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Abstract—High-accuracy target localization and tracking have
been widely used in the modern navigation system. However, most
of the methods such as global positioning system (GPS) are highly
dependent on time measurement accuracy, which prevents them
from achieving high accuracy in practice. Time reversal (TR)-
based technique has been shown to be able to achieve centimeter
accuracy localization by fully utilizing the focusing effect brought
by the massive multipaths naturally existing in a rich scattering
environment such as indoor scenarios. By investigating a similar
statistical property, this article develops a novel high-accuracy
target localization method by using massive MIMO to provide
massive signal components. We first observe that the statistical
autocorrelation of the received energy physically focuses into a
beam around the receiver exhibiting a sinc-like distribution in the
far-field scenario. By leveraging such a distribution of the focus-
ing beam, an effective way to estimate the relative moving speed
of the target with respect to a single base station is proposed.
We also obtain the absolute moving speed and subsequently track
the target accurately by associating the speed estimation results
and geometrical relationship of multiple stations. The theoretical
analysis on the error in the speed and localization estimation val-
idated by numerical simulation results show that the proposed
system can achieve decimeter accuracy for target localization and
tracking.

Index Terms—Centimeter accuracy, MIMO, statistical electro-
magnetic, target localization and tracking.

I. INTRODUCTION

TARGET localization and tracking have been of great
interest over several decades because of their wide appli-

cations in navigation and many location-based services such
as autonomous drivings [1], [2]. Furthermore, most of these
localization requests emerge in urban areas where the global
positioning system (GPS) [3] cannot offer good performance
because the line-of-sight (LOS) signal between the GPS satel-
lite and the terminal is easily to be blocked by obstacles
such as tall buildings. As a result, it is imperative to seek
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for technologies that can provide high-accuracy localization
in complex environments, such as dense urban areas under
nonline-of-sight (NLOS) and multipath conditions [4].

Based on their principle, localization techniques can be clas-
sified into two categories, i.e., triangulation-based methods
and fingerprinting-based methods. Triangulation-based meth-
ods consist of two steps. First, model-based parameters, such
as the angle of arrivals (AOAs) [5], [6], time of arrivals
(TOAs) [7], [8], or time difference of arrivals (TDOAs) of
LOS signals [9], are measured at all access points (APs) or
base stations (BSs). Then, the target location can be estimated
by using triangulation/trilateration among all APs/BSs [10].
However, these methods cannot work well under the multipath
effect and NLOS because of the unreliable parameter esti-
mation. Fingerprinting-based methods first construct an offline
database by collecting location related features, such as received
signal strength (RSS) [11]–[13] and channel state information
(CSI) [14]–[16], in the area of interest. Then, the same features
are extracted from the online signals and compared with the
offline database to obtain the location estimations. However,
the overhead of establishing and updating the offline database
also prevents these methods from being widely adopted [2].

More recently, massive MIMO has been gaining popular-
ity in target localization because of its high angular resolution
and degree of freedom [17]. This mainly benefits from the
hundreds of antennas on the BS, which can enable narrow,
highly directional, and high-gain beams by beamforming [18].
Similar to the localization methods without using massive
MIMO, the existing massive MIMO-based localization meth-
ods can also be classified into the same two categories.
The first is the triangulation-based methods in which many
techniques, such as beamforming [19], multiple signal classifi-
cation (MUSIC) [20], 2-D rotational invariance technique [21],
and compressive sensing [22], [23], are explored on the
base of massive MIMO systems. To reduce the prohibitive
energy consumption and complexity increment caused by
the massive antennas, high-efficient beam allocation/switching
schemes [24], [25], AOAs estimations in beamspace [26],
preenergy detections [27], as well as the combination of dig-
ital beamforming and analog techniques [28]–[30] have been
considered. In the fingerprinting-based methods with massive
MIMO [31]–[36], different matching techniques have been
studied in comparing the online phase with the offline phase
to estimate the target location, such as model-based similar-
ity comparison [31], similarity learning by neural networks
(NNs) [32], [33], support vector machines (SVMs) [35],
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and Kernel-based methods [36]. Even though the localization
accuracy is improved by leveraging the high range/angular
resolution provided by massive antennas, most of existing
massive MIMO-based localization methods still entail the
same challenges as the traditional methods which do not use
massive MIMO antennas, that is, the NLOS distortions and
performance degradation in rich-scattering environment. This
motivates us to design a high-accuracy localization system
that is robust to environment dynamics while with good
performance under multipath and NLOS conditions.

Inspired by the recent research on decimeter-accuracy indoor
tracking [37]–[40] using time reversal focusing effect [41],
[42], in this article, we propose a massive MIMO-based high-
accuracy localization and tracking system by utilizing the
focusing effect brought by the massive number of antennas.
We first propose the definition of an important statistical vari-
able, the strength of the autocorrelation function (ACFS) of
the received signal in a massive MIMO system, to charac-
terize the energy distribution of the focusing effect around a
location of interest. Because the received signal in a massive
MIMO system contains a large number of components due to
the massive number of antenna elements and further reflec-
tions/scattering, it can be shown that the distribution of the
ACFS exhibits a stationary sinc-like focusing beam1 around
the receiver in spatial domain regardless of the environment.

By leveraging the ACFS, we then develop an approach
that can estimate the relative speed of the target with respect
to a single BS. The absolute moving speed, moving direc-
tion/orientation, and location of the target can be further
derived by jointly considering the relative speed estima-
tion (ES) and geometrical relationship among multiple BSs.
Different from [42], which needs an extra inertial sensor to
estimate the moving direction because the energy distribution
of the time reversal focusing effect shows the same trend along
all the directions, the proposed system can estimate the moving
speed/distance and direction simultaneously only based on
the ACFS focusing beam that exhibits different distributions
along different directions. This is because that in the proposed
system, the massive number of the incident signal components
reaches the receiver from the antennas/BS side, resulting in a
directional focusing beam rather than a symmetrical focusing
ball as shown in [42].

