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Abstract

High-resolution spectral estimation is an important subject
in many applications of modern signal processing. The fun-
damental problem in applying various high-resolution spec-
tral estimation algorithms is the computational complexity.
Recently, the truncated QR methods have been shown to
be comparable to the SVD-based methods for the sinusoidal
frequency estimation based on the forward-backward linear
prediction (FBLP) model. However, without considering the
special structure of the FBLP matrix, the QR decomposition
(QRD) of the FBLP matrix has the computational complex-
ity of 2(6m —n)n? + O(n?) for a 2m x n FBLP matrix. Here
we propose a fast algorithm to perform the QRD of the FBLP
matrix. It is based on exploring the special Toeplitz-Hankel
form of the FBLP matrix. The computational complexity is
then reduced to 10n? 4+ 4mn + O(n). The fast algorithm can
also be easily implemented onto a linear systolic array. The
number of time steps required is further reduced to 2m+n—1
by using the parallel implementation.

1 Introduction

High-resolution spectral estimation is an important subject
in many applications of modern signal processing. The fun-
damental problem in applying various high-resolution spec-
tral estimation algorithms is the computational complex-
ity. In the pioneering paper of Tufts and Kumaresan [1],
a SVD-based method for solving the forward-backward lin-
ear prediction(FBLP) least-squares(LS) problem was used
to resolve the frequencies of closely spaced sinusoids from a
limited amount of data samples. By imposing an excessive
order in the FBLP model and then truncating small singu-
lar values to zero, this truncated SVD method yields a low
SNR threshold and greatly suppresses spurious frequencies.
However, the massive computations required by SVD makes
it unsuitable for real time super-resolution applications.
Recently, the truncated QR methods [4] have been shown
to be comparable to the SVD-based methods in various sit-
uations. It is very effective for the sinusoidal frequency es-
timation based on the forward-backward linear prediction
(FBLP) model. However, without considering the special
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structure of the FBLP matrix, the QR decomposition (QRD)
of the FBLP matrix has the computational complexity of
o(n3).

Seeking fast algorithms for specially structured matri-
ces have captured lots of attention recently, especially the
Toeplitz-structured matrices [2,3,6,7,8,9,10]. However, ex-
ploring the special structure of the FBLP matrix for fast al-
gorithm implementation has not yet been considered so far.
Here we propose a fast algorithm to perform the QRD of the
FBLP matrix. The computational cost of the truncated QR
methods can be further reduced from O(n®) to O(n?) which
makes it more attractive than the SVD-based methods.

This paper is organized as follows: The basic properties
and the special structure of the FBLP matrix are consid-
ered in Section 2. The fast algorithm based on the Toeplitz-
Hankel structure is presented in Section 3, and finally the
parallel implementation is considered in Section 4.

2 Forward-Backward Linear Pre-
diction

2.1 Forward Linear Prediction

Suppose we observe a timesequence u(i—1), u(i—2),- -+, u(i—
M), and would like to predict u(i) based on a linear LS es-
timation. The forward linear prediction problem is to mini-
mize the sum of the forward prediction-error energy,

N
min Y lesti)f, (1)

=t =M1

where
es(i) = u1) —w_?u(i - 1),
w0 —1) = [u(i - 1),u(i = 2),- -, u(i = M),

and w; € RM*! is a forward prediction weight vector.

2.2 Backward Linear Prediction

On the other hand, for the backward linear prediction, we
observe a sequence u(i — M +1),u(i — M +2),---,u(i), and
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would like to predict u(i — M) based on a linear LS estima-
tion. The backward linear prediction problem is to optimize
the criterion,

()

where
eali) = uli — M) — wu® (i),
WFT(0) = uli - M+ T uli — M + 2}, u(ill,
and wy € RM*T ig a backward prediction weight vector. Here
B denotes the backward arrangement of a vector, that is,
wPT (i) is a backward arrangement of the vector u().

