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Abstract - In this paper, a new computationally efficient algorithm for re- 
cursive least-squares (RLS) filtering is presented. The proposed Split RLS al- 
gorithm can perform the approximated RLS with O ( N )  complexity for signals 
having no special data structure t o  be exploited. Our performance analysis 
shows that the estimation bias will be small when the input data are less cor- 
related. We also show that for highly correlated data, the orthogonal prepro- 
cessing scheme can be used t o  improve the performance of the Split RLS. The 
systolic implementation of our algorithm based on the QR-decomposition RLS 
(QRD-RLS) array requires only O ( N )  hardware complexity and the system la- 
tency can be reduced t o  O(log, N). A major advantage of the Split RLS is its 
superior tracking capability over the conventional RLS under non-stationary 
environments. 

INTRODUCTION 
The family of recursive least-squares (RLS) adaptive algorithms are well known 

for their superiority to the LMS-type algorithms in both convergence rate and mis- 
adjustment [l]. However, the O ( N 2 )  computational complexity becomes the major 
drawback for their applications as well as for their cost-effective implementation. 
To alleviate the computational burden of the RLS, the family of fast RLS algo- 
rithms such as fast transversal filters, RLS lattice filters, and QR-decomposition 
based lattice filters (QRD-LSL), have been proposed [l]. By exploiting the special 
structure of the input data matrix, they can perform RLS estimation with O ( N )  
complexity. One major disadvantage of the fast RLS algorithms is that they work 
for data with shifting input only. In many applications like multichannel adaptive 
array processing and image processing, the fast RLS algorithms cannot be applied 
because no special matrix structure can be exploited. In this paper, we propose an 
approximated  RLS algorithm based on the projection m e t h o d  [2][3][4][5]. Through 
multiple decomposition of the signal space and making suitable approximations, we 
can perform RLS for non-structured data with O ( N )  complexity. Thus, both the 
complexity problem in the conventional RLS and the data constraint in the fast 
RLS can be resolved. We shall call such RLS estimation the Split RLS. The systolic 
implementation of the Split RLS based on the QR-decomposition RLS (QRD-RLS) 
systolic array in [6] is also proposed. The hardware complexity for the resulting 
RLS array can be reduced to O ( N )  and the system latency is only O(log, N ) .  

It is noteworthy that since approximation is made while performing the Split 
RLS, our approach is not to obtain exact least-squares (LS) solutions. The approx- 
imation errors will introduce misadjustment (bias) to the LS errors. In order to  
know under what circumstances the algorithm will produce small and acceptable 
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bias, we also provide some basic analyses for the performance of the Split RLS. The 
analyses together with the simulation results indicate that the Split RLS works well 
when applied to broad-band/less-correlated signals. Based on this observation, we 
also propose the orthogonal preprocessing scheme to improve the performance of 
the Split RLS. 

THE PROJECTION METHOD 
Given an observation data matrix A = [al, a2,. . . ,an] E RmX" without any 

exhibited structure and the desired signal vector y E Rmx', the LS problem is to 
find the optimal weight coefficients w which minimize the LS errors 

lle1I2 = llAw - Y V .  (1) 

w = ( A ~ A ) - ~ A ~ Y .  (2) 

In general, w is of the form 

We also have = A B  = P y  and i? = y - 9, where y is the optimal projection of y 
on the column space of A, P = A(ATA)-'AT is the projection matrix, and B is the 
optimal residual vector. The principle of orthogonality ensures that i? is orthogonal 
to the column space of A. For RLS algorithms that calculate exact LS solution, such 
a direct projection to the N-dimensional space takes O ( N 2 )  complexity. Knowing 
this, in order to reduce the complexity, we shall try to perform projection onto 
spaces of smaller dimension. 

To motivate the idea, let us consider the LS problem with the partition A = 
[Al,Az], where A1,Az E RnX("'2). Now instead of projecting y directly onto 
the space spanned by A (denoted as span{A}), we project y onto the two smaller 
subspaces, span(A1) and span{A2}, and obtain the optimal projections 91 and FZ 
on each subspace (see Fig.1). The next step is to find a "good" estimation of the 
optimal projection 9,  say ?approx. If we can estimate a 1-D or 2-D subspace from 

and yz and project the desired signal y directly on it to obtain yapprox, the 
projection spaces become smaller and the computational complexity is reduced as 
well. In the following, we propose two estimation methods based on their geometric 
relationship in the Hilbert space. 

s&n { A 1 } 

Figure 1: Geometric interpretation of the projection method. 
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Estimation Method I (Split RLS I) 

together, z.e., 

This provides the most intuitive and simplest way to estimate ~ a p p T o a : .  Let Fig.2(a) 
represent one of the existing RLS algorithms that project y onto the N-dimensional 
space of A and compute the optimal projection e (or y, depending on the require- 
ments) for the current iteration. The complexity is O(N2) per time iteration for 
the data matrix of size N. Now using Fig.S(a) as a basic building block, we can 
construct the block diagram for estimation method I as shown in Fig.2(b). Because 
the whole projection space is first split into two equal but smaller subspaces to 
perform the RLS estimation, we shall call this approach the Splzt-RLS (SP-RLS). 
It can be easily shown that the complexity is reduced by nearly half through such 
a decomposition. 