Based on the derivation of ACFS and how it can be used
for speed and location estimation, we derive the theoretical
expectation of the speed and location estimation errors, which
are further verified by extensive simulations. It is shown that
the proposed system can achieve decimeter-level accuracy for
target localization and tracking in various scenarios, which
outperforms three latest massive MIMO-based localization
techniques [23], [31], [32].

In summary, the main contributions of this work are as
follows.

1We use the term focusing beam rather than beamforming because we
utilize the ACFS, a specific function of the received signal for positioning a
target, and the distribution of the ACFS happens to exhibit a beam-shaped
pattern. There is no “physical beamforming” that explicitly focuses a signal
toward a receiver.

1) We observed and proved that the statistical distribution
of the ACFS of the received signal in a massive MIMO
system exhibits a sinc-like beam pattern, because the
received signal usually contains a large number of LOS
and NLOS signal components.

2) Based on the distribution of the ACFS, we developed a
target localization and tracking system that has robust
performance in rich-scattering urban areas with NLOS.
Because the proposed system only needs to calculate
the ACFS of the received signal on the user side while
the speed and location estimations are very straightfor-
ward according to the derived close-form expressions,
the system enjoys a very low computation complexity
and thus can be widely applied in real-time tracking and
navigation applications with a stringent requirement on
the latency.

3) We further derived the theoretical speed and localization
error expectations of the proposed system and validated
the theoretical performance analysis using extensive
simulations.

The remainder of this article is organized as follows. In
Section II, we elaborate on the signal model for the mas-
sive MIMO system followed by the derivation of the focusing
beam. Then, Section III proposes an ES method by using
the focusing beam of multiple distributed BSs. Section IV
introduces the target localization system while Section V
derives the theoretical speed and location estimation error
expectations. Extensive numerical simulations are conducted
to validate the performance of the proposed approach in
Section VI. Finally, Section VII concludes this article.

II. FOCUSING BEAM IN MASSIVE MIMO

In this section, we first introduce the background knowl-
edge about the system model. Then, we elaborate on the
signal model and derive the analytical distribution of the ACFS
focusing beam in 5G massive MIMO communication systems.

A. Background Knowledge

Ultradense 5G BS Deployment: The 5G cellular network
will be an ultradense cellular network, e.g., with a density
of 40–50 BS/km2, because that a massive number of anten-
nas will be deployed on the BS [43], which means that every
antenna’s transmission power has to be greatly decreased com-
pared to that of a 4G BS, leading to a smaller coverage area.
Second, mmWave transmission is very likely to be adopted
in 5G cellular networks and the signal decays much faster at
mmWave frequency, which again will reduce the cell coverage
and thus, denser BS deployment is needed. For example, the
federal communications commission (FCC) in the USA issued
a declaratory ruling that indicates that most of the 5G BSs are
about 30 feet tall while the service range of each BS is about
400–500 feet or less in large crowded areas [44].

Far-Field Condition: As shown in Fig. 1, let HB and LBR
denote the altitude of the BS and the horizontal distance
between the BS and the receiver. Ae is the aperture of the
antenna array A. Due to the ultradense 5G BS deployment,
LBR is about 80–200 m in practice [43]. In addition, Ae is less
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Fig. 1. Setup for a BS with massive MIMO antennas.

than 2 m and HB is about 10 m because of the antenna fab-
rication and installation requirements [44]. As a consequence,
LBR ≥ 10HB � Ae is the condition of the far-field scenario
in this article and usually holds in the 5G networks [45], [46].
This is different from the conventional far-field condition in
which Lf = 2A2

e/λ is the boundary between the Fresnel region
and the Fraunhofer region [47] with λ as the wavelength of
the signal.

B. Signal Model

As shown in Fig. 1, “B” denotes a BS equipped with M
antennas, which communicate with the receiver “r” simulta-
neously. Note that practical measurements in [48]–[50] have
validated that the LOS signal matches with the free space
propagation model while the NLOS signal follows the Raleigh
fading [51] in 5G massive MIMO system. As a result, in urban
areas, the received signal consisting of both LOS and NLOS
parts at baseband can be expressed as

y(t) = yL(t)+ yN(t)+ n(t)

yL(t) = √
KL

M∑

m=1

exp(j(k|xmrt| + φm))

4π |xmrt|

yN(t) = √
KN

N∑

n=1

exp[j(ωdt cosαn + φn)] (1)

where yL(t) and yN(t) denote the LOS and NLOS components
and KL and KN are their corresponding power, k = 2π/λ is the
wave number, λ is the wave length, ωd is the maximum radian
Doppler frequency, xm and rt are the coordinates of the mth
antenna and the receiver at time t, respectively, |xmrt| denotes
the Euclidean spatial distance between the mth antenna and
the receiver, n(t) represents the additive Gaussian noise, φm is
the phase distortion of the mth LOS path signal, and αn and
φn are the AOA and phase distortion of the nth NLOS signal
component.

In general, φm is caused by hardware imperfections,
heterogeneity of the propagation medium and channel attenu-
ations, etc. αn and φn are mainly introduced by the reflec-
tion/absorption of the randomly distributed scatterers in a
rich-scattering urban area. As a result, φm, αn, and φn are
not deterministic and can be assumed as i.i.d uniform distri-
butions over [−π, π) for m = 1, 2, . . . ,M and n = 1, 2, . . . ,N
[51], [52], where N is the total number of NLOS signal com-
ponents. In practice, the number of multipath N can vary

Fig. 2. Signal propagation geometry between r0 and rs.

from 10 to 100 in urban areas according to the practical
measurements in New York City [45], [46].

C. Massive MIMO Focusing Beam

In the following, we explore the distribution of the focus-
ing effect of massive MIMO in the far-field scenario by first
deriving the ACF of the received signal and then the ACFS,
which is inspired by TRRS in [42] and [53] but more robust
to the randomness of signal distortions.

As shown in Fig. 2, a target moves from r0 at time t0 to rs

at time ts on the ground (xOy plane). Then, the ACF of the
received signal between r0 and rs is defined as

ηy(r0, rs) = E
[
y(t0)y

∗(ts)
]

(2)

≈ ηyL + ηyN + ηn (3)

where ηn = E[n(t0)n∗(ts)] = σ 2I, σ 2 is the power spectral
density of the Gaussian noise n(t). ηyL , ηyN , and ηn denotes
the ACF of the LOS signal component yL(t), NLOS signal
component yN(t), and the noise term n(t), respectively.

