
ALGORITHMS AND ARCHITECTURES FOR SPLIT
RECURSIVE LEAST SQUARES

K. J. Ray Liu and An-Yeu Wu
Electrical Engineering Department and Institute for Systems Research

University of Maryland
College Park, MD 20742

Abstract - In this paper, a new computationally efficient algorithm for re-
cursive least-squares (RLS) filtering is presented. The proposed Split RLS al-
gorithm can perform the approximated RLS with O (N) complexity for signals
having no special data structure t o be exploited. Our performance analysis
shows that the estimation bias will be small when the input data are less cor-
related. We also show that for highly correlated data, the orthogonal prepro-
cessing scheme can be used t o improve the performance of the Split RLS. The
systolic implementation of our algorithm based on the QR-decomposition RLS
(QRD-RLS) array requires only O (N) hardware complexity and the system la-
tency can be reduced t o O(log, N). A major advantage of the Split RLS is its
superior tracking capability over the conventional RLS under non-stationary
environments.

INTRODUCTION
The family of recursive least-squares (RLS) adaptive algorithms are well known

for their superiority to the LMS-type algorithms in both convergence rate and mis-
adjustment [l]. However, the O (N 2) computational complexity becomes the major
drawback for their applications as well as for their cost-effective implementation.
To alleviate the computational burden of the RLS, the family of fast RLS algo-
rithms such as fast transversal filters, RLS lattice filters, and QR-decomposition
based lattice filters (QRD-LSL), have been proposed [l]. By exploiting the special
structure of the input data matrix, they can perform RLS estimation with O (N)
complexity. One major disadvantage of the fast RLS algorithms is that they work
for data with shifting input only. In many applications like multichannel adaptive
array processing and image processing, the fast RLS algorithms cannot be applied
because no special matrix structure can be exploited. In this paper, we propose an
approximated RLS algorithm based on the projection m e t h o d [2][3][4][5]. Through
multiple decomposition of the signal space and making suitable approximations, we
can perform RLS for non-structured data with O (N) complexity. Thus, both the
complexity problem in the conventional RLS and the data constraint in the fast
RLS can be resolved. We shall call such RLS estimation the Split RLS. The systolic
implementation of the Split RLS based on the QR-decomposition RLS (QRD-RLS)
systolic array in [6] is also proposed. The hardware complexity for the resulting
RLS array can be reduced to O (N) and the system latency is only O(log, N) .

It is noteworthy that since approximation is made while performing the Split
RLS, our approach is not to obtain exact least-squares (LS) solutions. The approx-
imation errors will introduce misadjustment (bias) to the LS errors. In order to
know under what circumstances the algorithm will produce small and acceptable

0-7803-2123-5194 $4.00 0 1994 IEEE

460

bias, we also provide some basic analyses for the performance of the Split RLS. The
analyses together with the simulation results indicate that the Split RLS works well
when applied to broad-band/less-correlated signals. Based on this observation, we
also propose the orthogonal preprocessing scheme to improve the performance of
the Split RLS.

THE PROJECTION METHOD
Given an observation data matrix A = [al, a2,. . . ,an] E RmX" without any

exhibited structure and the desired signal vector y E Rmx', the LS problem is to
find the optimal weight coefficients w which minimize the LS errors

lle1I2 = llAw - Y V . (1)

w = (A ~ A) - ~ A ~ Y . (2)

In general, w is of the form

We also have = A B = P y and i? = y - 9, where y is the optimal projection of y
on the column space of A, P = A(ATA)-'AT is the projection matrix, and B is the
optimal residual vector. The principle of orthogonality ensures that i? is orthogonal
to the column space of A. For RLS algorithms that calculate exact LS solution, such
a direct projection to the N-dimensional space takes O (N 2) complexity. Knowing
this, in order to reduce the complexity, we shall try to perform projection onto
spaces of smaller dimension.

