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ABSTRACT

Over the past decade, a number of digital forensic techniques have
been developed to authenticate digital signals. One important set of
forensic techniques operates by estimating signal processing com-
ponents of a digital camera’s signal processing pipeline, then using
these estimates to perform forensic tasks such as camera identifica-
tion or forgery detection. However, because these techniques are
capable of estimating a camera’s internal signal processing compo-
nents, these forensic techniques can be used for reverse engineer-
ing. In this paper, we propose integrating an anti-forensic module
into a digital camera’s processing pipeline to protect against foren-
sic reverse engineering. Our proposed technique operates by remov-
ing linear dependencies amongst an output images interpolated color
values and by disrupting the color sampling grid. Experimental re-
sults show that our proposed technique can be effectively used to
protect against the forensic reverse engineering of key components
of a digital camera’s processing pipeline.

Index Terms— Anti-Forensics, Digital Forensics, Reverse En-
gineering, Color Interpolation

1. INTRODUCTION

In today’s society, the majority of multimedia content that we en-
counter is digital. Because digital content can be easily altered,
researchers have developed a number of forensic techniques to au-
thenticate digital multimedia signals. Existing forensic techniques
are capable of detecting multimedia forgeries and determining which
editing operations were used to manipulate a signal [1, 2, 3, 4]. Oth-
ers can identify the device used to capture a multimedia signal [1]
and provide information about how that device processes the signal
internally [5, 6, 7]. Though digital forensics is still a relatively young
field, researchers are able to determine a surprising amount of infor-
mation about a multimedia signal’s processing history using only the
signal itself.

Recently, researchers have begun examining anti-forensic op-
erations designed to fool forensic techniques. By studying anti-
forensics, researchers can identify weaknesses in existing forensic
techniques that a forger may attempt to exploit. Additionally, new
forensic techniques can be developed to identifying the use of
anti-forensics. Anti-forensic techniques have been developed to
hide fingerprints left by image resizing or rotation [8], disguise
an image’s compression history [9], cover up evidence of frame
deletion in digital videos [10], and falsify the photo-response non-
uniformity (PRNU) fingerprint left in digital images by sensor
imperfections [11].

Though the intended use of multimedia forensics is to provide
information security, researchers have overlooked an important un-
intended use of forensic techniques: multimedia forensics can be
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used to reverse engineer proprietary signal processing components
in digital devices! Digital cameras are an important example of this.
Forensic techniques exist to estimate the color filter array (CFA) pat-
tern and interpolation coefficients used during the image formation
process [12, 5, 13, 14]. Furthermore, a camera’s white balancing
parameters can be forensically estimated [6]. Since camera manu-
facturers likely wish to protect their proprietary implementations of
both color interpolation and white balancing, digital forensic tech-
niques may in fact pose an intellectual property threat.

Because forensic techniques pose an information security threat
when viewed in this light, we propose using anti-forensics to pro-
tect against reverse engineering. To accomplish this, we propose
placing an anti-forensic processing module at the end of a device’s
internal signal processing pipeline. This will prevent forensic tech-
niques from using a device’s output to estimate signal processing
operations inside the device.

In this paper, we propose a proof-of-concept technique to pre-
vent a digital camera’s color interpolation method from being foren-
sically reverse engineered. We accomplish this through a combina-
tion of nonlinear filtering and perturbations to an image’s sampling
grid. We demonstrate the effectiveness of our proposed technique by
testing the ability of existing forensic algorithms to identify the color
interpolation method used to form an image after our anti-forensic
technique has been applied.

2. THE IMAGE PROCESSING PIPELINE

A digital camera operates by measuring the intensity of light re-
flected from a real world scene R onto an electronic sensor known
as a charged coupling device (CCD), as is shown in Fig. 1. The light
enters the camera by first passing through a lens. Since most CCDs
are only capable of measuring one color of light at each pixel loca-
tion, the light next passes through a color filter array ρ. The CFA is
an optical filter consisting of a repeating fixed pattern (typically 2x2)
which allows only one color band of light (red, green, or blue) to fall
incident on the CCD at a particular pixel location.

The CCD then measures the light intensity of the corresponding
color band at each pixel location. This yields an image S constructed
of three partially sampled color layers such that

Sx,y,c =

{

Rx,y,c if ρx,y = c,
0 otherwise. (1)

where x and y are indices denoting a pixel’s spatial location and c
specifies its color layer.

Next, unobserved color layer values at each pixel location are
interpolated using nearby directly observed color layer values. This
interpolation process can be performed in many ways and is typi-
cally camera model specific. After this, the image may be subject
to internal post-processing, such as white balancing, before the final
image I is stored or output.
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Fig. 1. A digital camera’s signal processing pipeline.

