MARKETING localization and tracking have been widely used in the modern navigation system. However, most of the methods such as GPS are highly dependent on time measurement accuracy, which prevents them from achieving high accuracy in practice. Time-reversal (TR) based technique has been shown to be able to achieve centimeter accuracy localization by fully utilizing the focusing effect brought by the massive multipaths naturally existing in a rich scattering environment such as indoor scenarios. By investigating a similar statistical property, this paper develops a novel high-accuracy target localization method by using massive MIMO to provide massive signal components. We first observe that the statistical autocorrelation of the received energy physically focuses into a beam around the receiver exhibiting a sinc-like distribution in far-field scenario. By leveraging such a distribution of the focusing beam, an effective way to estimate the relative moving speed of the target with respect to a single base station is proposed. We also obtain the absolute moving speed and subsequently track the target accurately by associating the speed estimation results and geometrical relationship of multiple stations. The theoretical analysis on the error in the speed and localization estimation validated by numerical simulation results show that the proposed system can achieve decimeter accuracy for target localization and tracking.

Index Terms—Statistical electromagnetic, MIMO, target localization and tracking, centimeter accuracy.

I. INTRODUCTION

TARGET localization and tracking have been of great interest over several decades because of their wide applications in navigation and many location-based services such as autonomous driving [1], [2]. Furthermore, most of these localization requests emerge in urban areas where the global positioning system (GPS) [3] cannot offer good performance because the line-of-sight (LOS) signal between the GPS satellite and the terminal is easily to be blocked by obstacles such as tall buildings. As a result, it is imperative to seek for technologies which can provide high-accuracy localization in complex environments such as dense urban areas under non-line-of-sight (NLOS) and multipath conditions [4].

Based on their principle, localization techniques can be classified into two categories, i.e., triangulation-based methods and fingerprinting-based methods. Triangulation-based methods consist of two steps. First, model-based parameters such as the angle-of-arrivals (AOAs) [5], [6], time-of-arrivals (TOAs) [7], [8] or time-difference-of-arrival (TDOAs) of LOS signals [9] are measured at all access points (APs) or base stations (BSs). Then, the target location can be estimated by using triangulation/trilateration among all APs/BSs [10]. However, these methods cannot work well under the multi-path effect and NLOS because of the unreliable parameter estimation. Fingerprinting-based methods first construct an offline database by collecting location related features such as received signal strength (RSS) [11]–[13] and channel state information (CSI) [14]–[16] in the area of interest. Then, the same features are extracted from the online signals and compared with the offline database to obtain the location estimations. However, the overhead of establishing and updating the offline database also prevents these methods from being widely adopted [2].

More recently, massive MIMO has been gaining popularity in target localization because of its high angular resolution and degree of freedom [17]. This mainly benefits from the hundreds of antennas on the BS, which can enable narrow, highly-directional and high-gain beams by beamforming [18]. Similar to the localization methods without using massive MIMO, the existing massive MIMO-based localization methods can also be classified into the same two categories. The first is the triangulation-based methods in which many techniques such as beamforming [19], multiple signal classification (MUSIC) [20], 2-D rotational invariance technique [21] and compressive sensing [22], [23] are explored on the base of massive MIMO systems. To reduce the prohibitive energy consumption and complexity increment caused by the massive antennas, high-efficient beam allocation/switching schemes [24], [25], AOAs estimations in beamspace [26], pre-energy detections [27] as well as the combination of digital beamforming and analog techniques [28]–[30] have been considered. In the fingerprinting-based methods with massive MIMO [31]–[36], different matching techniques have been studied in comparing the online phase with the offline phase to estimate the target location such as model-based similarity comparison [31], similarity learning by neural network (NNs) [32], [33], support vector machines (SVMs) [35] and Kernel-based methods [36]. Even though the localization accuracy is improved by leveraging the high range/angular resolution provided by massive antennas, most of existing massive MIMO-based localization methods still entail the same challenges as the traditional methods which do not use massive MIMO antennas, that is, the NLOS distortions and performance degradation in rich-scattering environment. This motivates us to design a high-accuracy localization system that is robust to environment...
dynamics while with good performance under multipath and NLOS conditions.

Inspired by the recent research on decimeter-accuracy indoor tracking [37]–[40] using time reversal focusing effect [41], [42], in this paper, we propose a massive MIMO-based high-accuracy localization and tracking system by utilizing the focusing effect brought by the massive number of antennas. We first propose the definition of an important statistical variable, the strength of the autocorrelation function (ACFS) of the received signal in a massive MIMO system, to characterize the energy distribution of the focusing effect around a location of interest. Because the received signal in a massive MIMO system contains a large number of components due to the massive number of antenna elements and further reflections/scattering, it can be shown that the distribution of the ACFS exhibits a stationary sinc-like focusing beam\(^1\) around the receiver in spatial domain regardless of the environment.

By leveraging the ACFS, we then develop an approach which can estimate the relative speed of the target with respect to a single BS. The absolute moving speed, moving direction/orientation and location of the target can be further derived by jointly considering the relative speed estimation and geometrical relationship among multiple BSs. Different from [42] which needs an extra inertial sensor to estimate the moving direction because the energy distribution of the time reversal focusing effect shows the same trend along all the directions, the proposed system can estimate the moving speed/distance and direction simultaneously only based on the ACFS focusing beam which exhibits different distributions along different directions. This is because that in the proposed system the massive number of the incident signal components reach the receiver from the antennas/BS side, resulting in a directional focusing beam rather than a symmetrical focusing ball as shown in [42].

Based on the derivation of the ACFS and how it can be used for speed and location estimation, we derive the theoretical expectation of the speed and location estimation errors, which are further verified by extensive simulations. It is shown that the proposed system can achieve decimeter-level accuracy for target localization and tracking in various scenarios, which outperforms three latest massive MIMO-based localization techniques [23] [31] [32].

In summary, the main contributions of this work are as follows:

- We observed and proved that the statistical distribution of the ACFS of the received signal in a massive MIMO system exhibits a sinc-like beam pattern, because the received signal usually contains a large number of LOS and NLOS signal components.
- Based on the distribution of the ACFS, we developed a target localization and tracking system which has robust performance in rich-scattering urban areas with NLOS.

Because the proposed system only needs to calculate the ACFS of the received signal on the user side while the speed and location estimations are very straightforward according to the derived close-form expressions, the system enjoys a very low computation complexity and thus can be widely applied in real-time tracking and navigation applications with a stringent requirement on the latency.

- We further derived the theoretical speed and localization error expectations of the proposed system and validated the theoretical performance analysis using extensive simulations.