The first approach is simply to add the two subspace projections and ?2 

YappTOX = 91 + 9 2 .  (3) 

A Y  

Figure 2: 
algorithm, (c) the SP-RLS I1 algorithm, (d) the TSP-RLS 11 algorithm. 

Block diagram for (a) a N-input RLS algorithm, (b) the SP-RLS I 

Estimation Method I1 (Split RLS 11) 
In estimation method I, we try to project y onto the estimated optimal projection 

vector yapPTox. In this approach, we will project y directly onto the 2-D subspace 
A = span{yl,y2}. As a result, the estimation shall be more accurate with slightly 
increase in complexity. 

As with estimation method I, we can construct the block diagram for estimation 
method I1 (see Fig.2(c)) which is similar to Fig.B(b) except for the post-processing 

- a  
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part. The projection residual on span{y l ,yz}  is computed through a 2-input RLS 
block with and yz as the inputs. 

Tree-Split RLS based on Estimation Method I and I1 

In estimation method I and 11, we try to reduce the complexity by making one 
approximation at the last stage. Now consider the block diagram in Fig.2(c). If 
we repeatedly expand the two building blocks on the top by applying the same 
decomposition and approximation, we will obtain the block diagram in Fig.2(d). 
We shall call this new algorithm the nee-Spl i t  RLS algorithm (TSP-RLS) due to 
its resemblance to a binary tree. Likewise, we can derive the TSP-RLS algorithm 
from estimation method I (TSP-RLS I) by using the block diagram in Fig.2(b). 

Systolic Implementation 

Now we will consider the systolic implementation of the above algorithms. First 
of all, we should note that each RLS building block in Fig.2 is independent of 
choices of RLS algorithms. Because the QRD-RLS array in [6] can compute the RLS 
estimation in a fully-pipelined way, it is a good candidate for our purpose. However, 
the original array computes only the optimal residual. In order to obtain the two 
optimal subspace projections 91 and 9 2 ,  we need to modify the QRD-RLS array by 
keeping the delayed version of y(n) (the desired signal at time n) in the rightmost 
column of the array. Once the residual is computed, we can use 51 (n) = y(n) - E l  (n) 
and $(n) = y(n) - &(n) to obtain the two subspace projections. 

Now based on the block diagram in Fig.2, we can implement the Split RLS 
algorithms in the following way: For those RLS blocks which need to compute the 
optimal projection, the modified array is used for their implementations, while for 
those RLS blocks which need to compute the optimal residual (usually in the last 
stage), the QRD-RLS array in [6] is used. As an example, the resulting systolic 
implementations of the SP-RLS I1 and the TSP-RLS I1 are depicted in Fig.3. A 
comparison of hardware cost for the full-size QRD-RLS in [6] (denoted as FULL- 
RLS), SP-RLS, TSP-RLS, and QRD-LSL [l, chap.181, is listed in Table 1. As we 
can see, the complexity of the TSP-RLS is comparable with the QRD-LSL which 
requires shift data structure. 

Figure 3: Systolic implementations of (a) the SP-RLS I1 and (b) the TSP-RLS 11. 
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Table 1: Comparison of hardware cost for the FULL-RLS, SP-RLS, TSP-RLS, and 
QRD-LSL, where the QRD-LSL requires shift data structure. 

PERFORMANCE ANALYSIS AND SIMULATIONS 

Estimation Error for SP-RLS I 

Consider the LS problem in (1) and decompose the column space of A into two 
equal-dimensional subspaces, Le., A = [AI , Az]. Let wT = [w: , wf], the optimal 
projection vector y can be represented as 

9 = A+ = 91 + j . 2  (4) 

A ~ A +  = A*Y, (5) 

where y 1  = A1w1 and 9 2  = A2w2. From the normal equations 

we have 

Let w,, y,, i = 1 , 2 ,  be the optimal weight vectors and the optimal projection 
vectors when considering two subspaces span(A1) and span(A2) separately. From 
(4) and (5), we have 

w, = ( A T A , ) - ~ A T ~ ,  Y, = ~ , w , ,  i = 1,2. (8 )  

Premultiplying AI(ATAI)-' on (6) and using the definitions of ? I , ~ z ,  ?I,  9 2 ,  (6) 
can be simplified as 

Similarly, from (7) we can obtain 
il + Ply2 = 91. (9) 

(10) P Z i 1  + 9 2  = Yz 
where P, = A,(ATA,)-lAF, i = 1 , 2  are the projection operators. 