To motivate the idea, let us consider the LS problem with the partition A =
[Al,Az], where A1,Az E RnX("'2). Now instead of projecting y directly onto
the space spanned by A (denoted as span{A}), we project y onto the two smaller
subspaces, span(A1) and span{A2}, and obtain the optimal projections 91 and FZ
on each subspace (see Fig.1). The next step is to find a "good" estimation of the
optimal projection 9, say ?approx. If we can estimate a 1-D or 2-D subspace from

and yz and project the desired signal y directly on it to obtain yapprox, the
projection spaces become smaller and the computational complexity is reduced as
well. In the following, we propose two estimation methods based on their geometric
relationship in the Hilbert space.

s&n { A 1 }

Figure 1: Geometric interpretation of the projection method.

46 1

Estimation Method I (Split RLS I)

together, z.e.,

This provides the most intuitive and simplest way to estimate ~ a p p T o a : . Let Fig.2(a)
represent one of the existing RLS algorithms that project y onto the N-dimensional
space of A and compute the optimal projection e (or y, depending on the require-
ments) for the current iteration. The complexity is O(N2) per time iteration for
the data matrix of size N. Now using Fig.S(a) as a basic building block, we can
construct the block diagram for estimation method I as shown in Fig.2(b). Because
the whole projection space is first split into two equal but smaller subspaces to
perform the RLS estimation, we shall call this approach the Splzt-RLS (SP-RLS).
It can be easily shown that the complexity is reduced by nearly half through such
a decomposition.

The first approach is simply to add the two subspace projections and ?2

YappTOX = 91 + 9 2 . (3)

A Y

Figure 2:
algorithm, (c) the SP-RLS I1 algorithm, (d) the TSP-RLS 11 algorithm.

Block diagram for (a) a N-input RLS algorithm, (b) the SP-RLS I

Estimation Method I1 (Split RLS 11)
In estimation method I, we try to project y onto the estimated optimal projection

vector yapPTox. In this approach, we will project y directly onto the 2-D subspace
A = span{yl,y2}. As a result, the estimation shall be more accurate with slightly
increase in complexity.

As with estimation method I, we can construct the block diagram for estimation
method I1 (see Fig.2(c)) which is similar to Fig.B(b) except for the post-processing

- a

462

part. The projection residual on span{y l ,yz} is computed through a 2-input RLS
block with and yz as the inputs.

Tree-Split RLS based on Estimation Method I and I1

In estimation method I and 11, we try to reduce the complexity by making one
approximation at the last stage. Now consider the block diagram in Fig.2(c). If
we repeatedly expand the two building blocks on the top by applying the same
decomposition and approximation, we will obtain the block diagram in Fig.2(d).
We shall call this new algorithm the nee-Spl i t RLS algorithm (TSP-RLS) due to
its resemblance to a binary tree. Likewise, we can derive the TSP-RLS algorithm
from estimation method I (TSP-RLS I) by using the block diagram in Fig.2(b).

Systolic Implementation

Now we will consider the systolic implementation of the above algorithms. First
of all, we should note that each RLS building block in Fig.2 is independent of
choices of RLS algorithms. Because the QRD-RLS array in [6] can compute the RLS
estimation in a fully-pipelined way, it is a good candidate for our purpose. However,
the original array computes only the optimal residual. In order to obtain the two
optimal subspace projections 91 and 9 2 , we need to modify the QRD-RLS array by
keeping the delayed version of y(n) (the desired signal at time n) in the rightmost
column of the array. Once the residual is computed, we can use 51 (n) = y(n) - E l (n)
and $(n) = y(n) - &(n) to obtain the two subspace projections.

Now based on the block diagram in Fig.2, we can implement the Split RLS
algorithms in the following way: For those RLS blocks which need to compute the
optimal projection, the modified array is used for their implementations, while for
those RLS blocks which need to compute the optimal residual (usually in the last
stage), the QRD-RLS array in [6] is used. As an example, the resulting systolic
implementations of the SP-RLS I1 and the TSP-RLS I1 are depicted in Fig.3. A
comparison of hardware cost for the full-size QRD-RLS in [6] (denoted as FULL-
RLS), SP-RLS, TSP-RLS, and QRD-LSL [l, chap.181, is listed in Table 1. As we
can see, the complexity of the TSP-RLS is comparable with the QRD-LSL which
requires shift data structure.

Figure 3: Systolic implementations of (a) the SP-RLS I1 and (b) the TSP-RLS 11.