The rest of the paper is organized as follows. In Section II, we elaborate on the signal model for massive MIMO system followed by the derivation of the focusing beam. Then, Section III proposes a speed estimation method by using the focusing beam of multiple distributed BSs. Section IV introduce the target localization system while Section V derives the theoretical speed and location estimation error expectations. Extensive numerical simulations are conducted to validate the performance of the proposed approach in Section VI. Finally, Section VII concludes this paper.

II. FOCUSING BEAM IN MASSIVE MIMO

In this section, we first introduce the background knowledge about the system model. Then, we elaborate on the signal model and derive the analytical distribution of the ACFS focusing beam in 5G massive MIMO communication systems.

A. Background Knowledge

Ultra-dense 5G BS deployment: The 5G cellular network will be an ultra-dense cellular network, e.g., with a density of 40 – 50 BS/km\(^2\), because that a massive number of antennas will be deployed on the BS [43], which means that every antenna’s transmission power has to be greatly decreased compared to that of a 4G BS, leading to a smaller coverage area. Second, mmWave transmission is very likely to be adopted in 5G cellular networks and the signal decays much faster at mmWave frequency which again will reduce the cell coverage and thus denser BS deployment is needed. For example, the Federal Communications Commission (FCC) in the USA issued a declaratory ruling which indicates that most of the 5G BSs are about 30 feet tall while the service range of each BS is about 400-500 feet or less in large crowded areas [44].

Far-field condition: As shown in Fig. 1, let \( H_B \) and \( L_{BR} \) denote the altitude of the BS and the horizontal distance between the BS and the receiver. \( A_r \) is the aperture of the antenna array A. Due to the Ultra-dense 5G BS deployment, \( L_{BR} \) is about 80-200m in practice [43]. In addition, \( A_r \) is less than 2m and \( H_B \) is about 10m because of the antenna fabrication and installation requirements [44]. As a consequence, \( L_{BR} \geq 10 H_B \gg A_r \) is the condition of the far-field scenario in this paper and usually holds in the 5G networks [45], [46]. This is different from the conventional far-field condition in which \( L_d = 2 A_r^2 / \lambda \) is the boundary between the Fresnel region and the Fraunhofer region [47] with \( \lambda \) as the wavelength of the signal.

\( ^1\)We use the term focusing beam rather than beamforming because we utilize the ACFS, a specific function of the received signal for positioning a target, and the distribution of the ACFS happens to exhibit a beam-shaped pattern. There is no "physical beamforming" that explicitly focuses a signal towards a receiver.
B. Signal Model

As shown in Fig. 1, “B” denotes a BS equipped with $M$ antennas which communicate with the receiver “r”. Note that practical measurements in [48]–[50] have validated that the LOS signal matches with the free space propagation model while the NLOS signal follow the Raleigh fading [51] in 5G massive MIMO system. As a result, in urban areas, the received signal consisting of both LOS and NLOS parts at baseband can be expressed as

$$y(t) = y_L(t) + y_N(t) + n(t),$$

$$y_L(t) = \sqrt{K_L} \sum_{m=1}^{M} \exp\left(i k |x_m r_t| + \phi_m\right),$$

$$y_N(t) = \sqrt{K_N} \sum_{n=1}^{N} \exp\left(i \omega_d |x_n r_t| + \phi_n\right),$$

where $y_L(t)$ and $y_N(t)$ denote the LOS and NLOS components and $K_L$ and $K_N$ are their corresponding power. $k = 2\pi/\lambda$ is the wave number, $\lambda$ is the radius of the maximum Doppler frequency, $x_m$ and $r_t$ are the coordinates of the $m$-th antenna and the receiver at time $t$, respectively. $|x_m r_t|$ denotes the Euclidean spatial distance between the $m$-th antenna and the receiver, $n(t)$ represents the additive Gaussian noise, $\phi_m$ is the phase distortion of the $m$-th LOS path signal, and $\alpha_n$ and $\phi_n$ are the AOA and phase distortion of the $n$-th NLOS signal component. In general, $\phi_m$ is caused by hardware imperfections, heterogeneity of the propagation medium and channel attenuations, etc. $\alpha_n$ and $\phi_n$ are mainly introduced by the reflection/absorption of the randomly distributed scatterers in a rich-scattering urban area. As a result, $\phi_m$, $\alpha_n$ and $\phi_n$ are not deterministic and can be assumed as i.i.d uniform distributions over $[-\pi, \pi]$ for $m = 1, 2, \ldots, M$ and $n = 1, 2, \ldots, N$ [51], [52], where $N$ is the total number of NLOS signal components. In practice, the number of multipath $N$ can vary from 10 to 100 in urban areas according to the practical measurements in New York City [45], [46].

C. Massive MIMO Focusing Beam

In the following, we explore the distribution of the focusing effect of massive MIMO in far-field scenario by first deriving the ACF of the received signal and then the ACFS, which is inspired by the TRRS in [42], [53] but more robust to the randomness of signal distortions.

As shown in Fig. 2, a target moves from $r_0$ at time $t_0$ to $r_s$ at time $t_s$ on the ground ($xOy$ plane). Then, the ACF of the received signal between $r_0$ and $r_s$ is defined as

$$\eta(y(t_0), y^*(t_s)) = E[y(t_0)y^*(t_s)]$$

$$\approx \eta_{\text{L}} + \eta_{\text{N}} + \eta_{\text{h}}.$$  

Note that the independence among $y(t_0), y(t_s)$ and $n(t)$ is assumed to obtain (3). Detailed derivations can be found in Appendix. Next, we will derive $\eta_{\text{N}}$ and then $\eta_{\text{h}}, \eta_{\text{L}}$ respectively.

1) ACF of NLOS Signal: According to [42], [51], $\eta_{\text{N}}$ can be written as

$$\eta_{\text{N}} = E[y_N(t_0)y_N^*(t_s)]$$

$$= K_N \sum_{n=1}^{N} \sum_{i=1}^{N} E_{\phi, \alpha} \{ \exp[i(\omega_d |x_n r_t| + \phi_n)] \}$$

$$= K_N N J(\omega_0) = K_N N J(\omega_0),$$

where $\omega_0 = t_s - t_0$, $\sum_{i=1}^{N} E_{\phi, \alpha}$ means taking expectation over $\phi$ and $\alpha$. $J(\cdot)$ is the 0-order Bessel function, and $\omega_0$ is the Euclidean distance between $r_0$ and $r_s$.

