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ABSTRACT 

A fully pipelined systolic array structure for multidimen- 
sional adaptive filtering is proposed. I t  utilizes the well- 
known McClellan Transformation (MT) to reduce the total 
number of parameters used in the 2-D filter. A new multi- 
layer triangular array, which is based on QR-decomposition 
RLS (QRD-RLS) as well as the projection method, is d e  
rived for the “1-D prototype filter’’ of MT. The hardware 
complexity for the new architecture is only O ( N ) .  The sys- 
tem latency is also reduced from O ( N )  to O(log, N ) .  Be- 
cause of the fast convergence rate of the QRD-RLS a lge  
rithms, it is suitable for real-time image processing such as 
video signal processing. 

1 INTRODUCTION 

Multidimensional adaptive filtering has been an active area 
of research recently. Extension to  2-D applications of the 
well-known I-D LMS and RLS algorithms have been re- 
ported in the literature [I, 2, 31. However, the slow con- 
vergence rate of the LMS-type algorithms as well as the 
high computational complexity of the RLS algorithms be- 
come major drawbacks when both approaches are applied 
to  real-time application such as video signal processing. 

Recently, a concurrent algorithm and systolic architec- 
ture for mu!tidimensional adaptive filtering was proposed by 
Shapiro and Staelin [4]. They employed McClellan transfor- 
mation (MT) [5] as an parameterization method coupled 
with a QR factorization systoLic array to perform adap- 
tive luminance-chrominance separation. However, there are 
two disadvantages in their scheme: 1) Since Gentleman and 
Kung’s triangular array (triarray) [6] is used, due to the 
opposite data wavefront, the whole system will be “idle” 
during the operation of back-substitution, 2) The hardware 
complexity is O ( N 2 )  which is not feasible for VLSI imple- 
mentation as the order of the system increases. In this pa- 
per, we propose a modified systolic architecture which is 
based on McWhirter’s triarray [7]. It eliminates the need 
of back-substitution operation, thus, the whole system can 
be processed in a fully pipelined fashion. In addition, a 
multi-layer triarray is also derived by using the projection 
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method. Since the system can be expanded recursively in a 
“divide-and-conquer’’ way, only O( N )  hardware is required. 

2 SYSTOLIC IMPLEMENTATION OF 
McCLELLAN TRANSFORMATION 

Given a 1-D zerephase FIR filter with support - N  5 n 5 
N ,  the frequency response can be written as 

N 

H(w) = U(.) cos(wn). (1) 
n=O 

Since cos(wn) can be expressed as a Chebyshev polynomial 
of degree n, I”,,[.], we can rewrite (1) as 

N 

H ( w )  = a(n)T,[cos w]. (2) 
n = O  

By using the transformation of variables [5] 

F (w1 ,  w2) ---+ cos w ,  (3) 

we obtain the MT 2-D frequency response 

N 

H ( w I , w ~ )  = a ( n ) T n [ F ( w l , ~ ) ] .  (4) 
n=O 

The MT is a near-optimal design method for 2-D filters. It 
decomposes the problem into the design of a “1-D proto- 
type” filter, a(n), and the “2-D transformation function”, 
F(w1, wz). The former defines the frequency response along 
the 2-D frequency plane. The latter, which is a small 2-D 
zero-phase FIR filter, maps the 1-D frequencies into con- 
tours in the 2-D frequency plane. Therefore, by updating 
the coefficients of both the 2-D transformation filter and 
the I-D prototype filter in a adaptive way, we can perform 
2-D adaptive filtering efficiently. Fig.1 shows the block dia- 
gram of the systolic M T  based on the Chebyshev recursion 
[8]. Each PE is a linear systolic array which performs the 
2-D transformation. X , [ n l ,  nz], i = 1 ,2 , .  . . , N are the out- 
puts of the ith PE and y[nl, n2] is the desired 2-D signal. 
W = [wl, war . . . , w ~ ]  is the tap coefficient vector of the 1-D 
FIR filter. In [4], to solve W ,  X,[nl,nz]’s are first sent to 
Gentleman and Kung’s triarray to perform QR decomposi- 
tion based on Givens rotation, and then W is solved through 
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Figure 1: Systolic implementation for McClellan Transform. 

a back-substitution linear systolic array. Because the sys- 
tem will become “idle” due to the opposite data flows while 
solving W, it is not appropriate for continuous operation, 
i.e., not applicable for real-time processing. 