2.1. Component Forensics

Knowledge of a camera’s color interpolation coefficients and CFA
pattern can be used to perform a variety of forensic tasks. Forensic
techniques that estimate a camera’s color interpolation coefficients
and CFA pattern, then use these to perform another forensic task
are known as component forensic techniques. Component forensic
techniques have been developed to identify forgeries by detecting
localized interpolation irregularities [12, 15]. Because interpolation
methods and their parameters are typically camera model specific,
other component forensic techniques have been developed to iden-
tify an image’s source camera [5, 13, 14]. Others use knowledge of
the CFA pattern and interpolation coefficients to estimate parame-
ters of a camera’s internal post-processing operations such as white
balancing [6].

While component forensic techniques vary in the specific way
that they estimate a camera’s color interpolation coefficients, they all
share the same basic structure. Here we use the technique proposed
by Swaminathan et al. [5] as a baseline and describe how it operates.

First, an image’s CFA pattern is assumed. By doing this, a foren-
sic examiner can separate directly observed pixels in a color layer
from those that have been interpolated. Next, the directly observed
color values are used to calculate the horizontal and vertical gradi-
ents of each pixel. These are used to classify each each pixel into
one of three sets for each color layer depending on the strength of
its horizontal and vertical gradient. For each of the nine pairings of
color layer and gradient class, a the directly observed and interpo-
lated color layer values are used to obtain a least squares estimate of
the color interpolation filter coefficients.

Since in most cases the true CFA pattern is not known, this pro-
cess is repeated for each of the 36 possible 2×2 CFA patterns. After
the set of interpolation coefficients is estimated for a candidate CFA
pattern, each color layer is resampled using the candidate CFA and
the color layers are interpolated using the estimated coefficients. The
difference between the original image and the re-interpolated image
is then calculated for each set of estimated interpolation coefficients
and CFA pattern. The CFA pattern and interpolation coefficients that
result in the lowest difference are chosen as the final estimate.

The estimated color interpolation coefficients can be used to
train a support vector machine (SVM) to identify the color inter-
polation method used or identify the model of the camera used to
capture an image.

3. ANTI-FORENSIC REVERSE ENGINEERING
PREVENTION

Any party attempting to reverse engineer a digital camera will need
to determine what signal processing is performed inside of it. Be-
cause one of the key elements of a digital camera’s internal signal
processing pipeline is its color interpolation method M , the color
interpolation method must be identified in order to reverse engineer
the camera. This can be done using component forensic techniques,
since they are capable of both identifying the color interpolation

Fig. 2. A digital camera’s internal processing pipeline with our proposed
anti-forensic module integrated into it.

method used by a camera and estimating the color interpolation co-
efficients. Though reverse engineering is not the intended use of
component forensic techniques, nothing prevents a malicious party
from using them this way. As a result, camera manufacturers may
wish to incorporate some form of protection against forensic reverse
engineering into their devices.

Since component forensic techniques can be used to estimate a
digital camera’s color interpolation method, we propose using anti-
forensics to protect against reverse engineering. To assess the effec-
tiveness of a reverse engineering protection technique, let M̂ be the
interpolation method identified by a component forensic technique
and let M be the set of all candidate interpolation methods. For
a given interpolation method m ∈ M, the probability P

(m)
C that

the interpolation method was correctly identified by the component
forensic technique is

P
(m)
C = P (M = m|M̂ = m). (2)

A technique that prevents component forensics from being able
to reverse engineer the interpolation method should seek to reduce
P

(m)
C . This probability does not need to be reduced to zero, however.

If P (m)
C can be reduced to the point that M̂ is no better than a ran-

dom guess, then perfect protection can be achieved. This is because
the output of the component forensic algorithm will be completely
unreliable. This is achieved if P

(m)
C ≤ 1/|M| for all m ∈ M,

where |M| denotes the cardinality of the set M.
When designing our reverse engineering protection technique,

we note that Swaminathan et al.’s algorithm obtains an estimate of
the camera’s color interpolation coefficients as follows. For a given
color layer and CFA pattern, each interpolated pixel B is written
as a linear combination of nearby directly observed pixel values S
according to the equation

Bx,y =
∑

(i,j)∈ΩI

w
(I)
i,j Sx+i,y+j (3)

where w(I) is the interpolation filter and ΩI is its support. These
equations are grouped by color layer and gradient class into systems
of equations of the form Sw = b. A least squares approximation
of the interpolation filter coefficients is calculated for each set of
equations, resulting in nine sets of filter coefficients.