2) ACF of LOS Signal: Similar to (4), the ACF of the LOS signal $y_L(t_0)$ between $r_0$ and $r_s$ is given by

$$\eta_{\text{L}} = E[y_L(t_0)y_L^*(t_s)] = E[y_L(t_0)y_L^*(t_s)] = K_L \sum_{m=1}^{M} \sum_{m=1}^{M} E_{\phi} \{ \exp[i(\omega_d |x_m r_t| + \phi_m)] \}$$

In the far-field scenario where $|x_m r_0| = |x_m r_s| > L_{\text{BR}} \gg A_0$, $x_m r_0$ and $x_m r_s$ in the denominator of (5) can be approximated as the same for all elements, i.e., $x_m r_0 \approx |x_m r_0|$ and $x_m r_s \approx |x_m r_s|$ because $(x_m r_0 - x_m r_s)$ is usually magnitudes smaller than $|x_m r_0|$ and $|x_m r_s|$. We omit the denominator of (5) in the derivation for simplicity.

Next, we decompose (5) into two different cases, i.e., a) $i = m$ and b) $i \neq m$. Considering $i = m$, we have

$$\sum_{m=1}^{M} \sum_{m=1}^{M} \exp[i(\omega_d |x_m r_t| - |x_m r_s|)].$$

To compute $|x_m r_0| - |x_m r_s|$ in Fig. 2, the angle symbols are defined as $\gamma_m, \gamma_0, \gamma_s = \gamma_m, \gamma_0, \gamma_s = \beta_1 - \beta_2, \beta_1 - \beta_2, \beta_2$, where $\beta_0$ lies in the extension line of $l_{x_m y_s}$ satisfying $l_{x_m y_s} \perp l_{x_m y_s}$. Then $\beta_2 = \gamma_m$. From the cosine theory, we have

$$|x_m r_s|^2 = (|x_m r_0| - pc o s \gamma_m)^2 + ps i n \gamma_m^2;$$

$$\cos \gamma_m = \cos \beta \cdot \cos \beta_1 + \gamma_m', \cos \gamma_m = \epsilon / p,$$

$$\cos \beta = \sqrt{\frac{L_{\text{BR}}^2 + x_m^2}{L_{\text{BR}}^2 + x_m^2}}, \cos \beta_1 = \frac{L_{\text{BR}}}{L_{\text{BR}} + x_m^2}.$$
Then, the expectation in (14) can be reformulated as
\[
\mathbb{E}_{\phi} \{ \cos(\Psi_{im} + \Phi) \} = \int_{-\pi}^{\pi} f_{\phi}(\phi) \cos(\Psi_{im} + \phi) d\phi = \int_{-\pi}^{\pi} f_{\phi}(\phi) \cos\Psi_{im} \cos\phi d\phi - \int_{-\pi}^{\pi} f_{\phi}(\phi) \sin\Psi_{im} \sin\phi d\phi.
\]
(16)

Given \( f_{\phi}(\phi) \), we get that
\[
\mathbb{E}_{\phi} \{ \cos(\Psi_{im} + \Phi) \} = 0, \quad -\pi \leq \phi \leq 0.
\]
(17)
\[
\mathbb{E}_{\phi} \{ \cos(\Psi_{im} + \Phi) \} = 0, \quad 0 \leq \phi \leq \pi.
\]
(18)

And it is straightforward to obtain that
\[
\mathbb{E}_{\phi} \{ \cos(\Psi_{im} + \Phi) \} = 0, \quad \mathbb{E}_{\phi} \{ \sin(\Psi_{im} + \Phi) \} = 0,
\]
(19)

Taking the summation of (12) and (19), \( \eta_{bl} \) is given by
\[
\eta_{bl} = \eta_{bl}^{1st} + \eta_{bl}^{2nd} = K_{L} \exp(jk\epsilon) \text{sinc}(\frac{kA_e}{2L}).
\]
(20)

Given (4) and (20), the ACF of the received signal is
\[
\eta_{y}(r_{0}, r_{s}) = \eta_{y} = \eta_{bl} + \eta_{bn} + \eta_{N} = K_{L} \exp(jk\epsilon) \text{sinc}(\frac{kA_e}{2L}) + K_{N} N_{0}(\epsilon p) + \sigma^2 I.
\]
(21)

D. ACFS of the Received Signal

In this subsection, we compute the ACFS of the received signal, i.e., the strength of ACF in (21) by first concluding and validating 3 properties of \( \eta_{bl}, \eta_{bn} \) and \( \eta_{bs} \) in (21).

Remark 1. \( \eta_{bn} \) decays much faster than \( \eta_{bl} \).

Remark 2. At high SNRs, \( \eta_{bn} \) is a constant term \( \sigma^2 \), which does not impact the ACFS.

Remark 3. Given Remarks 1-2, the ACFS of the received signal \( y(t) \) is dominated by the ACFS of the LOS signal \( y_{l}(t) \), i.e., the normalized ACFS of \( y(t) \) at two different locations \( r_{0} \) and \( r_{s} \) can be approximated by
\[
|\eta_{y}(r_{0}, r_{s})|^2 = |\eta_{y}|^2 \approx |\eta_{bl}|^2 = |\text{sinc}(\frac{kA_e}{2L})|^2,
\]
(22)

which shows a focusing beam in spatial domain (see Fig. 5a).

To validate Remarks 1-3, we build a numerical simulation system using a massive MIMO antenna array with 100 elements at carrier frequency \( f_{0} = 28 \text{GHz} \). To be consistent with 5G small cell configurations, we set \( H_{B} = 5 \text{m}, L_{BR} = 100 \text{m}, K_{L} = K_{N} \) and the multipath number \( N \) as an integer randomly selected between 10 and 100. Note that SNR is 10dB in Fig. 3 - 5 while Fig. 6 explores the impact of SNR. The illustrations/definitions of target movement, peak distance \( d \) and moving time \( t \) are given in Fig. 7 and Fig. 8.

Given the aforementioned parameters, theoretically, the peak distance of \( \eta_{bl} \) is \( \rho = 2.86L/kA_e \approx 1.432m \), and \( p \approx 0.61\lambda = 0.0061m \) corresponding to \( \eta_{bs} \), which match with our simulation results well in the positions of peaks and
Remark 1

Fig. 4 clearly shows that the ACFS of the NLOS signal decays as shown in Fig. 3b and Fig. 4b. Moreover, Fig. 3 and Fig. 4 clearly shows that the ACFS of the NLOS signal decays much faster than that of LOS, which validates Remark 1.