Note that the independence among yL(t), yN(t) and n(t) is
assumed to obtain (3). Detailed derivations can be found in the
Appendix. Next, we will derive ηyN and then ηyL , respectively.

1) ACF of NLOS Signal: According to [42] and [51], ηyN

can be written as

ηyN = E
[
yN(t0)y

∗
N(ts)

]

= KN

N∑

n=1

N∑

i=1

Eφ,α{exp[j(ωdt cosαn + φn)

×exp[j(ωd(t + τ) cosαi + φi)}
= KNNJ0(ωdτ) = KNNJ0(kp) (4)

where τ = ts − t0, Eφ,α means taking expectation over φ and
α, J0(·) is the 0-order Bessel function, and p is the Euclidean
distance between r0 to rs and as shown in Fig. 2. We omit the
details about the derivation of (4) because they are similar to
that in [42] and [51].

2) ACF of LOS Signal: Similar to (4), the ACF of the LOS
signal yL(t) between r0 and rs is given by

ηyL = ηyL(r0, rs) = E
[
yL(t0)y

∗
L(ts)

] = KL

×
M∑

i=1

M∑

m=1

Eφ

{
exp

[
j(k(|xir0| − |xmrs|)+ φi − φm)

]

(4π)2|xir0||xmrs|

}

.

(5)
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In the far-field scenario where {|xir0|, |xmrs|} > LBR � Ae

holds, |xir0| and |xmrs| in the denominator of (5) can be
approximated as the same for all elements, i.e., |xir0| ≈ |x0r0|
and |xmrs| ≈ |x0rs| because (|xir0|−|xmrs|) is usually magni-
tudes smaller than |xir0| and |xmrs|. We omit the denominator
of (5) in the derivation for simplicity.

Next, we decompose (5) into two different cases, i.e.,
1) i = m and 2) i �= m. Considering i = m, we have

η1st
yL

= KL

M∑

m=1

exp(jk(|xmr0| − |xmrs|)). (6)

To compute |xmr0| − |xmrs| in Fig. 2, the angle symbols
are defined as ∠rsr0r′

s = γ ′
m,∠rsr0r′

0 = γ m,∠r′
sr0r′′

0 =
β1,∠r′′

0r0r′
0 = β, where r′

0 lies in the extension line of lxmr0

satisfying that lxmr′
0

⊥ lrsr′
0
. r′′

0 is the projection of r′
0 on the

xOy plane. From the cosine theory, we have

|xmrs|2 = (|xmr0| − p cos γ m)
2 + psinγ 2

m (7)

cos γ m = cos β · cos(β1 + γ ′
m), cos γ ′

m = ε/p

cos β =
√

L2
BR + x2

m
√

L2
BR + H2

B + x2
m

, cos β1 = LBR√
L2

BR + x2
m

. (8)

In the far-field scenario where LBR ≥ 10HB � xm, we can
easily get the following approximations, i.e.,

cos β ≈ 1, cos β1 ≈ 1, β1 ≈ β ≈ 0, γ ′
m ≈ γ m

{psinγ , p cos γ } < p 
 LBR < |xmr0|. (9)

In this case, we have

|xmrs|2 ≈ (|xmr0| − p cos γ m)
2 (10)

∣∣∣|xmr0| − |xmrs|
∣∣∣ ≈ p cos γm = −Lε + xmξ

√
L2 + x2

m
≈ −ε + xmξ/L (11)

where L =
√

L2
BR + H2

B + x2
m, xm = md/2 while d denotes

the inner element space in Array A. In addition, p, ε, and
ξ represent the Euclidean spatial distance, range, and cross-
range between r0 and rs shown in Fig. 2. Substituting (11)
into (6), η1st

yL
can be rewritten as

η1st
yL

= KLexp(jkε)
M∑

m=1

exp(jkxmξ/L)

= KLMexp(jkε)sinc

(
kξAe

2L

)
(12)

where sinc(t) = sin(t)/t.
Similar to (6), when i �= m in (5), we can get

η2nd
yL

= KL

×
M∑

i=1

M∑

m=1,
m�=i

Eφ{exp[j(k(|xir0| − |xmrs|)+ φi − φm)]}.

(13)

The (i,m) pair of (13) is expressed as

η2nd
yL
(i,m) = Eφ

⎧
⎪⎨

⎪⎩
exp (ψi,0 − ψm,s)︸ ︷︷ ︸

�im

+ (φi − φm)︸ ︷︷ ︸


]

⎫
⎪⎬

⎪⎭

= Eφ{cos(�im +)} + jEφ{(sin(�im +))}
(14)

where ψi,0 = k|xir0|, ψm,s = k|xmrs|.
Since φi and φm are uniformly distributed over [−π, π), the

probability density function (PDF) of  = (φi − φm) is

f(φ) =
⎧
⎨

⎩

2π + φ, − 2π ≤ φ ≤ 0
2π − φ, 0 ≤ φ ≤ 2π
0, others.

(15)

Then, the expectation in (14) can be reformulated as

Eφ{cos(�im +)} =
∫ 2π

−2π
f(φ) cos(�im + φ)dφ

=
∫ 2π

−2π
f(φ) cos�im cosφdφ

−
∫ 2π

−2π
f(φ)sin�imsinφdφ. (16)

Given f(φ), we get that

Eφ{cos(�im +)} = 0, − 2π ≤ φ ≤ 0 (17)

Eφ{cos(�im +)} = 0, 0 ≤ φ ≤ 2π. (18)

It is straightforward to obtain that

Eφ{cos(�im +)} = 0,Eφ{sin(�im +)} = 0

η2nd
yL
(i,m) = 0, η2nd

yL
= KL ·

M∑

i=1

M∑

m=1,
m�=i

η2nd
yL
(i,m) = 0.