To combat forensic reverse engineering, we propose incorpo-
rating an anti-forensic module into a digital camera’s processing
pipeline as is shown in Fig. 2. This module is designed to inter-
fere with two important aspects of component forensic algorithms:

1. The estimate of the interpolation method is linear.

2. This linear estimate depends on the ability of the forensic al-
gorithm to guess which color layer values were directly ob-
served and which were interpolated.

The first element of our anti-forensic module is a nonlinear fil-
ter. This is used to reduce linear dependencies between interpo-
lated pixel values and nearby directly observed pixel values. In this
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Fig. 3. Top: Changes in the effective area of each pixel after downsizing.
Bottom: A downsized color layer overlaid on the pixels of the original color
layer.

proof-of-concept implementation, we use a median filter with sup-
port s = 2 to obtain our nonlinearly filtered image F so that

Fx,y = med{Ii,j ||i− x| ≤ bs/2c, |j − y| ≤ bs/2c} (4)

The second element of our anti-forensic module involves down-
sizing the image by a small factor. This is done to disrupt the color
sampling grid and prevent the forensic algorithm from identifying
directly observed and interpolated color values. Each pixel in the
downsized image will correspond to a greater effective area than in
the originally sized image. As a result, no pixel in the downsized
image will correspond solely to a directly observed or color interpo-
lated pixel. This phenomenon is shown in Fig. 3.

In this proof-of-concept implementation, we downscale using
bilinear interpolation. Let each color layer be X × Y pixels before
downsizing and P×Q pixels after. Also, let the integer pixel location
(p, q) in the downsized image corresponds the real valued location
(u, v) in the originally sized image. These locations are related ac-
cording to the equations u = (p(X − 1) + P − X)/(P − 1) and
v = (q(Y −1)+Q−Y )/(Q−1). Additionally, let x ≤ u < x+1
and y ≤ v < y + 1 as is shown in Fig. 4. Each pixel Gu,v in the
downscaled color layer is given by

Gu,v =
∑

(k,l)∈ΩD

w
(D)
k,l (u, v)Fx+k,y+l, (5)

where w
(D)
k,l (u, v) are the spatially varying downscaling coefficients

and ΩD = {(0, 0), (0, 1), (1, 0), (1, 1)}. The coefficients of the
bilinear downscaling filter are calculated using the following equa-
tions: w

(D)
0,0 (u, v) = (1 − u + x)(1 − v + y), w

(D)
0,1 (u, v) =

(1 − u + x)(v − y), w
(D)
1,0 (u, v) = (u − x)(1 − v + y), and

w
(D)
1,1 (u, v) = (u− x)(v − y).

Combining (4), (5), and the expressions relating p and q to u and
v, the output of the anti-forensic module can be written as

Gp,q =
∑

(k,l)∈ΩD

(

w
(D)
k,l (

p(X−1)+P−X

P−1
, q(Y −1)+Q−Y

Q−1
)

×med{Ii,j ||i− x− k| ≤ bs/2c, |j − y − l| ≤ bs/2c}
)

.

(6)

When our proposed anti-forensic module is employed, both directly
observed and interpolated color layer values are modified according

Fig. 4. Bilinear interpolation example.

to this expression. As a result, both Sx,y and Bx,y are modified in (3)
causing the least squares estimate to result in a poor approximation
of the interpolation method.

While these anti-forensic measures help prevent component
forensic techniques from being able to reverse engineer a camera’s
color interpolation method, they affect the quality of the output
image. In practice, we have found that the image needs to be down-
scaled only a minimal amount in order to protect against forensic
reverse engineering. This corresponds to an unavoidable but ex-
tremely minor cost to the output image’s quality.

The anti-forensic component that has the greatest effect on the
output image’s quality is the nonlinear filter. Since the median filter
has the desirable property of preserving edge content in an image,
it is well suited for our purposes. Still, we may wish to balance the
trade-off between the level of reverse engineering protection and the
quality of the output image. To do this, we create a second image
H by downscaling I to the same size as G without applying median
filtering. We then form the final output image J by randomizing
between G and H according to the equation

Jx,y = θx,yGx,y + (1− θx,y)Hx,y (7)

where θx, y is a random variable taking the value 0 or 1 and
P (θx,y = 1) = φ. The choice of φ controls the balance between
anti-forensic protection and image quality.

4. SIMULATIONS AND RESULTS

In order to evaluate the performance of our anti-forensic reverse en-
gineering prevention technique, we created a test database of im-
ages whose color interpolation method and CFA pattern was known
as ground truth.This was done by first creating a set of 100 640 ×
480 pixel images from version 1 of the Uncompressed Colour Im-
age Database [16]. Next, we resampled the color components of
each image using the Bayer pattern as the CFA pattern. We then
performed color interpolation using five different color interpola-
tion methods: bilinear, bicubic, nearest neighbor, median filter, and
smooth hue transition. Descriptions of the interpolation methods
used can be found in [5] and [12] (we note that the median filter
color interpolation technique is not simply applying a median filter
to each color layer).