Equation (21) indicates that the constant term $\eta_n = \sigma^2 I$ does not impact $\eta_n$ much at high SNR (i.e., $\sigma^2$ is much smaller compared with $K_L$ and $K_N$). In Fig. 6, the theoretical ACFS according to (22) matches the ACFS directly computed by $\mathbb{E}[y(t_0)y^*(t_s)]$ when SNR $\geq 5$dB while it deviates a lot when SNR $\leq 0$dB. As a result, Remark 2 is verified. Given Remarks 1-2 and (21), it is straightforward to conclude that the ACFS of the received signal $y(t)$ is mainly dominated by the ACFS of the LOS signal especially when $K_{LOS} \geq K_{NLOS}$ in 5G massive MIMO system. Thus, Remark 3 and (22) are verified. Fig. 5 shows the result when $K_{LOS} = K_{NLOS}$ and SNR = 10dB, which also validates (22).

Note that when the target keeps moving, the line between the antenna center and $r_0$ (i.e., $\overrightarrow{OR_0}$) may not be perpendicular to the line along which the antennas are deployed (i.e., $\overrightarrow{Ox}$). As shown in Fig. 9, $\overrightarrow{OR_0} \perp \overrightarrow{Ox}$ does not hold when the target is moving. In this case, the effective aperture $A_r$ in (22) should be replaced with $A_r \cos \beta$. Correspondingly, the distance $L$ should be replaced by $L/cos\beta$.

III. MOVING SPEED AND DIRECTION ESTIMATION

In this section, we first provide an overview of the ACFS based tracking system. Then, we present a novel ACFS matching method to estimate the moving speed and direction simultaneously by leveraging the RF signals only. For description clarity, we define the range- and cross-range direction in Fig. 7 and moving time in Fig. 8.

A. Overview of the ACFS Based Tracking System

Consider that a target moves at a speed of $v$ along the line joining $r_0$ and $r_s$ as shown in Fig. 7. The receiver is fixed on the target and keeps recording signals transmitted from the targets. The speed of the target can be computed from the difference of the received signals using a matched filtering method.

1 Practical measurements in [49] show that NLOS usually suffers an over 10dB additional path loss than LOS signal in 5G massive MIMO system due to the greater traveling distance and absorption of corresponding scatterers.
BS with a sample rate $f_s$. The proposed method estimates the moving trajectory of the receiver, i.e., the location of the receiver at time $t_s$ can be estimated by

$$r_s = r_{s-1} + \Delta r_s = r_{s-1} + v\Delta t = r_{s-1} + v_p\Delta t/sin\theta, \quad (23)$$

where $r_{s-1}$ denotes the location of the receiver at $t_{s-1}$, while $\Delta t = 1/f_s$ denotes the sample period. The proposed system continuously searches for the peak location $p_s$ of the computed ACFS, i.e., $|E[y(t)y^*(t+\tau)]|^2, t = t_0, t_1, \ldots$. It then estimates the consecutive $v_p$ and $\theta$, thus yielding the real-time tracking of a moving target. In Fig. 7, we name $v$ as the absolute speed while $v_p = vsin\theta$ is the projected speed which represents the projection of $v$ along the cross-range direction (i.e., $r_p r_p$).

### B. Projected Speed Estimation

As shown in (22), a moving target keeps receiving signals transmitted from the massive MIMO antennas on the BS. Then, the computed ACFS of the measured signal $y(t)$ at the receiver side is a sampled version of the theoretical ACFS $\left|\text{sinc}\left(\frac{kA_\theta}{2\xi}\right)\right|^2$, where $\xi$ is the cross-range between $r_0$ and $r_s$ (see Fig. 2 and Fig. 7). As a result, we extract the first local peak of the theoretical ACFS $\left|\text{sinc}\left(\frac{kA_\theta}{2\xi}\right)\right|^2$. The peak distance $d_p$ in Fig.8 is given by

$$d_p = 2.86L/kA_\theta. \quad (24)$$

Note that $L$ denotes the distance between the BS center and receiver at the initial location. Similarly, we look for the first local peak of the computed ACFS of $y(t)$. Then, the moving time $t_p$ can be estimated by

$$t_p = \arg\text{FindPeak} \{ |E[y(t_0)y^*(t_0+\tau)]|^2 \}, \quad (25)$$

where operation FindPeak{•} means looking for the first peak and $T_{ACFS}$ is the time window length within which the first peak may fall in. Given $d_p$ and $t_p$, the projected speed estimation is expressed as $\hat{v}_p = d_p/t_p$.

Note that in practice, we first apply a local regression [54] on the ACFS distribution curve to get rid of the spikes caused by noise or other distortions. Numerical simulation in Fig. 10 shows that when the signal is corrupted, it is difficult to find the true peak directly. However, after local regression, we can get a very good estimation of the true peak. Fig. 10 also shows that a false peak very close to the reference point ($t = 0$) may mislead the peak finding and thus induce large errors. However, this can be eliminated by using peak distance $d_p$ at the previous time (which is known) as a new constraint.

### C. Absolute Speed and Moving Direction Estimation

In addition to the projected speed estimation $\hat{v}_p$, this section introduces how to estimate the absolute speed and moving direction of the target in order to track a moving target continuously. We consider a practical multiple-BS case with one user/receiver and $Q$ based stations. For notation purpose, let $\hat{v}_{p,q}$ denote the projected speed estimated from BS $q$. Note that the absolute moving speed $v$ of a moving target is unique and can be estimated by

$$v = \frac{\hat{v}_{p,q}}{\text{sin}\theta_q}, q = 1, 2, \ldots, Q,$$

s.t. $\theta_q + \theta_l = 180 - \Omega_q, q \neq l, q, l \in \{1, 2, \ldots, Q\}$. (26)

where $\theta_q$ represents the angle between the moving direction $(\hat{r}_q \hat{r}_0)$ and the range direction $(\hat{B}_q \hat{B}_0)$ corresponding to station $q$ centered at $\hat{B}_q$ (see Fig. 11). In (26), $\Omega_q$ is the angle among the initial location $\hat{r}_0$, station $B_1$ and station $B_q$, which is known a priori since the location of the base stations and the initial location are easy to get in communication.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3050720, IEEE Internet of Things Journal

systems. Fig. 11 gives an example of two base stations, i.e., Q = 2. Then, (26) becomes

\[ v = \frac{\hat{v}_{p,1}}{\sin \theta_1} = \frac{\hat{v}_{p,2}}{\sin \theta_2}, \]

\[ \text{s.t. } \theta_1 + \theta_2 = 180 - \Omega_{12}. \]  

(27)