(19)

Taking the summation of (12) and (19), ηyL is given by

ηyL = η1st
yL

+ η2nd
yL

= KLMexp(jkε)sinc

(
kξAe

2L

)
. (20)

Given (4) and (20), the ACF of the received signal is

ηy(r0, rs) = ηy = ηyL + ηyN + ηN

= KLMexp(jkε)sinc

(
kξAe

2L

)
+ KNNJ0(kp)+ σ 2I.

(21)

D. ACFS of the Received Signal

In this section, we compute the ACFS of the received sig-
nal, i.e., the strength of ACF in (21) by first concluding and
validating three properties of ηyL , ηyN , and ηyN in (21).

Remark 1: ηyN decays much faster than ηyL .
Remark 2: At high SNRs, ηyN is a constant term σ 2, which

dose not impact the ACFS.
Remark 3: Given Remarks 1 and 2, ACFS of the received

signal y(t) is dominated by the ACFS of the LOS signal yL(t),
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Fig. 3. ACFS distribution of LOS. (a) 2-D ACFS. (b) 1-D ACFS.

Fig. 4. ACFS distribution of NLOS. (a) 2-D ACFS. (b) 1-D ACFS.

Fig. 5. ACFS distribution with both LOS and NLOS. (a) 2-D ACFS.
(b) 1-D ACFS.

i.e., the normalized ACFS of y(t) at two different locations r0
and rs can be approximated by

∣∣ηy(r0, rs)
∣∣2 = ∣∣ηy

∣∣2 ≈ |ηyL |2 =
∣∣∣sinc

(
kξAe

2L

)∣∣∣
2

(22)

which shows a focusing beam in spatial domain [see Fig. 5(a)].
To validate Remarks 1–3, we build a numerical simulation

system using a massive MIMO antenna array with 100 ele-
ments at carrier frequency f0 = 28 GHz. To be consistent with
5G small cell configurations, we set HB = 8 m, LBR = 100 m,
KL = KN , and the multipath number N as an integer ran-
domly selected between 10 and 100. Note that SNR is 10 dB
in Figs. 3–5 while Fig. 6 explores the impact of SNR. The
illustrations/definitions of target movement, peak distance p,
and moving time t are given in Figs. 7 and 8.

Given the aforementioned parameters, theoretically, the
peak distance of ηyL is p = 2.86L/kAe ≈ 1.432 m, and
p ≈ 0.61λ = 0.0061 m corresponding to ηyN , which match
with our simulation results well in the positions of peaks and
valleys as shown in Figs. 3(b) and 4(b). Moreover, Figs. 3 and

Fig. 6. ACFS distribution at different SNRs. [Theoretical ACFS is computed
by (22) while others are simulated by (2).]

Fig. 7. Target moving illustration.

Fig. 8. ES illustration.

4 clearly show that the ACFS of the NLOS signal decays much
faster than that of LOS, which validates Remark 1.

Equation (21) indicates that the constant term ηn = σ 2I
does not impact ηy much at high SNR (i.e., σ 2 is much smaller
compared with KL and KN). In Fig. 6, the theoretical ACFS
according to (22) matches the ACFS directly computed by
E[y(t0)y∗(ts)]) when SNR ≥ 5 dB while it deviates a lot
when SNR ≤ 0 dB. As a result, Remark 2 is verified. Given
Remarks 1 and 2 and (21), it is straightforward to conclude that
the ACFS of the received signal y(t) is mainly dominated by
the ACFS of the LOS signal especially when KLOS ≥ KNLOS
in 5G massive MIMO system.2 Thus, Remark 3 and (22) are
verified. Fig. 5 shows the result when KLOS = KNLOS and
SNR = 10 dB, which also validates (22).

Note that when the target keeps moving, the line between
the antenna center and r0 (i.e.,

−→
Or0) may not be perpendicular

2Practical measurements in [49] show that NLOS usually suffers an over
10-dB additional path loss than LOS signal in 5G massive MIMO system due
to the greater traveling distance and absorption of corresponding scatterers.
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Fig. 9. Geometrical relationship between the target and BS when the target
moves from r0 to rs.

to the line along which the antennas are deployed (i.e.,
−→
Ox).

As shown in Fig. 9,
−→
Or0 ⊥ −→

Ox does not hold when the target is
moving. In this case, the effective aperture Ae in (22) should
be replaced with Ae cosβ. Correspondingly, the distance L
should be replaced by L / cosβ [47].

III. MOVING SPEED AND DIRECTION ESTIMATION

In this section, we first provide an overview of the ACFS-
based tracking system. Then, we present a novel ACFS
matching method to estimate the moving speed and direction
simultaneously by leveraging the RF signals only. For descrip-
tion clarity, we define the range- and cross-range direction in
Fig. 7 while the peak distance dp and moving time tp are
illustrated in Fig. 8.

A. Overview of the ACFS-Based Tracking System

Consider that a target moves at a speed of v along the line
joining r0 and rs as shown in Fig. 7. The receiver is fixed
on the target and keeps recording signals transmitted from
the BS with a sample rate fs. The proposed method estimates
the moving trajectory of the receiver, i.e., the location of the
receiver at time ts can be estimated by

rs = rs−1 +�rs = rs−1 + v�t = rs−1 + vp�t/sinθ (23)

where rs−1 denotes the location of the receiver at ts−1, while
�t = 1/fs denotes the sample period. The proposed system
continuously searches for the peak location rp of the computed
ACFS, i.e., |E[y(t)y∗(t + τ)|2, t = t0, t1, . . . It then estimates
the consecutive vp and θ , thus yielding the real-time tracking
of a moving target.3 In Fig. 7, we name v as the absolute speed
while vp = vsinθ is the projected speed, which represents the

projection of v along the cross-range direction (i.e.,
−−→
r′

prp).

B. Projected Speed Estimation

As shown in (22), a moving target keeps receiving sig-
nals transmitted from the massive MIMO antennas on the BS.
Then, the computed ACFS of the measured signal y(t) at the
receiver side is a sampled version of the theoretical ACFS
|sinc([kξAe/2L])|2, where ξ is the cross-range between r0 and
rs (see Figs. 2 and 7). As a result, we extract the first local
peak of the theoretical ACFS (|sinc([kξAe/2L])|2). The peak
distance dp in Fig. 8 is given by

dp = 2.86L/kAe. (24)

3In case of outliers, popular smoothing techniques, such as moving average
and local regression [54], can be further used to improve the robustness.