The resulting 500 images model the direct output of a digital
camera. Because post-processing such as compression decreases the
performance of component forensic techniques [5], we did not sub-
ject these images to post-processing. This allowed us to evaluate the
performance of our anti-forensic module operating under worst case
conditions; i.e. ideal conditions for component forensic techniques.
Additionally, this mimics the settings that would likely be chosen
by someone wishing to reverse engineer a camera using component
forensics if they had access to the camera. Finally, we passed these
images through our proposed anti-forensic module while varying φ
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Fig. 5. Left: A typical image formed using bilinear color interpolation.
Right: The same image after being passed through our anti-forensic module.

between 0.1 and 1 in increments of 0.1. In our anti-forensic module,
we downscaled each image by 4 pixels in both the horizontal and ver-
tical directions. This created 5000 anti-forensically modified images
in addition to the 500 unmodified images. Fig. 5 shows an exam-
ple of an image before and after it passes through our anti-forensic
module.

After constructing our image database, we used the component
forensic technique proposed by Swaminathan et al. in [5] to esti-
mate the CFA pattern and color interpolation coefficients for each of
the 5500 images. We then trained a support vector machine (SVM)
with a radial basis function kernel to identify the color interpolation
method used to form each image [17].

To achieve a baseline assessment of the component forensic
technique’s ability to identify each color interpolation method, we
first evaluated it using only unmodified images. This was done using
cross validation by dividing the set of unmodified images into 10
subsets. The color interpolation method was identified for every
image in a given subset after training the SVM using the remaining
9 subsets. This process was repeated for each of the 10 subsets. The
results were used to calculate P

(m)
C for each interpolation method

according to the equation

P
(m)
C =

∑

n

1(Mn = m, M̂n = m)

1(M̂n = m)
. (8)

where n is the picture index and 1(·) is the indicator function. When
testing on unmodified images, the component forensic technique
achieved perfect performance, i.e. P (m)

C = 1 for each of the 5 color
interpolation techniques.

Next, we tested the effectiveness of our anti-forensic module.
We did this by using the trained SVM to identify the color interpo-
lation method used to form each of the 5000 anti-forensically mod-
ified images. To ensure that image content had no influence on the
identification results, the anti-forensically modified images were di-
vided into 10 subsets corresponding to the unmodified training im-
ages. During testing, the SVM was trained using the 9 subsets of
training data corresponding to the unused testing subsets. This data
was used to calculate P (m)

C for every pairing of interpolation method
and downscaling amount. Additionally, we measured the quality of
the anti-forensically modified images by calculating the structural
similarity (SSIM) between each image and its corresponding origi-
nal version before it passed through our anti-forensic module [18].
Since our anti-forensic module changes the dimension of the image,
we rescaled our anti-forensically modified images back to their orig-
inal size in order to calculate the SSIM. Rescaling in this manner
will cause a further decrease in the quality of the anti-forensically

0.95 0.96 0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSIM

P
C

 

 

Bilinear
Bicubic
Nearest Neighbor
Median
Smooth Hue

Fig. 6. Experimental results showing output image quality (SSIM) versus
the probability of correctly estimating the color interpolation technique (PC ).

modified images, therefore our results can be seen as a lower bound
on the image quality.

The results of this test are shown in Fig. 6. Since 5 candidate in-
terpolation methods were considered, the component forensic tech-
nique performs better than a random guess only when P

(m)
C ≤ 0.2.

Our results show that P (m)
C > 0.2 only when bicubic color interpo-

lation is considered. Even in this case, P (bicubic)
C = 0.225 which

exhibits little improvement over a random guess. Furthermore, we
note our anti-forensic module can provide reverse engineering pro-
tection while keeping the SSIM above 0.96. These results suggest
that our proposed anti-forensic module is very effective at protecting
against reverse engineering.

5. CONCLUSIONS

In this paper, we have proposed a new anti-forensic module to be in-
corporated into a digital camera’s signal processing pipeline to pro-
tect against reverse engineering. By introducing nonlinearities into
an image and disrupting its color sampling grid, our anti-forensic
module prevents component forensic techniques from accurately es-
timating the color interpolation method used by a digital camera dur-
ing the image formation process. Through a set of experiments, we
have demonstrated that our proposed anti-forensic technique is able
to reduce the performance of a component forensic technique to that
of a random guess or worse in nearly all cases maintaining a high
image quality.
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