In SP-RLS I, we estimate the optimal projection by 

?japprox = 91 + Yz, (11) 

llAelIIz = Il&pprox - 611' = - Yapprox1l2 .  (12) 

llAelIIz = 119 - 91 - 9~11~ = IIPlfz + P2j.111~. (13) 

and the estimation error (bias) is given by 

Substituting (9)-(11) into (12) yields 
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In order to lower the bias value, P ly2  and P2y1 should be as small as possible. 
Note that 

Pi92 = AI(ATA~) - 'ATA~WZ = A19P;;+12wz, (14) 
P291 = A2(AFA2)-1ATAlW1 = A29g2921Wl (15) 

where 9 i j  = ATAj is the deterministic correlation matrix. When the column 
vectors of A1 and A2 are more orthogonal to each other, 9 1 2  and 9 2 1  will approach 
to zero and the bias is reduced accordingly. 

Estimation Error for SP-RLS I1 

of y onto the space span(y1, j%} can be written as 
Consider the block diagram of the SP-RLS I1 in Fig.S(c). The optimal projection 

Yapprox = zlyl + z 2 y 2  (16) 

where k = [kl, & I T  is the optimal weight vector. From the normal equations, the 
optimal weight vector can be solved as 

where 
-1 

CY = (1 - --) YTY2 g Y 1  = csc20, 
llU1ll2 llY2112 

and 0 denotes the angle between and 92. From Fig.1, we have 
2 2 

Il~aPPToxlI = llYll - IIYaPPToxll2 = llY112 -YTYaPPTox = llY1I2 - i l l lYll12 - ~ 2 1 1 U 2 1 1 2 .  

Il~appTo2ll2 = llyll - csc2 0llYl - Y21I2. 

llAe21I2 = I(&ppToxl12 - 1)5112 = 11y112 - csc2 OllYi - Yz1I2. 

(19) 

(20) 

Substituting (17) into (19) yields 
2 

Thus, the bias of SP-RLS I1 is given by 

(21) 

llAez1l2 I llAe1Il2. (22) 

For any given 0, it can be shown that llAe2112 is bounded by 

This implies that the performance of SP-RLS I1 is better than that of SP-RLS I in 
terms of estimation error. 

Bandwidth, Eigenvalue Spread, and Bias 

From (13) and (21) we know that the orthogonality between the two subspaces 
span(A1) and span(A2) will significantly affect the bias value. However, in practice, 
the evaluation of degree of orthogonality for multidimensional spaces is nontrivial 
and computationally intensive (e.g., CS-decomposition [7, pp. 75-78]). Without 
loss of generality, we will only focus our discussion on single-channel case, where 
the data matrix A consists of only shifted data and the degree of orthogonality can 
be easily measured. In such a case, the degree of orthogonality can be measured 
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through two indices: the bandwidth and the eigenvalue spread of the data. If 
the signal is less correlated (orthogonal), the autocorrelation function has smaller 
duration and thus larger bandwidth. Noise processes are examples. On the other 
hand, narrow-band processes such as sinusoidal signals are highly correlated. If 
the data matrix is completely orthogonal, all the eigenvalues are the same and the 
condition number is one. This implies that if the data matrix is more orthogonal, 
it will have less eigenvalue spread. It is clear from our previous discussion that the 
SP-RLS will render less bias for the broad-band signals than for the narrow-band 
signals. 

As to the TSP-RLS, note that the output optimal projection is a linear combi- 
nation of the input column vectors. If the inputs to one stage of the TSP-RLS array 
are less correlated, the outputs of this stage will still be less correlated. Therefore, 
the signal property at the first stage such as bandwidth plays an important role in 
the overall performance of the TSP-RLS. 

Simulation Results 

In the following simulations, we will use the autoregressive (AR) process of order 
p (AR(p)) to generate the simulation data. Besides, the pole locations of the AR 
processes are used to control the bandwidth property. In the first experiment, we try 
to perform fourth-order linear prediction (LP) with four AR(4) processes using the 
SP-RLS and TSP-RLS systolic arrays. The simulation results are shown in Fig.4, in 
which the x-axis represents the location of the variable poles, and y-axis represents 
the average output noise power after convergence. Ideally the output should be 
the noise process with power equal to 0.1. As we can see, when the bandwidth of 
input signal becomes wider, the bias is reduced. This agrees perfectly with what 
we expected. 