Fig. 10. Curve fitting by local regression.

Note that L denotes the distance between the BS center and
the initial location. Similarly, we look for the first local peak
of the computed ACFS of y(t). Then, the moving time tp can
be estimated by

t̂p = arg FindPeak
τ∈{0,�t,2�t,...,TACFS}

{∣∣E[y(t0)y
∗(t0 + τ)

∣∣2
}

(25)

where operation FindPeak{•} means looking for the first
peak and TACFS is the time window length within which the
first peak may fall in. Given dp and t̂p, the projected speed
estimation is expressed as v̂p = dp/t̂p.

Note that in practice, we first apply a local regression [54]
on the ACFS distribution curve to get rid of the spikes caused
by noise or other distortions. Numerical simulation in Fig. 10
shows that when the signal is corrupted, it is difficult to find the
true peak directly. However, after local regression, we can get
a very good estimation of the true peak. Fig. 10 also shows
that a false peak very close to the reference point (t = 0)
may mislead the peak finding and thus induce large errors.
However, this can be eliminated by using peak distance dp

at the previous time (which is known) as a new constraint.
Specifically, the distance L between the BS center and receiver
cannot change much during two adjacent measurements due to
the high sample rate and limited moving velocity. As a result,
dp which is determined by L in (22) cannot change very much
as well.

C. Absolute Speed and Moving Direction Estimation

In addition to the projected ES v̂p, this section introduces
how to estimate the absolute speed and moving direction of
the target in order to track a moving target continuously. We
consider a practical multiple-BS case with one user/receiver
and Q-based stations. For notation purpose, let v̂p,q denote
the projected speed estimated from BS q. Note that the abso-
lute moving speed v of a moving target is unique and can be
estimated by

v = v̂p,q

sinθq
, q = 1, 2, . . . ,Q

s.t. θq + θl = 180 −�ql, q �= l, q, l ∈ {1, 2, . . . ,Q} (26)
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Fig. 11. Example scenario of two BSs.

where θq represents the angle between the moving direction
(−−→r0rs) and the range direction (

−−→
Bqr0) corresponding to station

q centered at Bq (see Fig. 11). In (26), �ql is the angle among
the initial location r0, station Bl, and station Bq with vertex
r0, which is known a priori since the location of the BSs and
the initial location are easy to get in communication systems.
Fig. 11 gives an example of two BSs, i.e., Q = 2. Then, (26)
becomes

v = v̂p,1

sinθ1
= v̂p,2

sinθ2
s.t. θ1 + θ2 = 180 −�12. (27)

In (27), v̂p,1 and v̂p,2 can be estimated by using the ACFS
of the received signal as shown in Section III-B and �12 is
known a priori. Thus. the moving direction θ1 and θ2 can be
estimated by

⎧
⎨

⎩

θ̂1 = arctan
(

v̂p,1sin�12
v̂p,2+v̂p,1 cos�12

)
,

θ̂2 = arctan
(

v̂p,2sin�12
v̂p,1+v̂p,2 cos�12

)
.

(28)

To improve the robustness and accuracy, we explore the dif-
ferent combining pairs of the BSs (Bq,Bl, l �= q), if any.
Similar to the (B1,B2) pair shown in Fig. 11, we can further
get corresponding projected ESs (v̂q, v̂l) and moving direc-
tion estimations (θ̂q, θ̂l). Then, the absolute speed can be
estimated by

v̂ = 1

Q

Q∑

q=1

v̂p,q

sinθq
, q = 1, 2, . . . ,Q. (29)

IV. TARGET LOCALIZATION

In this section, the location estimation is first calculated by
integrating the consecutive moving speed and moving direction
estimations. Then, the location estimations from different BS
pairs (Bq,Bl, l �= q) are fused to improve the robustness and
accuracy. To have a high-level understanding of the algorithm,
the architecture and main steps are summarized in Fig. 12.

Recalling the estimations of the absolute speed v̂ and
moving directions θq(q = 1, 2, . . . ,Q) from (28) and (29),

as shown in Fig. 13, the new location r
Bq
TM

estimated by sta-
tion q in the local coordinate system xBq OyBq can be expressed
as

{
rTM,xBq

= r0,xBq
− dTM cos θq

rTM,yBq
= r0,yBq

+ dTM sinθq
, q = 1, 2, . . . ,Q (30)

where dTM = v̂TM , TM is the updating window length, mean-
ing that we update the location estimation every TM seconds.
(r0,xBq

, r0,yBq
) and (rTM,xBq

, rTM,yBq
) are the coordinates of the

initial location r0 and the new location r
Bq
TM

at the local coordi-
nate system xBq OyBq shown in Fig. 13. We then transform the

local coordinates of r
Bq
TM

into the global Cartesian coordinate
system xOy, which is denoted as rq

TM
shown in the magenta

color in Fig. 14. As a result, the coordinate rq
TM

= (rq
TMx, rq

TMy)

can be calculated by
[

rq
TMx

rq
TMy

]
=

[
rTM,xBq

rTM,yBq

rTM,yBq
− rTM,xBq

][
cos ζq

sinζq

]
(31)

where ζq is the angle between the global Cartesian coordi-
nate system xOy and the local Cartesian coordinate system
xBq OyBq , and is known a priori in modern communication
systems. Furthermore, we fuse the location estimations from
different BSs, i.e.,

rTM = 1

Q

Q∑

q=1

rq
TM
, q = 1, 2, . . . ,Q (32)

where rq
TM

= (rq
TMx, rq

TMy).
Once we get the global coordinates of the new location

rTM = (rTMx, rTMy), the distance between the qth station and
the receiver/target can be updated by

Lnew
BqR =

√(
rTMx − Oxq

)2 + (
rTMy − Oyq

)2 (33)

where (Oxq ,Oyq) are the coordinates of the qth station center
Bq at the global coordinate system. As a consequence, accord-
ing to (22), the new peak distance dq

pNew corresponding to the
qth BS can be updated by

dq
pNew

= 2.86Lnew
BqR/kAe. (34)

In the next step, we take rTM as the new starting point to
repeat the ACFS computation (based on the data measurements
starting at the timestamp corresponding to rTM ), ES and local-
ization process, thus getting a location estimation sequence
rTM (t) representing the trajectory of the moving target.