In some applications such as prediction error filters, 
adaptive noise cancellers and adaptive beamformers, it is 
not necessary to  compute the least-squares (LS) weight- 
ing vector, W, explicitly. A modified triarray proposed by 
McWhirter [7], avoids the need to solve W and generates 
residuals directly, so it is more suitable for those applica- 
tions. Similarly, in image restoration, image registration, 
etc., the estimation error 

e[m, n21 = ~ [ m ,  n21 - ?[nl, 7 ~ 2 1  

is more important than the weighting coefficients. Once we 
calculate the residual, e[nl, 4, the filtered-out image can 
be easily obtained by subtracting the estimated error from 
the desired signal 

~ [ n l ,  n21= wiXi[nl, n21 = y[nl, ~ 2 1 -  e[nl, ~ 2 1 .  ( 5 )  
t 

Because the McWhirter’s triarray can produce the resid- 
uals in real time, the LS error e[nl, n2] can be generated in 
a fully-pipelined way without any back-substitution opera- 
tion and with better numerical properties. So now we can 
modify the MT systolic structure in [4] by employing only 
one triangular systolic array. 

3 MULTI-LAYER TRIARRAY STRUCTURE 

The two Givens systolic arrays described in [6, 71 do not im- 
pose any restriction on the input data structure. As a conse- 
quence of this generality, their computational complexity is 
proportional to N 2 .  Recently, some “fast” LS algorithms 
based on Givens rotation have been proposed by several 
authors [9, 10, 111. By exploiting the Toeplitz structure 
of the input data covariance matrix, a fast QR algorithm 
for LS estimation can be implemented on a lattice struc- 
ture with O ( N )  complexity. However, for many applications 
like adaptive sidelobe canceller (SLC), and the image signals 
X,[nl,  nz]’s in Fig.1, the fast QR algorithm cannot be used 

because no special structure can be exploited. Therefore, we 
are motivated to derive a reduced-size structure which can 
achieve a similar performance like full-size QRD-RLS array 
(FULL-QRD), but only with a computational complexity of 

Let us consider a LS problem with only two column vec- 
O ( N ) *  

tors 
A W s y  

where A = [ 0 1 , ~ 2 ] ,  W = [wl,  ~ 2 1 ~ .  The LS optimal weigh- 
ing coefficient W can be solved by the normal equations: 

W = ( A ~ A ) - ’ A ~ Y ,  $ = A(ATA)-’ATy = AW , 2 = Y - $ ~  

where is the optimal estimation of y and 6 is the o p  
timal residual. In the geometric point of view, is the 
projection of y on the subspace spanned by a1 a z ,  denoted 
as spon{al,a2}, and the error vector 2 is perpendicular to 
that plane. Now instead of projecting y onto spon{al,az}, 
we project y onto the two smaller subspaces, spon(a1) and 
span{oz}, and the optimal projection are $1, $2 respectively 
as shown in Fig.2. 

(6) 

Figure 2: Geometric interpretation for reduced-size LS esti- 
mation 

Since y i / / a l , y i / / a ~  in this case, one can easily verify 
that spon{$l,y2} = span{al,az}. Thus the optimal projec- 
tion of y onto span{al,a2} can be found by projecting y 
onto the new subspace span(y’1,gz). If now A = [Al,Az] 
and A I ,  A2 E R” ’”’, we can first obtain $1, yi by project- 
ing y onto the two subspaces span{A1}, span{A2}. The two 
subspace projections $1 and $2 can be obtained from ( 6 )  as 

$1 = y - 61 , $2 = y - 6 2 .  

