ) ,  our detection algorithm 
terminates and returns a result of H3 . Otherwise, our algo­
rithm proceeds on to stage 3 .  Given that the results of the 

Fig. 3. Flow chart of our detection algorithm. 

previous two stages were H?) and H62 1 1 ) ,  the only remaining 
fingerprints that we must test for are traditional contrast 
enhancement fingerprints . By choosing our hypotheses at stage 
3 as H63 1 1 , 0) = HI and H63 1 1 , 0) = H4, 6ee can be used to 
differentiate between these hypotheses. As a result, we assign 
6 (3 1 1 ,0) = 6ee . Regardless of the result yielded by 6 (3 1 1 , 0) , our 
algorithm terminates at this stage. Hypothesis H4 is returned if 
contrast enhancement is detected at this stage and hypothesis 
HI is returned otherwise. 

If resizing fingerprints are not detected in the first stage (i .e . 
6 ( 1 ) yields the result H61) ) ,  then the only way that 'VJ may have 
been manipulated is using contrast enhancement alone. Since 
the only fingerprints that may be present are standard contrast 
enhancement fingerprints, we define our hypotheses at this 
stage as H62 1 0) = Ho and Hi2 I O) = H2 and use the decision 
rule 6 (2 1 0) = 6ee to differentiate between them. Hypothesis H2 
is returned if contrast enhancement is detected at this stage and 
hypothesis Ho is returned otherwise. 

A flow chart outlining our entire detection algorithm is 
shown in Fig. 3 .  

V I .  EXPERIMENTAL RE S ULT S 

In order to demonstrate our detection framework's ability 
to determine the order in which contrast enhancement and 
resizing operations were applied to an image, we created a 
database of unaltered grayscale images from the 1 3 3 8  images 
in the Un compressed Color Image Database [9] . We then used 
these images to conduct a set of experiments designed to 
evaluate our detection algorithm's performance. 

In our first experiment, we created a set of contrast enhanced 
images by applying gamma correction with 'Y = 0 .5  to each 
unaltered image, along with a set of resized images created 
by using bilinear interpolation to scale the unaltered images 
by a factor of l.5. Next we created two additional sets of 
images by applying gamma correction to the resized images 
and resizing to the gamma corrected images . This resulted in 
a total of 6690 images whose processing history matched one 
of the five forensic states described in ( 1 0) . 

After creating this set of testing images, we classified each 
image as 'unaltered' , 'resized' , ' contrast enhanced' , 'resized 
then contrast enhanced' , or ' contrast enhanced then resized' 
using the sequence of grouped hypothesis testing algorithm 
that we described in Section VI. We repeated these test while 
varying the decision thresholds in each step over a broad range 
of values, then aggregated the detection results and used them 
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Fig. 4. Detection results when testing for a combination of  gamma correction 
with I = 0 .5  resizing via bilinear interpolation using a scaling factor of 1 .5 .  
Definitions of  each hypothesis can be  found in  ( 1 0) . 

to calculate the probability of detection PD for each hypothesis 
Hi . This was done by sununing the nwnber of images that 
were correctly classified as belonging to hypothesis Hi and 
dividing this quantity by the total number of images for 
which hypothesis Hi was true. Additionally, we calculated the 
corresponding false discovery rate FDR for each hypothesis 
Hi by sununing the number of images for which our detector 
yielded an incorrect decision of Hi and dividing by the total 
number of images that resulted in detections for Hi . 

Using these results, we constructed the set of curves dis­
played in Fig. 4 which plot the PD against the FDR for each 
alternative hypothesis. From the calculation of the FDR, we 
can see that it is somewhat analogous to the probability of 
false alarm. As a result, these curves resemble ROC curves for 
each hypothesis. From Fig. 4, we can see that we were able 
to achieve a PD > 94% at a FDR = 5% for each hypothesis, 
including hypotheses H3 and H4 which correspond to using 
both contrast enhancement and resizing, but in different orders. 

To further test our framework, we repeated this experiment 
using I = 0 .7  when performing gamma correction and a 
scaling factor of 1 .25 when resizing each image . This choice 
of I and the scaling factor will result in weaker contrast 
enhancement fingerprints and rescaling fingerprints than those 
present in our previous experiment. After using our framework 
to test for both operations and determine the order in which 
they were applied, we aggregated our detection results and 
used them to create the curves shown in Fig. 5 .  In this 
experiment,we were able to achieve a PD > 91% at a 
FDR = 5% for each hypothesis. 

The results of both of these experiments demonstrate that 
our framework can be used to accurately determine the order 
in which these manipulations were applied. Furthermore, our 
framework allowed us to accurately detect the use of contrast 
enhancement, even when it was followed by resizing. This 
would not be possible using standard detection approaches 
because resizing fingerprints mask standard contrast enhance­
ment fingerprints . From these results, however, we see that 
contrast enhancement can be reliably detected using its con­
ditional fingerprint ep ee I ee , rs '  

,-r 
0 . 8  

0 .6  
0 Il. 

0 .4  

§ 
- H2 

0 .2  
- H3 
- H4 

0 0 0 . 2  0 .4  0 .6  0 . 8  
F O R  

Fig. 5 .  Detection results when testing for a combination o f  gamma correction 
with I = 0 . 7  resizing via bilinear interpolation using a scaling factor of 1 .25 .  
Definitions of each hypothesis can be found in ( 1 0) . 

VII .  C ONCLUSION 

In this paper, we have proposed a new forensic detection 
framework that can be used to determine the order in which 
manipulations were applied to a signal. This is done by posing 
detection as a mUltiple hypothesis test and using a sequence of 
grouped hypothesis tests to differentiate between each ordered 
pair of manipulations. Furthermore, we have introduced the 
notion of a conditional fingerprint to describe how a manipu­
lation's fingerprints can change under subsequent processing. 
We have identified the conditional fingerprints of contrast 
enhancement fol lowed by resizing, and used these fingerprints 
in conjunction with our framework to develop an algorithm to 
detect the order in which resizing and contrast enhancement 
were used to manipulate an image . Through a series of 
experiments, we have demonstrated the effectiveness of our 
algorithm and shown that it can be used to detect contrast 
enhancement in conditions that were standard approaches to 
detection view as very unfavorable. 
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