V. PERFORMANCE ANALYSIS

In this section, we perform theoretical analysis about the
expected error of the speed and location estimation using
the proposed algorithm. Since the system estimates the time
tp corresponding to the first local peak of the computed
ACFS (as in Section III-B), we first derive the distribution
of the peak-location-error (PLE) measured by the distance
that the estimated peak deviates from the true peak. The
expected-error-of-speed-estimation (EES) and the expected-
error-of-localization (EEL) are further derived on the base of
the PLE distribution.
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Fig. 12. Flow chart of the proposed target location system.

Fig. 13. Target localization at station q.

Fig. 14. Coordinates transformation.

A. Peak Location Error Distribution

To derive the PLE, we first introduce an intermediate
variable peak prominence [55] as shown in Fig. 15, which
indicates the relative height of a peak. In general, a larger
prominence corresponds to a sharper peak and thus, the
peak can be localized more accurately. Recalling (21) and
Section II-D, the ACFS is given by

|ηy|2 =
∣∣∣∣
KLMsinc(kξAe/2L)+ KNNJ0(kp)+ σ 2

KLM + KNN + σ 2

∣∣∣∣

2

. (35)

The height ph of the first local peak and height pv of first local
valley of (35) (see Fig. 15) can be expressed as

ph =
∣∣∣∣
0.22KLM + 0.01KNN + σ 2

KLM + KNN + σ 2

∣∣∣∣

2

pv =
∣∣∣∣

σ 2

KLM + KNN + σ 2

∣∣∣∣

2

(36)

where we have sinc(kξ0Ae/2L) = 0.22 and J0(kp) = 0.01
while ξ0 is the first local peak location of (35) and p =√

ξ2
0 + ε2 ≥ ξ0 = vtsinθ (see Fig. 7). Then, the prominence

ppro of the first local peak of (35) in the unit of decibel (dB)
can be expressed as

ppro = 10log10[ph − pv]

= 10log10

∣∣∣∣
0.22KLM + 0.01KNN + σ 2

σ 2

∣∣∣∣

2

. (37)

Note that SNR is defined as SNR = 20log10(KLM/σ 2).
Consequently, the prominence ppro can be rewritten as

ppro = 10log10

∣∣∣∣∣
0.21KLM + 0.01KNN + KLM · 10

−SNR
20

KLM · 10
−SNR

20

∣∣∣∣∣

2

.

(38)

To have a better standing, Fig. 15 shows the peak promi-
nence versus difference SNRs. It is clear that the prominence
ppro increases monotonically with the increment of SNR, thus
improving the peak localization accuracy. Note that the system
needs to estimate the moving distance of the target every TM

seconds as introduced in (30). As a result, we have to repeat
the peak finding process for a large number of times to track a
moving target. Then, by using the central limit theorem [56],
the expectation of the PLE denoted by perr can be assumed
to follow a Gaussian distribution, i.e., the PDF of perr can be
expressed as

f (perr) = H(ppro)exp

(
− p2

err

2G(ppro)2

)
(39)
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Fig. 15. Peak prominence versus SNRs.

Fig. 16. Peak location error versus SNRs.

where H(ppro) is the coefficient function while G(ppro) denotes
the standard deviation function (SDF). Since perr decreases
with the increment of SNR, H(ppro) is a monotonically
increasing function while G(ppro) is a decreasing function. It
is preferable that H(ppro) grows slowly and G(ppro) decreases
slowly as their arguments increase. Here, we propose a pair of
empirical approximations about H(ppro) and G(ppro) by 5000
Monte Carlo experiments, i.e.,

H(ppro) = 186
√

10log10(ppro)

G(ppro) = 1

10
√

10log10(ppro)
. (40)

Fig. 16 shows that the PDF f (perr) with H(ppro) and G(ppro)

given in (40) can well approximate the distribution of PLE.
Consequently, the expectation of |perr| can be calculated by

E{|perr|} =
∫ ∞

−∞
|perr|f (perr) = 2G(ppro)

2 · H(ppro). (41)

B. Expected Error of the Speed and Location Estimations

Similar to the scenario in Section III, a target is assumed
to move at a speed of v along the line joining r0 and rs

and receive signals from Q nearby BSs. Given the estima-
tion t̂p = N�t where N is the integer denoting the sample
index in Section III-B, the expected moving-time-estimation
error caused by |perr| at BS q can be expressed as

t̂qperr
=

(
�N +

⌊
E{|perr|}
vsinθq�t

⌋)
·�t, q = 1, 2, . . . ,Q (42)

where �N ∈ {0,±1} represents the quantization error. As a
result, the EES is given by

v̂err = 1

Q

Q∑

q=1

∣∣∣∣∣
dq

p

t̂qpsinθq
− dq

p

sinθq
(
t̂qp ± t̂qperr

)

∣∣∣∣∣

= 1

Q

Q∑

q=1

dq
pt̂qperr

sinθqt̂qp
(
t̂qp ± t̂qperr

) = 1

Q

Q∑

q=1

v̂qt̂qperr(
t̂qp ± t̂qperr

) (43)

TABLE I
PARAMETERS USED IN THE SIMULATIONS

where v̂q = v̂q
p/sinθq denotes the ES corresponding to the qth

BS. Then, the EEL can be expressed as rerr
TM

= v̂errTM.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed method based on a 5G com-
munication system. The default parameter used in the Monte
Carlo experiments is listed in Table I, if not otherwise stated.
In summary, six experiments are performed to evaluate the
proposed approach: 1) overall performance; 2) speed and loca-
tion estimation error; 3) impact of the number of antennas
M; 4) impact of the sample rate; 5) impact of the SNR; and
6) comparison with existing works.