In (27), \( \hat{v}_{p,1} \) and \( \hat{v}_{p,2} \) can be estimated by using the ACFS of the received signal as shown in Section III-B and \( \Omega_{12} \) is known a priori. Thus the moving direction \( \theta_1 \) and \( \theta_2 \) can be estimated by

\[ \begin{align*}
\hat{\theta}_1 &= \arctan \left( \frac{\hat{v}_{p,1} \sin \Omega_{12}}{\hat{v}_{p,2} + \hat{v}_{p,1} \cos \Omega_{12}} \right), \\
\hat{\theta}_2 &= \arctan \left( \frac{\hat{v}_{p,2} \sin \Omega_{12}}{\hat{v}_{p,1} + \hat{v}_{p,2} \cos \Omega_{12}} \right).
\end{align*} \]  

(28)

To improve the robustness and accuracy, we explore the different combining pairs of the BSs (\( B_q, B_l, l \neq q \)), if any. Similar to the (\( B_1, B_2 \)) pair shown in Fig. 11, we can further get corresponding projected speed estimations (\( \hat{v}_q, \hat{v}_l \)) and moving direction estimations (\( \hat{\theta}_q, \hat{\theta}_l \)). Then, the absolute speed can be estimated by

\[ \hat{v} = \frac{1}{Q} \sum_{q=1}^{Q} \frac{\hat{v}_{p,q}}{\sin \theta_q}, q = 1, 2, \cdots, Q. \]  

(29)

IV. TARGET LOCALIZATION

In this section, the location estimation is first calculated by integrating the consecutive moving speed and moving direction estimations. Then, the location estimations from different BS pairs (\( B_q, B_l, l \neq q \)) are fused to improve the robustness and accuracy. To have a high-level understanding of the algorithm, the architecture and main steps are summarized in Fig. 12.

Recalling the estimations of the absolute speed \( \hat{v} \) and moving directions \( \hat{\theta}_q (q = 1, 2, \cdots, Q) \) from (28) and (29), as shown in Fig. 13, the new location \( \hat{r}_{pM}^{q} \) estimated by station \( q \) in the local coordinate system \( x_{B_q}O_{Y_{B_q}} \) can be expressed as

\[ \begin{align*}
\hat{r}_{pM,x_{B_q}} &= r_{0,x_{B_q}} - d_{T_M} \cos \theta_q, q = 1, 2, \cdots, Q, \\
\hat{r}_{pM,y_{B_q}} &= r_{0,y_{B_q}} + d_{T_M} \sin \theta_q.
\end{align*} \]

(30)

where \( d_{T_M} = \hat{v}_T M \), \( T_M \) is the updating window length, meaning that we update the location estimation every \( T_M \) seconds. \((r_{0,x_{B_q}}, r_{0,y_{B_q}})\) and \((r_{T_M,x_{B_q}}, r_{T_M,y_{B_q}})\) are the coordinates of the initial location \( r_{0} \) and the new location \( r_{pM}^{q} \) at the local coordinate system \( x_{B_q}O_{Y_{B_q}} \), shown in Fig. 13. We then transform the local coordinates of \( r_{pM}^{q} \) into the global Cartesian coordinate system \( xOy \), which is denoted as \( r_{T_M}^{q} \) shown in the magenta color in Fig. 14. As a result, the coordinate \( r_{T_M}^{q} = (r_{T_M,x}^{q}, r_{T_M,y}^{q}) \) can be calculated by

\[ \begin{bmatrix}
\hat{r}_{T_M,x}^{q} \\
\hat{r}_{T_M,y}^{q}
\end{bmatrix} = \begin{bmatrix}
r_{T_M,x_{B_q}} & r_{T_M,y_{B_q}} \\
r_{T_M,y_{B_q}} & -r_{T_M,x_{B_q}}
\end{bmatrix} \begin{bmatrix}
\cos \zeta_q \\
\sin \zeta_q
\end{bmatrix}, \]

(31)

where \( \zeta_q \) is the angle between the global Cartesian coordinate system \( xOy \) and the local Cartesian coordinate system \( x_{B_q}O_{Y_{B_q}} \), and is known a priori in modern communication systems. Furthermore, we fuse the location estimations from different BSs, i.e.,

\[ r_{T_M} = \frac{1}{Q} \sum_{q=1}^{Q} r_{T_M}^{q}, q = 1, 2, \cdots, Q. \]  

(32)

Once we get the global coordinates of the new location \( r_{T_M} = (r_{T_M,x}, r_{T_M,y}) \), the distance between the \( q \)th station and the receiver/target can be updated by

\[ L_{B_q, R}^{new} = \sqrt{(r_{T_M,x} - O_{X_{B_q}})^2 + (r_{T_M,y} - O_{Y_{B_q}})^2}, \]

(33)

where \((O_{X_{B_q}}, O_{Y_{B_q}})\) are the coordinates of the \( q \)th station center \( B_q \) at the global coordinate system. As a consequence, according to (22), the new peak distance \( d_{\text{phm}}^{q} \) corresponding to the \( q \)th BS can be updated by

\[ d_{\text{phm}}^{q} = 2.86 L_{B_q, R}^{new} / k A_e. \]  

(34)
In the next step, we take $\mathbf{r}_{T_m}$ as the new starting point to repeat the ACFS computation (based on the data measurements starting at the time-stamp corresponding to $\mathbf{r}_{T_m}$), speed estimation and localization process, thus getting a location estimation sequence $\mathbf{r}_{T_m}(t)$ representing the trajectory of the moving target.

V. PERFORMANCE ANALYSIS

In this section, we perform theoretical analysis about the expected error of the speed and location estimation using the proposed algorithm. Since the system estimates the time $t_p$ corresponding to the first local peak of the computed ACFS (as in Section III-B), we first derive the distribution of the peak-location-error (PLE) measured by the distance that the estimated peak deviates from the true peak. The expected-error-of-speed-estimation (EES) and the expected-error-of-localization (EEL) are further derived on the base of the PLE distribution.