463

Table 1: Comparison of hardware cost for the FULL-RLS, SP-RLS, TSP-RLS, and
QRD-LSL, where the QRD-LSL requires shift data structure.

PERFORMANCE ANALYSIS AND SIMULATIONS

Estimation Error for SP-RLS I

Consider the LS problem in (1) and decompose the column space of A into two
equal-dimensional subspaces, Le., A = [AI , Az]. Let wT = [w: , wf], the optimal
projection vector y can be represented as

9 = A+ = 91 + j . 2 (4)

A ~ A + = A*Y, (5)

where y 1 = A1w1 and 9 2 = A2w2. From the normal equations

we have

Let w,, y,, i = 1 , 2 , be the optimal weight vectors and the optimal projection
vectors when considering two subspaces span(A1) and span(A2) separately. From
(4) and (5), we have

w, = (A T A ,) - ~ A T ~ , Y, = ~ , w , , i = 1,2. (8)

Premultiplying AI(ATAI)-' on (6) and using the definitions of ? I , ~ z , ?I, 9 2 , (6)
can be simplified as

Similarly, from (7) we can obtain
il + Ply2 = 91. (9)

(10) P Z i 1 + 9 2 = Yz
where P, = A,(ATA,)-lAF, i = 1 , 2 are the projection operators.

In SP-RLS I, we estimate the optimal projection by

?japprox = 91 + Yz, (11)

llAelIIz = Il&pprox - 611' = - Yapprox1l2 . (12)

llAelIIz = 119 - 91 - 9~11~ = IIPlfz + P2j.111~. (13)

and the estimation error (bias) is given by

Substituting (9)-(11) into (12) yields

464

In order to lower the bias value, P ly2 and P2y1 should be as small as possible.
Note that

Pi92 = AI(ATA~) - 'ATA~WZ = A19P;;+12wz, (14)
P291 = A2(AFA2)-1ATAlW1 = A29g2921Wl (15)

where 9 i j = ATAj is the deterministic correlation matrix. When the column
vectors of A1 and A2 are more orthogonal to each other, 9 1 2 and 9 2 1 will approach
to zero and the bias is reduced accordingly.

Estimation Error for SP-RLS I1

of y onto the space span(y1, j%} can be written as
Consider the block diagram of the SP-RLS I1 in Fig.S(c). The optimal projection

Yapprox = zlyl + z 2 y 2 (16)

where k = [kl, & I T is the optimal weight vector. From the normal equations, the
optimal weight vector can be solved as

where
-1

CY = (1 - --) YTY2 g Y 1 = csc20,
llU1ll2 llY2112

and 0 denotes the angle between and 92. From Fig.1, we have
2 2

Il~aPPToxlI = llYll - IIYaPPToxll2 = llY112 -YTYaPPTox = llY1I2 - i l l lYll12 - ~ 2 1 1 U 2 1 1 2 .

Il~appTo2ll2 = llyll - csc2 0llYl - Y21I2.

llAe21I2 = I(&ppToxl12 - 1)5112 = 11y112 - csc2 OllYi - Yz1I2.

(19)

(20)

Substituting (17) into (19) yields
2

Thus, the bias of SP-RLS I1 is given by

(21)

llAez1l2 I llAe1Il2. (22)

For any given 0, it can be shown that llAe2112 is bounded by

This implies that the performance of SP-RLS I1 is better than that of SP-RLS I in
terms of estimation error.

Bandwidth, Eigenvalue Spread, and Bias

From (13) and (21) we know that the orthogonality between the two subspaces
span(A1) and span(A2) will significantly affect the bias value. However, in practice,
the evaluation of degree of orthogonality for multidimensional spaces is nontrivial
and computationally intensive (e.g., CS-decomposition [7, pp. 75-78]). Without
loss of generality, we will only focus our discussion on single-channel case, where
the data matrix A consists of only shifted data and the degree of orthogonality can
be easily measured. In such a case, the degree of orthogonality can be measured

465

through two indices: the bandwidth and the eigenvalue spread of the data. If
the signal is less correlated (orthogonal), the autocorrelation function has smaller
duration and thus larger bandwidth. Noise processes are examples. On the other
hand, narrow-band processes such as sinusoidal signals are highly correlated. If
the data matrix is completely orthogonal, all the eigenvalues are the same and the
condition number is one. This implies that if the data matrix is more orthogonal,
it will have less eigenvalue spread. It is clear from our previous discussion that the
SP-RLS will render less bias for the broad-band signals than for the narrow-band
signals.