2.3 Forward-Backward Linear Prediction
To obtain a smoother result, we can combine both the for-
ward and backward linear prediction together. This we call
the forward-backward linear prediction (FBLP) method which
is to minimize the sum of the FBLP errors energy,

N

min Y {leg@)P + lesl))-

= i=M1

(3)

The data matrix A4 € RAN-MIXM of the FBLP method is
given by

: w(M)
u(2) u(3)

u(N L M) w(N- M1 w(N — 1)

ulM + 1}

u( M)

N - 2) e u{N-

u¥-1) M)

w{ N} w(N — L) wf N -

(4)

and the desired response vector b is
8 = [u(M + 1), u(N), 5 ufl), - u(N — M)} (5)
The FBLP method is to solve the following LS problem,

Aw

n

b (6}

An augmented form: of the FBLP method can be obtained
by putting A and b togethier as

[ u(l) uf2)
u(2) w3y

wlM + 1}

uGN— 1}

w(N = M) (N - M +1)
(40 =

u(M +1)

u(M)

(N —2)

uﬂNm— I}
' w(N — 1)

u{N)

o

/%-{- 1} J

u(N — M)
u(N — M + 1}

WM 1) ]
u(M +2)

w(N)

uf1)

u(N - M —1)
(N — MY

It is interesting to see that there is a special structure in
this augmented matrix. The matrix can be partitioned into
two parts; the upper submatrix is of Hankel structure and
the lower one is of Toeplitz structure. Purthermore, both
matrices can be related as follows,

H=TJ,

where J € RMHIXMMEL §5 an exchange matrix given by

(&)

1
The matrix of the form as given in (7) is called the Toeplitz-
Hankel matrix. As we can see, the augmented matrix of the
FBLP problem is of the Toeplitz-Hankel form with a special
property, t.e.

RN
K== -——|=|———|. @
i T ]

This special property ean be used for developing a fast algo-
rithm that will be considered in the next Section.

3 Fast Orthogonalization for Toeplitz-

Hankel Matrix

By using the truncated QR method for the high-resolution
AR spectral estimation, the key computational issue is to
solve the FBLP LS problem based on the QR decomposi-
tion (QRD}). Without. considering the special structure, a
conventional QRD requires ~ 4(N — MIM? + O(M?*} mul-
tiplications to ebtain the upper triangular matrix R. This
is on the order of O(M?) since usually N > M. Thus, a
reasonable approach is to find a fast algorithm for the FBLP
LS problem by exploring its special Toeplitz-Hankel struc-
ture. This problem has not been considered so far, though
the LS problem with Toeplitz structure has been studied ex-
tensively (2,3,6,7,8,9,10]. Basically, our approach shares the
same spirit as that of Bojanczyk, Brent, and de Hoogs” work
on the QRD: of Toeplitz matrices [2].

The Toeplitz part of the Toeplitz-Hankel matrix can be
partitioned as

T=[M€M+1)

w

[T w
L wv - a)

122,

A | oo
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where
u(M+1) uM) - u(2)
- u(M+2) uM+1) --- u(3)
=1 : : ’
u(N =-1) u(N-2) u(N — M)

= [u(M), -, u(2),u(1)],
g = [u(M +2), -, (N = 1),u(N)],
w = [u(1),u(2), - u(N =M -1)],
= [u(N),u(N = 1), ,u(N = M +1)],
and the Hankel part of the Toeplitz-Hankel matrix can be
partitioned as

. u A _[257 w(M+1)

HZTJ=[u(N1—M) p.”}‘[ﬁ v

(11)
where

u(2) u(3) u(M+1)

L. u(3) u(4) u(M +2)
A=Ti= : : S

u(N—-M) u(N-M+1) u(N —1)

VBT = [u(N = M +1),-,u(N = 1),u(N)] = 2" J,
EBT = [u(l)vu(2)v' ’ au(M)] = ET‘]'

Again, here B denotes the backward arrangement of a vector.
Now, from the above partitions, the Toeplitz-Hankel ma-
trix K can be partitioned as follows,

u j’[
w(N-M) 57
K=| -——— —=—-, (12)
u(M +1) _:r
y T
and
KK=|4 Tu+u(N-M)+3(M+1)+y7y
T | HTu+ vPu(N - M)+1:u(M+l)+TT
uTH +u(N — MpBT + w(M + DzT + 47T
HTH+TTT+vaBT+zI -
(13)
Also, the matrix K can be partitioned as
287 (M+1)
H ]
K=|-=--— —-=— |, (14)
T u

o7 u(N_— M)
and with this partition, we have

£B2BT + HTH + TTT 4+ wT

T — & - ~ .
KK = u(M + l)gBT-}—gTH +uTT 4+ u(N = M)T

zBu(M 4 1) + AT
ui(M+1)+ yTy +
(15)
Let the QRD of matrix K be K = QR, where R €
RM+)X(MH1) jg an upper triangular matrix and it can be
partitioned as follows,