A. Peak Location Error Distribution

To derive the PLE, we first introduce an intermediate variable peak prominence [55] as shown in Fig. 15, which indicates the relative height of a peak. In general, a larger prominence corresponds to a sharper peak and thus the peak can be localized more accurately. Recalling (21) and Section II-D, the ACFS is given by

$$|\eta_0|^2 = \frac{K_{1M} \sin(k \xi_0/2L) + K_{NN} J_0(kp) + \sigma^2}{K_{1M} + K_{NN} + \sigma^2}. \tag{35}$$

The height $p_h$ of the first local peak and height $p_v$ of first local valley of (35) (see Fig. 15) can be expressed as

$$p_h = \frac{0.22K_{1M} + 0.01K_{NN} + \sigma^2}{K_{1M} + K_{NN} + \sigma^2}^2. \tag{36}$$

$$p_v = \frac{\sigma^2}{K_{1M} + K_{NN} + \sigma^2}^2.$$

where we have $\sin(k \xi_0/2L) = 0.22$ and $J_0(kp) = 0.01$ while $\xi_0$ is the first local peak location of (35) and $p = \sqrt{\xi_0^2 + \epsilon^2} \geq \xi_0 = vt \sin \theta$ (see Fig. 7). Then, the prominence $p_{pro}$ of the first local peak of (35) in the unit of decibel (dB) can be expressed as

$$p_{pro} = 10 \log_{10} \left( \frac{p_h - p_v}{\sigma^2} \right) \tag{37}$$

Note that SNR is defined as $\text{SNR} = 20 \log_{10} \left( \frac{K_{1M}}{\sigma^2} \right)$. Consequently, the prominence $p_{pro}$ can be rewritten as

$$p_{pro} = 10 \log_{10} \left( \frac{0.21K_{1M} + 0.01K_{NN} + \sigma^2}{K_{1M} + 0.1 \cdot \text{SNR}} \right)^2. \tag{38}$$

To have a better standing, Fig. 15 shows the peak prominence versus difference SNRs. It is clear that the prominence $p_{pro}$ increases monotonically with the increment of SNR, thus improving the peak localization accuracy. Note that the system needs to estimate the moving distance of the target every $T_m$ seconds as introduced in (30). As a result, we have to repeat the peak finding process for a large number of times to track a moving target. Then, by using the Central Limit Theorem [56], the expectation of the PLE denoted by $p_{err}$ can be assumed to follow a Gaussian distribution, i.e., the PDF of the $p_{err}$ can be expressed as

$$f(p_{err}) = H(p_{pro}) \exp \left( - \frac{p_{err}^2}{2G(p_{pro})} \right), \tag{39}$$

where $H(p_{pro})$ is the coefficient function while $G(p_{pro})$ denotes the standard deviation function (SDF). Since $p_{err}$ decreases with the increment of SNR, $H(p_{pro})$ is a monotonically increasing function while $G(p_{pro})$ is a decreasing function. It is preferable that $H(p_{pro})$ grows slowly and $G(p_{pro})$ decreases slowly as their arguments increase. Here we propose a pair of empirical approximations about $H(p_{pro})$ and $G(p_{pro})$ by 5000 Monte Carlo experiments, i.e.,

$$H(p_{pro}) = 186 \sqrt{10 \log_{10} (p_{pro})}, \tag{40}$$

$$G(p_{pro}) = \frac{1}{10 \sqrt{10 \log_{10} (p_{pro})}}.$$
Consequently, the expectation of $|p_{err}|$ can be calculated by

$$\mathbb{E}\{|p_{err}|\} = \int_{-\infty}^{\infty} |p_{err}|f(p_{err}) = 2G(p_{pro})^2 \cdot H(p_{pro}). \quad (41)$$

B. Expected Error of the Speed and Location Estimations

Similar to the scenario in Section III, a target is assumed to move at a speed of $v$ along the line joining $r_0$ and $r_s$ and receive signals from $Q$ nearby BSs. Given the estimation $\hat{t}_p = N\Delta t$ where $N$ is the integer denoting the sample index in Section III-B, the expected moving-time-estimation error caused by the $|p_{err}|$ at BS $q$ can be expressed as

$$\tilde{t}_{p_{err}}^q = \left(\Delta N + \frac{\mathbb{E}\{|p_{err}|\}}{vs\sin\theta_q} \Delta t\right) \cdot \Delta t, \quad q = 1, 2, \cdots, Q. \quad (42)$$

where $\Delta N \in \{0, \pm 1\}$ represents the quantization error. As a result, the EES is given by

$$\hat{v}_{err} = \frac{1}{Q} \sum_{q=1}^{Q} d_{p}^q \tilde{t}_{p_{err}}^q \frac{s\sin\theta_q}{\sin\theta_q (t_{p}^q \pm t_{p_{err}}^q)} \quad (43)$$

$$= \frac{1}{Q} \sum_{q=1}^{Q} d_{p}^q \tilde{t}_{p_{err}}^q \frac{s\sin\theta_q}{\sin\theta_q (t_{p}^q \pm t_{p_{err}}^q)} \cdot \frac{\hat{v}_q \, t_{p_{err}}^q}{\sin\theta_q},$$

where $\hat{v}_q = \tilde{v}_p^q / \sin\theta_q$ denotes the speed estimation corresponding to the $q$th BS. Then, the EEL can be expressed as $r_{err}^T = \hat{v}_{err} T_M$.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the performance of the proposed method based on a 5G communication system. The default parameter used in the Monte Carlo experiments are listed in Table I, if not otherwise stated. In summary, six experiments are performed to evaluate the proposed approach: i) overall performance; ii) speed and location estimation error; iii) impact of the number of antennas $M$; iv) impact of the sample rate; v) impact of the SNR; vi) comparison with existing works.

### TABLE I: Parameters used in the simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample frequency $f_s$</td>
<td>28GHz</td>
</tr>
<tr>
<td>Number of antennas $M$</td>
<td>100</td>
</tr>
<tr>
<td>Coverage of 5G base station</td>
<td>200m</td>
</tr>
<tr>
<td>Signal-to-noise-ratio SNR</td>
<td>10dB</td>
</tr>
<tr>
<td>LOS and NLOS power</td>
<td>$K_L \geq K_N$</td>
</tr>
<tr>
<td>Number of NLOS signal $N$</td>
<td>Integer randomly selected from $[10, 100]$</td>
</tr>
<tr>
<td>Number of base station $Q$</td>
<td>2</td>
</tr>
<tr>
<td>Speed of the target $v$</td>
<td>within $[5, 30]m/s$</td>
</tr>
</tbody>
</table>

A. Overall Performance

Assume the SNR is 10dB, Fig. 17 depicts the simulation result when the target moves with a variable acceleration from $t = 0s$ to $t = 2s$, a constant speed from $t = 2s$ to $t = 4s$ and a variable deceleration from $t = 4s$ to $t = 5s$. Table II shows 12 different moving situations including different initial speeds, accelerations, decelerations and turning angles to further verify the proposed method. For example, in situation ‘11’, the target starts moving at a speed of $5m/s$, acceleration of $7m/s^2$ and angle (i.e., $\theta_1$ in Fig. 11a) of 45 degrees. Moreover, the acceleration is also varying with a rate of $3m/s^2$. Similarly, the angle $\theta_1$ is changing at a rate of 3 degree per second to create a curved trajectory. Overall, we can conclude that our method can track the moving object with decimeter or even better centimeter accuracy in different scenarios.