Then we try to  estimate 6 by projecting y onto the newly 
constructed small subspace span(y1, $ 2 ) .  Through this a p  
proach, we can save about 50% hardware to obtain the es- 
timation of 6, say 6oppros, if N is large. The corresponding 
systolic array to  implement the above argument is illustrated 
in Fig.3(a). If we further expand the two half full triarrays 
on the top of Fig.3(a) recursively, we will get a binary tree- 
like structure in Fig.3(b). It is easy to verify that this new 
structure has hardware complexity proportional to O( N) 
and a total delay O(log, N). Because of its resemblance 
to a binary tree, we call the expanded architecture as the 
“mu1 t i-layer Q RD- RLS array” (ML-Q RD ) . 

(7) 
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Figure 4: Learning curve of FULL-QRD and ML-QRD for 
8th order AR process. 

(b) 

Figure 3: (a) QRD array for two subspaces (b) Multi-layer 
QRD array 

Fig.4 shows the experimental learning curve for both 
FULL-QRD and the ML-QRD for an 8th order AR process. 
It is interesting to see that ML-QRD has a faster conver- 
gence rate than FULL-QRD since it takes more time to ini- 
tialize a 8 x 8  tri-array than three cascaded 2x2  tri-array. We 
can also find that the misadjustment is less than 1% MSE 
which is acceptable compared to  the popular LMS-type al- 
gorithms. A comparison of hardware cost for FULL-QRD 
and ML-QRD can be found in Table 1 '. We can obtain 
significant savings in multipliers while N is increasing. 

Input powee l  .O. forgetting factor = .995 

4 SIMULATION RESULTS 

Now combining the systolic M T  structure and the multi- 
layer triarray, we can perform multidimensional adaptive 
filtering with O( N )  hardware complexity and throughput 
rate equal to one. The performance of the proposed scheme 
is examined by applying it to a two-dimensional adaptive 
line enhancer (TDALE) which has been used in [l, 31. The 
block diagram is depicted in Fig.5. 

Figure 5: Multidimensional adaptive filter for TDALE 

The primary input is the well-known "LENA" image de- 
graded by a white Gaussian noise. A 2-D unit delay zF1zF1 

'Each Angle Computer and Rotator consists of about 4 multipliers Some are shown in and the 
POI. processed images with input SNR equal to 3.7 dB (noise 
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II 10.5 9.0 7.6 tion using a systolic array.,” Proc. SPIE, Real-Time 
9.8 8.7 Signal Processing VI, vol. 431, pp. 105-112, 1983. 

Table 2: SNR results for the proposed systolic multidimen- 
sional adaptive filtering in the application of restoring noisy 
images. 

variance =1000) are shown in Fig.6. From Table 2, we can 
find that the performance of our scheme is about the same as 
the 2-D joint process lattice structure in [3]. It is also inter- 
esting to see that the ML-QRD performs even better than 
the FULL-QRD. As we discussed in the previous section, al- 
though the ML-QRD has worse misadjustment, it has faster 
convergence rate than that of the FULL-QRD. Th’ IS prop  
erty makes it preferable in time-varying and nonstationary 
processing. 
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herd, “Computationally efficient QR decomposition 
approach to least squares adaptive filtering,” IEE 
Proceedings-F, vol. 138, pp. 341-353, Aug. 1991. 

5 CONCLUSION 

In this paper, we derive the multi-layer systolic array for LS 
estimation with hardware complexity of O ( N ) .  Its applica- 
tion in real-time multidimensional adaptive filtering is also 
presented. Because of the superior computational robust- 
ness and the fast convergence rate for the RLS algorithm, 
it is a promising candidate for real-time multidimensional 
application such as video image restoration, image signal 
channel equalization and image filtering. 
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