T R
R= ™ I | _ t 2 , 16
’ [ 0 R, 07 rmama (16)

where R, € RM*M is a principle bottom submatrix of R,
R, € RM*M is a principle top submatrix of R, and

+TTu+vu(N—M)
gTu+u(N-—M) ’

T _
L= [T12,7‘13, e ,7'1,M+1],

r3 = [roman T M M)

Note that both R, and R, are upper triangular matrices.
Since the matrix @ is orthogonal, we have

KTK = RTR, 7
and ‘
RTR = Tf] 7‘11[? ' —- R{Rt RzTIQ

it niry + Ri R IR rlra + i
(18)
Define B
; H
K=|-==-1, (19)
T
we then have o o .
KK =HTH+TTT. (20)

From the lower right submatrices of (13) and (18), we obtain

RIRy + 77 = KT + 22T + v%0P7. (21)

Also, from the upper left submatrices of (15) and (18), we

have o
RTR, = K"K + v + 28257, (22)

Substituting (22) to (21), we obtain the relation between R,
and Ry as given by

RIR, = RTR, + za¥ — 8287 + vPvB7 — w7 — 1,17, (23)

This equation provides a recursive generation of the upper
triangular matrix R. Suppose the first k rows of R, are avail-
able, by performing two rank-1 updatings and three rank-1
downdatings, we can obtain the kth row of R;. This row is,
in fact, identical to the (k + 1)th row of R, (except the last
element). To start this recursion, the first row of R, must be
obtained initially. This can be done by a sequence of Givens
rotations on the matrix A to zero out the first column of
A except its leading element on the diagonal. The com-
putational cost is 4(N — M)M multiplications (since only
halh of the rotation needed to be done) for this initializa-
tion. Following this, the recursion in (23) is then started.
As there are five rotation-like up/downdatings, the compu-
tational cost is 10M?+O(M) (for multiplication). Therefore,
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the total computational complexity is 10M? + 4(N — MM
(for multiplication} for a 2(N¥ — M) x M Toeplitz-Hankel
matrix. As mentioned before, without considering the spe-
cial structure, by using the conventional QRD, the compu-
tational complexity is of & 4M> + O(M?). Obviously, the
proposed fast algorvithm has an improvement of an order of
magnitude. ln general, for the QRD of a 2m x n Toeplitz-
atrix, the fast algorithm needs 10n? + dmn + O(n)
plications, while a conventional implementation needs
3(6m — njn® + O(n?), where m > n.

4 Parallel Implementation

The fast algorithm obtained in the previous Section not. only
reduces the comy onal complexity, but is also amenable
for parallel implementation. From the fact that the first row
of the upper triangular matrix R has to be obtained first, a
linear array can be used to rotate the matrix A such that the
first column can be zeroed out and eventually the first row of
the matrix R is kept in the linear array. The idea is similar
to the triangular array for the QRD proposed by Gentleman
and Kung [I1]. The difference is that their scheme is a gen-
eral one without considering any special structure of the data
matrix. Accordingly, a full triangular array is needed.

In our approach, due to the consideration of the spe-
cial Toeplitz-Hankel structure, only a linear array is used
and which consists of a boundary cell that generates rota-
tion parameters and (M — I} votation cells that rotate and
up/down-date the input data. The linear array is shown in
Fig.1. Once the first row of the matrix R is obtained, the
recursion in (23} is then started and the data fow is also
shown in Fig.1.

The number of time steps required is now being further
reduced to 2(N — M)+ (M —1) = 2N —M —1 (or 2 — 1
for a 2m x n Toeplitz-Hankel matrix} based on this linear
systolic array implementation.

5 Conclusions

In this paper, we propose a fast algmlt*hm for the QRD of

a Toeplitz-Hankel matrix. The com
for the QRD of & 2m x »n Toeplitz-Han
4dmn+ O(n) multiplications, which b
improvement over conventional a
can. also be implemented onto a linea lic arvay. The
number of time steps requived is further reduced to Zm4n—I
for the parallel implementation.
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Fig.1 Linear systolic array for fast Toeplitz-Hankel orthogonalization
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