B. Speed and Location Estimation Error

To evaluate the error of speed estimation (ES) and error of localization (EL), we conduct 1000 independent Monte Carlo simulations in which the target moves at variable speeds along a curved trajectory. The SNR is fixed at 10dB and the error distribution is shown in Fig. 18. Then, the empirical cumulative distribution function (CDF) corresponding
to different velocities \((v = 10\text{m/s}, 20\text{m/s}, 30\text{m/s})\) is given in Fig. 19. As illustrated in Fig. 18, our method achieves high-accuracy speed estimation results with a median error of 0.4m/s. Fig. 19 indicates that the median speed estimation errors are about 0.18m/s, 0.26m/s and 0.45m/s while the corresponding location errors are about 0.06m, 0.12m and 0.53m. Moreover, when \(v \leq 20\text{m/s}(45\text{mph})\), the 80 percentile of the speed estimation error is within 0.25m/s while the location estimation error is less than 0.2m. Therefore, our method has a promising performance in urban areas where \(v \leq 20\text{m/s}\) generally holds and there are strong NLOS. Moreover, Fig. 18b shows that the location estimation error accumulates at a moderate rate as the object moves continuously. This is mainly because the estimation of the next location is highly dependent on the previous location estimation result, which causes accumulative errors. Another possible reason is that SNR of the received signal drops with the target moving towards cell boundary. In the future, locations of the nearby BSs may be used to mitigate the accumulative error, which we leave for future work.

C. Impact of the Number of Antennas

Fig. 20 shows the root mean square error (RMSE) of the speed and location estimation versus different antenna number \(M\). Evidently, both the speed and location estimation accuracy are improved with the increment of \(M\). Specifically, when \(M\) is less than 100, it may not work well when the velocity is too high (e.g., \(v =30\text{m/s}\)). However, our system can localize the target within 0.3m error when \(M \geq 100\). This is because that as \(M\) increases, we can harvest more signal components and thus get more accurate ACFS estimation. And the performance starts to saturate when \(M \geq 200\). Note that when \(M\) approaches to 400, the location estimation error can be as low as 8cm.

D. Impact of the Sample Rate

Fig. 21 further explores impacts of the sample rate on our method. In general, higher sample rate improves the estimation accuracy. For a fixed sample rate, the object moving at a higher speed suffers from a worse location accuracy than that moving at a lower speed, which is consistent with (42). Moreover, Fig. 21 demonstrates that the minimum sample rate is a moderate
E. Impact of SNR and the Number of Stations

Fig. 22 explores the system performance versus different SNRs with $M = 100$ and a sample rate 1000Hz. The EES and EEL are shown in dotted lines with corresponding markers. Clearly, the system is seriously impacted by noise when SNR is less than 10dB and does not work when the target moves at 30m/s if SNR further decreases to 0dB. Moreover, the object with a higher speed shows a worse estimation error than that with a lower speed. However, in all the scenarios, our method works well when SNR is no less than 10dB, which is easy to meet in a typical communication system.

F. Impact the Number of Stations

A unique feature of the proposed method is that it jointly explores the directional ACFS distribution of the received signal and the geometric relationship among multiple base stations to estimate the moving direction of a target without any further information. We investigate how the performance would change with the number of base stations. As shown in Fig. 23, the performance is improved by fusing the information from more surrounding stations. However, the proposed system can achieve very good location accuracy with only 2 stations. In practice, users can flexibly select the number of stations according to the requirements of system latency, complexity and accuracy for real applications.

G. Comparison with Existing Works

In this section, we compare the proposed method with corresponding existing works in the aspect of speed, direction, location estimation accuracy and complexity. To simulate a typical localization and tracking scenario, we assume a moving target which continues recording signals transmitted
from 2 surrounding 5G massive MIMO base stations. The 2 stations are 200m away from each other and equipped with \( M = 100 \) antennas on each station. Considering the rich-scattering urban environment, we randomly choose \( N \) (within 10 to 100) NLOS components\(^1\) while the impinging angles follow uniform distributions over \((-\pi, \pi]\). The target starts to move at a speed of 5m/s, accelerates 2s, then keeps constant speed for 2s and finally decelerates until end. In total, the target moves 80m away from the starting point \(^2\).

**Speed estimation:** Fig. 24a compares the speed estimation performance of the proposed system with the existing SenSpeed [57], WiFiDetect [58] and GPS [59] methods. Clearly, our method outperforms the benchmark algorithms in accuracy. Specifically, SenSpeed estimates the speed by assuming that the error of the integrated acceleration accumulates linearly over time, which does not always hold in practice. WiFiDetect considers only 1 dominant NLOS signal and GPS method relies on the LOS signal greatly, which is vulnerable to NLOS distortions in urban rich-scattering environments. However, by exploring the ACFS of the received signal, the proposed method treats all the LOS and NLOS signal components as a whole and thus improves the accuracy.

**Direction estimation:** Fig. 24b shows that the proposed system can achieve 1.8° direction estimation accuracy, with improvement than the existing DOA approaches, i.e., Capon [60], ESPRIT [21] and MUSIC [20]. This mainly benefits from the ACFS which has been proved to be tolerable to NLOS distortions. On the contrary, most DOA approaches are highly dependent on the time measurement accuracy of the LOS signal, which is easily to be distorted/impacted by NLOS signals in practice.

**Location estimation:** Fig. 24c demonstrates the location accuracy of the proposed method and the state-of-the-art techniques including DiSouL [23], Conv-fingerprint [31] and DNN-fingerprint [32]. From Fig. 24c, the proposed method can achieve less than 0.2m error with the percentile \( \geq 95\% \). However, the 95% percentile estimation error of the DNN-fingerprint is 1.2m while both Conv-fingerprint and DiSouL cannot offer \( \geq 95\% \) confidence with less than 2m error.

\(^1\)Many practical measurements in New York City [45], [46] validated that the number of dominate NLOS signal usually varies from 10 to 100.

\(^2\)After moving 80m, the target is about 180m from one of the two stations, which is close to the cell boundary of the station. In this case, we need to switch to closer base stations, and detailed cell switching procedure is out of the scope of this paper.

Overall, our method is more robust because it explores the statistical ACFS of the received signal which is very stable in 5G massive MIMO systems regardless of the environment. However, fingerprint-based methods may suffer from fingerprint mismatch issue due to the change of the wireless propagation environment, thus degrading the accuracy. In dynamic environments, DiSouL works even worse because there are two hyperparameters in the model, which are sensitive to the environment changes.