As to the TSP-RLS, note that the output optimal projection is a linear combi-
nation of the input column vectors. If the inputs to one stage of the TSP-RLS array
are less correlated, the outputs of this stage will still be less correlated. Therefore,
the signal property at the first stage such as bandwidth plays an important role in
the overall performance of the TSP-RLS.

Simulation Results

In the following simulations, we will use the autoregressive (AR) process of order
p (AR(p)) to generate the simulation data. Besides, the pole locations of the AR
processes are used to control the bandwidth property. In the first experiment, we try
to perform fourth-order linear prediction (LP) with four AR(4) processes using the
SP-RLS and TSP-RLS systolic arrays. The simulation results are shown in Fig.4, in
which the x-axis represents the location of the variable poles, and y-axis represents
the average output noise power after convergence. Ideally the output should be
the noise process with power equal to 0.1. As we can see, when the bandwidth of
input signal becomes wider, the bias is reduced. This agrees perfectly with what
we expected.

Beside the bias values, we also plot the square root of the spectral dynamzc range
D associated with each AR process. I t is known that the eigenvalue spread of the
data signal is bounded by the spectral dynamic range [8]

where U(e3"') is the spectrum of the signal. From the simulation results, we see the
consistency between the bias value and the spectral dynamic range. This indicates
that the performance of the Split RLS algorithms is also affected by the eigenvalue
spread of the input signal. This phenomenon is similar to what we have seen in
the LMS-type algorithms. Besides, two observations can be made from the experi-
mental results: 1) The SP-RLS performs better than the TSP-RLS. This is pretty
much due to the number of approximation stages in each algorithm. 2) The overall
performance of SP-RLS I1 is better than that of SP-RLS I. This agrees with our
analysis in (22).

Next we want to examine the convergence rate of our algorithm. Fig.5 shows the
convergence curve for the 8-input FULL-RLS and the TSP-RLS I1 after some initial
perturbation. It is interesting to note that although the TSP-RLS I1 has some bias
after it converges, its convergence rate is faster than that of the FULL-RLS. This is
due to the fact that the O(log, N) system latency of the TSP-RLS is less than the
O (N) latency of the FULL-RLS. Also, to initialize an 8-input full-size array takes
more time than to initialize the three small cascaded 2-input arrays. The property
of faster convergence rate is especially preferred for the tracking of parameters in
non-stationary environments such as multichannel adaptive filtering [9].

466

Figure 4: Simulation results of AR(4) I-IV, where the square root of the spectral
dynamic range (D) is also plotted for comparison.

SPLIT RLS WITH ORTHOGONAL PREPROCESSING

From the analyses in the previous section, we know that the estimated optimal
projection will approach to the real optimal projection when all subspaces are more
orthogonal to each other. Therefore, if we can preprocess the data matrix such
that the column spaces become more orthogonal (less correlated) to each other, a
better performance is expected. The operation for the Split RLS with orthogonal
preprocessing is as follows: First perform the orthogonal transform on the current
data vector, then use the transformed data as the inputs of the Split RLS. In our
approach, the Discrete Cosine Transform (DCT) and the Discrete Hartley Transform
(DHT) are used as the preprocessing kernels. As to the hardware implementation,
we can employ the time-recursive DCT/DHT lattice structure in [lo] to continuously

Figure 5: Learning curve of the FULL-RLS and TSP-RLS I1 after some initial
perturbation.

467

generate the transformed data.
In addition to the two aforementioned transforms, we also propose a new prepro-

cessing scheme called the Swapped DCT (SWAP-DCT). Suppose Z = [zl , z 2 , . . . , Z N]

is the DCT-domain data. In the DCT preprocessing, the input data is partitioned
as

(24)
A 1 = [Z I ~ Z Z , . . . , Z N / 2] ,

A 2 = [ZN/Z+I, z N / 2 + 2 1 . . . Z N] .