Beside the bias values, we also plot the square root of the spectral dynamzc range 
D associated with each AR process. I t  is known that the eigenvalue spread of the 
data signal is bounded by the spectral dynamic range [8] 

where U(e3"') is the spectrum of the signal. From the simulation results, we see the 
consistency between the bias value and the spectral dynamic range. This indicates 
that the performance of the Split RLS algorithms is also affected by the eigenvalue 
spread of the input signal. This phenomenon is similar to what we have seen in 
the LMS-type algorithms. Besides, two observations can be made from the experi- 
mental results: 1) The SP-RLS performs better than the TSP-RLS. This is pretty 
much due to the number of approximation stages in each algorithm. 2) The overall 
performance of SP-RLS I1 is better than that of SP-RLS I. This agrees with our 
analysis in (22). 

Next we want to examine the convergence rate of our algorithm. Fig.5 shows the 
convergence curve for the 8-input FULL-RLS and the TSP-RLS I1 after some initial 
perturbation. It is interesting to note that although the TSP-RLS I1 has some bias 
after it converges, its convergence rate is faster than that of the FULL-RLS. This is 
due to the fact that the O(log, N )  system latency of the TSP-RLS is less than the 
O ( N )  latency of the FULL-RLS. Also, to initialize an 8-input full-size array takes 
more time than to initialize the three small cascaded 2-input arrays. The property 
of faster convergence rate is especially preferred for the tracking of parameters in 
non-stationary environments such as multichannel adaptive filtering [9]. 
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Figure 4: Simulation results of AR(4) I-IV, where the square root of the spectral 
dynamic range (D) is also plotted for comparison. 

SPLIT RLS WITH ORTHOGONAL PREPROCESSING 

From the analyses in the previous section, we know that the estimated optimal 
projection will approach to the real optimal projection when all subspaces are more 
orthogonal to each other. Therefore, if we can preprocess the data matrix such 
that the column spaces become more orthogonal (less correlated) to each other, a 
better performance is expected. The operation for the Split RLS with orthogonal 
preprocessing is as follows: First perform the orthogonal transform on the current 
data vector, then use the transformed data as the inputs of the Split RLS. In our 
approach, the Discrete Cosine Transform (DCT) and the Discrete Hartley Transform 
(DHT) are used as the preprocessing kernels. As to the hardware implementation, 
we can employ the time-recursive DCT/DHT lattice structure in [lo] to continuously 

Figure 5: Learning curve of the FULL-RLS and TSP-RLS I1 after some initial 
perturbation. 
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generate the transformed data. 
In addition to the two aforementioned transforms, we also propose a new prepro- 

cessing scheme called the Swapped DCT (SWAP-DCT). Suppose Z = [zl ,  z 2 ,  . . . , Z N ]  

is the DCT-domain data. In the DCT preprocessing, the input data is partitioned 
as 

(24) 
A 1  = [ Z I ~ Z Z , . .  . , Z N / 2 ] ,  

A 2  = [ZN/Z+I,  z N / 2 + 2 1 . .  . Z N ] .  

To make the input data more uncorrelated, we permute the transformed data col- 
umn as 

(25) 
A 1  = [ Z l , Z 3 ,  . . . , Z Z k - - l , . . . , Z N - l ] ,  

AZ = [ Z Z , z 4 , .  . . , Z 2 k , . .  . ~ Z N ]  

in the SWAP-DCT preprocessing scheme. Fig.6 shows the spectrum of the normal 
DCT partitioning and the SWAP-DCT partitioning. Recall that the eigenvalue 
spread will affect the bias value, and the eigenvalue spread is bounded by the spectral 
dynamic range. It is obvious that the SWAP-DCT preprocessing scheme will have 
better performance due to the smaller eigenvalue spread in both A 1  and A z .  

Figure 6: Spectrum of (a) the Normal DCT domain and (b) the SWAP-DCT do- 
main. 

To validate our arguments for the orthogonal preprocessing, we will repeat the 
first experiment in the previous section for the TSP-RLS I1 with different prepro- 
cessing schemes (Fig.7). In general, the TSP-RLS with DCT preprocessing gives 
a fairly significant improvement in the bias value over the TSP-RLS without any 
preprocessing (Normal TSP-RLS). Nevertheless, some exceptions can be found in 
AR(4).III. As to the DHT, it does not perform well in most cases. It is as expected 
that the SWAP-DCT performs better than the DCT. This supports our assertion 
for the effect of the SWAP-DCT. 

CONCLUSION 
In this paper, we introduced a new O ( N )  fast algorithm and architecture for the 

RLS estimation of nonstructured data. We have shown that the bandwidth and/or 
the eigenvalue spread of the input signal can be used as a good performance index 
for these algorithms. Therefore, the users will have small bias when dealing with 
broad-band/less-correlated signals. For narrow-band signals, we can also employ 
the orthogonal preprocessing to improve its performance. The low complexity as 
well as the fast convergence rate of the proposed algorithm makes it suitable for 
RLS estimation under the non-stationary or fast-changing environments where the 
data matrix has no structure. 
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Figure 7: Simulation result of AR(4) I-IV with preprocessing schemes. 
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