**Complexity:** Considering that complexity is very important for real-time tracking and navigation applications with a stringent requirement on the latency, Table III compares the complexity between our algorithm and the state-of-the-art DiSouL [23] approach. In DiSouL, the main computation comes from solving the second-order cone program (SOCP) problem, which is about \( (QL + \sum_{q} N_q)^{3.5} \) in a single snapshot [23]. Our computation is mainly caused by ACFS computation, 1-dimension peak searching in Eq.(25) and the location computation from Eq.(28) to Eq.(32), which are \( Q f_s, f_r, \) and \( Q^2 + 7Q \) respectively. Since \( L \geq Q \), our method is much cheaper than DiSouL.

Note that we do not compare with Conv-fingerprint [31] and DNN-fingerprint [32] here because they are all training based methods in which the overhead in map construction stage is hard to be quantified. To improve accuracy, fingerprint-based methods usually require a lot of training and updating to construct the offline map, which leads to a prohibitive overhead especially in a dynamic environment.

### Table III: Computational complexity comparisons

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Computational complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiSouL</td>
<td>( O(\frac{f_s^2}{T_M}(QL + \sum_{q} N_q)^{3.5}) )</td>
</tr>
<tr>
<td>Proposed</td>
<td>( O((Q f_s + f_r + Q^2 + 7Q) f_s / T_M) )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New notations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_M )</td>
<td>output estimated location every ( T_M ) seconds.</td>
</tr>
<tr>
<td>( L )</td>
<td>number of location grid in candidate area</td>
</tr>
<tr>
<td>( N_q )</td>
<td>number of NLOS components at candidate area</td>
</tr>
</tbody>
</table>

VII. Conclusion

This paper proposes a high-accuracy target location method based on the 5G massive MIMO system. We first prove the
existence of a sinc-like focusing beam in a massive MIMO system by computing the statistical autocorrelation of the received signal in far-field scenario. Based on the focusing beam, a speed estimation algorithm is then proposed by jointly using the relative speed estimations with respect to multiple BSs. Give an initial point, we develop a target localization method by further using the geometrical relationships between multiple BSs. Theoretical error analysis and extensive numerical simulations show that our method can achieve decimeter localization accuracy by computing ACFS of the received signal, which outperforms many prior works in accuracy and cost.

**APPENDIX**

In this appendix, we prove (3), i.e., \( \eta_h(\mathbf{r}_0, \mathbf{r}_s) = \mathcal{E}[y(t_0) y^*(t_s)] \approx \eta_{h_0} + \eta_{h_N} + \eta_h. \) Mathematically, the ACF of the received signal \( y(t) \) given by

\[
\eta_h(\mathbf{r}_0, \mathbf{r}_s) = \mathcal{E}[y(t_0) y^*(t_s)] = \eta_{hL} + \eta_{hN} + \eta_{h*} \\
+ \eta_{hL*} + \eta_{hN*} + \eta_{nL} + \eta_{nN} + \eta_{n*} \\
\eta_{L*L} = \mathcal{E}[y(t_0) y^*(t_s)] \\
\eta_{L*N} = \mathcal{E}[y(t_0) y^*(t_s)] \\
\eta_{N*N} = \mathcal{E}[y(t_0) y^*(t_s)] \\
\eta_{L*n} = \mathcal{E}[y(t_0) y^*(t_s)] = \sigma^2 I.
\]

Referring to our derivations from (14) to (19), it is easy to obtain

\[
\eta_{hN} = \sum_{n=1}^{N} \sum_{i=1}^{M} \eta_{h}(LN)_{i,n} = \sum_{i=1}^{M} \mathcal{E}[y(t_0) y^*(t_s)] = 0
\]

(45)

given the fact that \( \phi_L \) and \( \phi_N \) are assumed to be uniform distribution over \((-\pi, \pi]\) and the signal components \( y_L \) and \( y_N \) are independent with noise. Similarly, we can get \( \eta_{h}(NL^*) = 0, \eta_{h}(NL) = 0, \eta_{h}(N*N) = 0, \eta_{h}(n*N) = 0. \) As a consequence, \( \eta_h(\mathbf{r}_0, \mathbf{r}_s) \) can be simplified as

\[
\eta_h(\mathbf{r}_0, \mathbf{r}_s) = \eta_{hL} + \eta_{hN} + \eta_h
\]

(46)

Thus, the proof is completed.

**REFERENCES**


This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3050720, IEEE Internet of Things Journal


Beibei Wang, (SM’15) received the B.S. degree in electrical engineering (Hons.) from the University of Science and Technology of China in 2004, and the Ph.D. degree in electrical engineering from the University of Maryland, College Park in 2009. She was with the University of Maryland as a research associate in 2009-2010, and with Qualcomm Research and Development in 2010-2014. Since 2015, she has been with Origin Wireless Inc., where she is currently the Vice President of Research. She is also affiliated with the University of Maryland, College Park. Dr. Wang is the recipient of the 2020 IEEE Internet of Things Journal Best Paper Award, 2015 IEEE Signal Processing Society Overview Paper Award and several research and invention awards from the University of Maryland. She is a co-author of Cognitive Radio Networking and Security: A Game-Theoretic View (Cambridge University Press, 2010) and Wireless AI: Wireless Sensing, Positioning, IoT, and Communications (Cambridge University Press, 2019). She has served on the editorial board of IEEE Signal Processing Letters, IEEE Internet of Things Journal, and IEEE Journal on Selected Areas in Communications. Her research interests include Internet of Things, mobile computing, wireless sensing and positioning, and communications and networking. She is a senior member of IEEE.

K. J. Ray Liu, (F’03) is a Distinguished University Professor and a Distinguished Scholar-Teacher of University of Maryland, College Park, where he is also Christine Kim Eminent Professor of Information Technology. He leads the Maryland Signals and Information Group conducting research encompassing broad areas of information and communications technology with recent focus on wireless AI for indoor tracking and wireless sensing.


Dr. Liu is 2021 IEEE President-Elect. He was IEEE Vice President, Technical Activities, and a member of IEEE Board of Director as Division IX Director. He has also served as President of IEEE Signal Processing Society, where he was Vice President – Publications and Editor-in-Chief of IEEE Signal Processing Magazine.

He also received teaching and research recognitions from University of Maryland including university-level Invention of the Year Award, and college-level Poole and Kent Senior Faculty Teaching Award, Outstanding Faculty Research Award, and Outstanding Faculty Service Award, all from A. James Clark School of Engineering.