To make the input data more uncorrelated, we permute the transformed data col-
umn as

(25)
A 1 = [Z l , Z 3 , . . . , Z Z k - - l , . . . , Z N - l] ,

AZ = [Z Z , z 4 , . . . , Z 2 k , . . . ~ Z N]

in the SWAP-DCT preprocessing scheme. Fig.6 shows the spectrum of the normal
DCT partitioning and the SWAP-DCT partitioning. Recall that the eigenvalue
spread will affect the bias value, and the eigenvalue spread is bounded by the spectral
dynamic range. It is obvious that the SWAP-DCT preprocessing scheme will have
better performance due to the smaller eigenvalue spread in both A 1 and A z .

Figure 6: Spectrum of (a) the Normal DCT domain and (b) the SWAP-DCT do-
main.

To validate our arguments for the orthogonal preprocessing, we will repeat the
first experiment in the previous section for the TSP-RLS I1 with different prepro-
cessing schemes (Fig.7). In general, the TSP-RLS with DCT preprocessing gives
a fairly significant improvement in the bias value over the TSP-RLS without any
preprocessing (Normal TSP-RLS). Nevertheless, some exceptions can be found in
AR(4).III. As to the DHT, it does not perform well in most cases. It is as expected
that the SWAP-DCT performs better than the DCT. This supports our assertion
for the effect of the SWAP-DCT.

CONCLUSION
In this paper, we introduced a new O (N) fast algorithm and architecture for the

RLS estimation of nonstructured data. We have shown that the bandwidth and/or
the eigenvalue spread of the input signal can be used as a good performance index
for these algorithms. Therefore, the users will have small bias when dealing with
broad-band/less-correlated signals. For narrow-band signals, we can also employ
the orthogonal preprocessing to improve its performance. The low complexity as
well as the fast convergence rate of the proposed algorithm makes it suitable for
RLS estimation under the non-stationary or fast-changing environments where the
data matrix has no structure.

468

AR(4).1
I I 040

AR(4].111

.a, w,m SWAP-KT

050 060 070 080 090
PO@ Lma”

AR(41.11 AR(I).IV
r I 0 40 r.- ,

I .^ I , *” -

120 -

r; 8 080

OW O I ’ O M) 0;o o r - G r - - ? 0 0 Q%?o o w o f 0 0;o ob0

Pole Locams Pole Lmalmm

Figure 7: Simulation result of AR(4) I-IV with preprocessing schemes.

0

References

[l] S. Haykin, Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, N.J.,
2nd ed., 1991.

[2] K. Tanabe, “Projection method for solving a singular system of linear equations
and its applications,” Numer. Math., vol. 17, pp. 203-214, 1971.

[3] A. S. Kydes and R. P. Tewarson, “An iterative methods for solving partitioned
linear equations,” Computing, vol. 15, pp. 357-363, Jan. 1975.

[4] T. Elfving, “Block-iterative methods for consistent and inconsistent linear equa-
tions,” Numer. Math., vol. 35, pp. 1-12, 1980.

[5] R. Bramley and A. Samem, “ROW projection methods for large nonsymmetric
linear systems,” SIAM J. Sca. Stat. Comput., vol. 13, pp. 168-193, Jan. 1992.

[6] J. G. McWhirter, “Recursive least-squares minimization using a systolic array. ,”
Proc. SPIE, Real-Time Signal Processing VI, vol. 431, pp. 105-112, 1983.

[7] G. H. Golub and C. F. Van Loan, Matria: Computations. The John Hopkins
University Press, Baltimore, MD, 2nd ed., 1989.

[8] J. Makhoul, “Linear Prediction: A tutorial review,” Proc. IEEE, vol. 63,
pp. 561-580, April 1975.

[9] K. J. R. Liu and A.-Y. Wu, “A multi-layer 2-D adaptive filtering architecture
based on McCiellan transformation,” in Proc. IEEE Int. Symp. Circuits and
Systems, (Chicago), pp. 1999-2002, 1993.

[lo] K. J. R. Liu and C. T. Chiu, “Unified parallel lattice structures for time-
recursive Discrete Cosine/Sine/Hartley transforms,” IEEE Trans. Signal Pro-
cessing, vol. 41, pp. 1357-1377, March 1993.

469