A. Overall Performance

Assume the SNR is 10 dB, Fig. 17 depicts the simulation
result when the target moves with a variable acceleration from
t = 0 s to t = 2 s, a constant speed from t = 2 s to t = 4 s
and a variable deceleration from t = 4 s to t = 5 s. Table II
shows 12 different moving situations, including different ini-
tial speeds, accelerations, decelerations, and turning angles to
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Fig. 17. Speed and location estimation results with variable speeds (directions of x-axis and y-axis are shown in Fig. 2). (a) ES. (b) ES error. (c) Location
estimation. (d) Location estimation error.

TABLE II
MEAN VELOCITY AND LOCATION ESTIMATION ERROR IN DIFFERENT SITUATIONS

Fig. 18. Estimation error distribution. (a) ES error. (b) Location estimation
error.

further verify the proposed method. For example, in situation
“11,” the target starts moving at a speed of 5 m/s, acceleration
of 7 m/s2, and angle [i.e., θ1 in Fig. 11(a)] of 45◦. Moreover,
the acceleration is also varying with a rate of 3 m/s2. Similarly,
the angle θ1 is changing at a rate of 3◦ per second to create
a curved trajectory. Overall, we can conclude that our method
can track the moving object with decimeter or even better
centimeter accuracy in different scenarios.

Fig. 19. CDF of estimation error. (a) ES error. (b) Location estimation error.

B. Speed and Location Estimation Error

To evaluate the error of ES and error of localization (EL), we
conduct 1000 independent Monte Carlo simulations in which
the target moves at variable speeds along a curved trajec-
tory. The SNR is fixed at 10 dB and the error distribution
is shown in Fig. 18. Then, the empirical cumulative distri-
bution function (CDF) corresponding to different velocities
(v = 10, 20, 30 m/s) is given in Fig. 19. As illustrated in
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Fig. 20. Estimation error versus antenna number. (a) ES error. (b) Location
estimation error.

Fig. 18, our method achieves high-accuracy ES results with
a median error of 0.4 m/s. Fig. 19 indicates that the median
ES errors are about 0.18, 0.26, and 0.45 m/s while the cor-
responding location errors are about 0.06, 0.12, and 0.53 m.
Moreover, when v ≤ 20m/s (45 mph), the 80 percentile of
the ES error is within 0.25 m/s while the location estima-
tion error is less than 0.2 m. Therefore, our method has a
promising performance in urban areas where v ≤ 20 m/s gen-
erally holds and there are strong NLOS. Moreover, Fig. 18(b)
shows that the location estimation error accumulates at a mod-
erate rate as the object moves continuously. This is mainly
because the estimation of the next location is highly depen-
dent on the previous location estimation result, which causes
accumulative errors. Another possible reason is that SNR of
the received signal drops with the target moving toward cell
boundary. In the future, locations of the nearby BSs may be
used to mitigate the accumulative error, which we leave for
future work.

C. Impact of the Number of Antennas

Fig. 20 shows the root mean-square error (RMSE) of the
speed and location estimation versus different antenna number
M. Evidently, both the speed and location estimation accuracy
are improved with the increment of M. Specifically, when M
is less than 100, it may not work well when the velocity is too
high (e.g., v = 30 m/s). However, our system can localize the
target within 0.3 m error when M is no less than 100. This
is because that as M increases, we can harvest more signal
components and thus get more accurate ACFS estimation. The
performance starts to saturate when M ≥ 200. Note that when
M approaches to 400, the location estimation error can be as
low as 8 cm.

D. Impact of the Sample Rate

Fig. 21 further explores impacts of the sample rate on our
method. In general, higher sample rate improves the estima-
tion accuracy. For a fixed sample rate, the object moving at
a higher speed suffers from a worse location accuracy than
that moving at a lower speed, which is consistent with (42).
Moreover, Fig. 21 demonstrates that the minimum sample rate
is a moderate value about 500 Hz. Further reducing the sample
rate may lead to worse ES error or even failure especially for
high-speed objects, e.g., v = 30 m/s. When the sample rate
further increases, such as 3000 Hz, the ES error is no greater

Fig. 21. Estimation error versus sample rate. (a) ES error. (b) Location
estimation error.

Fig. 22. Estimation error versus SNRs. (a) ES error. (b) Location estimation
error.

than 0.6 m/s while the minimum location estimation error is
about 10.8 cm.

E. Impact of SNR and the Number of Stations

Fig. 22 explores the system performance versus different
SNRs with M = 100 and a sample rate 1000 Hz. The EES and
EEL are shown in dotted lines with corresponding markers.
Clearly, the system is seriously impacted by noise when SNR
is less than 10 dB and does not work when the target moves at
30 m/s if SNR further decreases to 0 dB. Moreover, the object
with a higher speed shows a worse estimation error than that
with a lower speed. However, in all the scenarios, our method
works well when SNR is no less than 10 dB, which is easy
to meet in a typical communication system.

F. Impact the Number of Stations

A unique feature of the proposed method is that it jointly
explores the directional ACFS distribution of the received sig-
nal and the geometric relationship among multiple BSs to
estimate the moving direction of a target without any fur-
ther information. We investigate how the performance would
change with the number of BSs. As shown in Fig. 23, the
performance is improved by fusing the information from
more surrounding stations. However, the proposed system can
achieve very good location accuracy with only two stations.
In practice, users can flexibly select the number of stations
according to the requirements of system latency, complexity,
and accuracy for real applications.

G. Comparison With Existing Works

In this section, we compare the proposed method with cor-
responding existing works in the aspect of speed, direction,
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Fig. 23. Location error versus the number of stations.

location estimation accuracy, and complexity. To simulate a
typical localization and tracking scenario, we assume a moving
target that continues recording signals transmitted from two
surrounding 5G massive MIMO BSs. The two stations are
200 m away from each other and equipped with M = 100
antennas on each station. Considering the rich-scattering urban
environment, we randomly choose N (within 10–100) NLOS
components4 while the impinging angles follow uniform dis-
tributions over (−π, π ]. The target starts to move at a speed
of 5 m/s, accelerates 2 s, then keeps constant speed for 2 s,
and finally decelerates until end. In total, the target moves 80
ms away from the starting point.5

Speed Estimation: Fig. 24(a) compares the ES performance
of the proposed system with the existing SenSpeed [57],
WiFiDetect [58], and GPS [59] methods. Clearly, our
method outperforms the benchmark algorithms in accuracy.
Specifically, SenSpeed estimates the speed by assuming that
the error of the integrated acceleration accumulates linearly
over time, which dose not always hold in practice. WiFiDetect
considers only one dominant NLOS signal and the GPS
method relies on the LOS signal greatly, which is vulnera-
ble to NLOS distortions in urban rich-scattering environments.
However, by exploring the ACFS of the received signal,
the proposed method treats all the LOS and NLOS signal
components as a whole and thus improves the accuracy.

Direction Estimation: Fig. 24(b) shows that the proposed
system can achieve 1.8◦ direction estimation accuracy,
with improvement than the existing DOA approaches, i.e.,
Capon [60], ESPRIT [21], and MUSIC [20]. This mainly ben-
efits from the ACFS which has been proved to be tolerable
to NLOS distortions. On the contrary, most DOA approaches
are highly dependent on the time measurement accuracy of
the LOS signal, which is easily to be distorted/impacted by
NLOS signals in practice.

Location Estimation: Fig. 24(c) demonstrates the location
accuracy of the proposed method and the state-of-the-art tech-
niques, including DiSouL [23], Conv-fingerprint [31], and
DNN-fingerprint [32]. From Fig. 24(c), the proposed method
can achieve less than 0.2-m error with the percentile ≥95%.

4Many practical measurements in the New York City [45], [46] validated
that the number of dominate NLOS signal usually varies from 10 to 100.

5After moving 80 m, the target is about 180 m from one of the two stations,
which is close to the cell boundary of the station. In this case, we need to
switch to closer BSs, and detailed cell switching procedure is out of the scope
of this article.

TABLE III
COMPUTATIONAL COMPLEXITY COMPARISONS

However, the 95% percentile estimation error of the DNN-
fingerprint is 1.2 m while both Conv-fingerprint and DiSouL
cannot offer ≥95% confidence with less than 2-m error.
Overall, our method is more robust because it explores the
statistical ACFS of the received signal, which is very stable
in 5G massive MIMO systems regardless of the environment.
However, fingerprint-based methods may suffer from finger-
print mismatch issue due to the change of the wireless propa-
gation environment, thus degrading the accuracy. In dynamic
environments, DiSouL works even worse because there are
two hyperparameters in the model, which are sensitive to the
environment changes.

Complexity: Considering that complexity is very impor-
tant for real-time tracking and navigation applications with
a stringent requirement on the latency, Table III compares
the complexity between our algorithm and the state-of-the-
art DiSouL [23] approach. In DiSouL, the main computation
comes from solving the second-order cone program (SOCP)
problem, which is about (QL + ∑

q Nq)
3.5 in a single snap-

shot [23]. Our computation is mainly caused by ACFS
computation, 1-D peak searching in (25) and the location com-
putation from (28) to (32), which are Qfs, fs, and Q2 + 7Q,
respectively. Since L ≥ Q, our method is much cheaper than
DiSouL.

Note that we do not compare with Conv-fingerprint [31] and
DNN-fingerprint [32] here because they are all training-based
methods in which the overhead in map construction stage is
hard to be quantified. To improve accuracy, fingerprint-based
methods usually require a lot of training and updating to con-
struct the offline map, which leads to a prohibitive overhead
especially in a dynamic environment.

VII. CONCLUSION

This article proposes a high-accuracy target location method
based on the 5G massive MIMO system. We first prove the
existence of a sinc-like focusing beam in a massive MIMO
system by computing the statistical autocorrelation of the
received signal in the far-filed scenario. Based on the focusing
beam, an ES algorithm is then proposed by jointly using the
relative ESs with respect to multiple BSs. Give an initial point,
we develop a target localization method by further using the
geometrical relationships between multiple BSs. Theoretical
error analysis and extensive numerical simulations show that
our method can achieve decimeter localization accuracy by
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Fig. 24. Performance comparison. (a) ES error. (b) Direction estimation error. (c) Location estimation error.

computing ACFS of the received signal, which outperforms
many prior works in accuracy and cost.

APPENDIX

In this Appendix, we prove (3), i.e., ηy(r0, rs) =
E[y(t0)y∗(ts)] ≈ ηyL + ηyN + ηn. Mathematically, the ACF
of the received signal y(t) given by

ηy(r0, rs) = E[y(t0)y
∗(ts)] = ηLL∗ + ηLN∗ + ηLn∗

+ηNL∗ + ηNN∗ + ηNn∗ + ηnL∗ + ηnN∗ + ηnn∗

ηLL∗ = E[yL(t0)y
∗
L(ts)], ηLN∗ = E[yL(t0)y

∗
N(ts)]

ηLn∗ = E[yL(t0)n
∗(ts)], ηNL∗ = E[yN(t0)y

∗
L(ts)]

ηNN∗ = E[yN(t0)y
∗
N(ts)], ηNn∗ = E[yN(t0)n

∗(ts)]
ηnL∗ = E[n(t0)y

∗
L(ts)], ηnN∗ = E[n(t0)y

∗
N(ts)]

ηnn∗ = E[n(t0)n
∗(ts)] = σ 2I. (44)

Referring to our derivations from (14) to (19), it is easy to
obtain

ηLN∗ =
M∑

i=1

N∑

n=1

ηy(LN∗)i,n =
M∑

i=1

N∑

n=1

Eφ

{
exp

[
j(ψi,0 − ωdts cosαn + φi − φn)

]} = 0

ηy(Ln∗) = E[yLOS]E[n∗(ts)] = 0 (45)

given the fact that φi and φn are assumed to be uniform
distribution over (−π, π ] and the signal components yL

and yN are independent with noise. Similarly, we can get
ηy(NL∗) = 0, ηy(Nn∗) = 0, ηy(nL∗) = 0, ηy(nN∗) = 0. As
a consequence, ηy(r0, rs) can be simplified as

ηy(r0, rs) = ηy(LL∗)+ ηy(NN∗)+ ηy(nn∗)
= ηyL + ηyN + ηn. (46)

Thus, the proof is completed.
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