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ABSTRACT

In this paper, we propose a multi-phase systolic algorithm
to solve the spectral decomposition problem based on QR algo-
rithm. The spectral decomposition constitutes one of the most
computationally intensive needs of modern signal processing ap-
plications. While the QR algorithm is well known to be an ef-
fective method to solve the eigenvalue problem, there is still no
single systolic array architecture that can compute the unitary
Q matrix readily and perform the QR algorithm efficiently. Pre-
vious methods based on the Jacobi-like approach required global
communication or broadcast in computing the eigenvector, and
methods using the QR algorithm had communication problems
among different architectures. In this paper, we show that the Q
matrix can be computed easily by using a multi-phase systolic al-
gorithm and thus the eigenvectors can also be computed without
any global communication in the array. Details on these multi-
phase operations of the QR algorithm as well as architectural
consequences are discussed in the paper.

1 Introduction

Computing the spectral decomposition of a matrix is an impor-
tant issue in many modern signal processing and system appli-
cations. The feasibility of real-time processing for sophisticated
modern signal processing systems, depends crucially on efficient
implementation of parallel processing of the algorithms and asso-
ciated architectures nceded to perform these operations. While
many variations exist in the literatures for solving these matrix
problems, the heart of all these iterative methods are based ei-
ther on the Jacobi-Hestennes method or the QR algorithm [6, 15].
Since present VLSI technology is capable of building a multipro-
cessor system on a chip, many rescarchers have proposed different
parallel processing architectures to solve eigenvalue and singular
value decomposition (SVD) problems.

Luk [9], Brent [1], and Gao and Thomas [3], have used effec-
tively the Jacobi-like method to solve these problems for either
a multiprocessor system or systolic array. While the Jacobi-like
method, as considered in [9], is currently known as one of the
most effective parallel SVD algorithm for full dense matrices, the
computations required o obtain the rotational matrices needed
in this approach to obtain the singular vectors are not simple and
can not be obtained without broadcast [9].

On the other hand, other researchers [8, 13] have used QR
algorithm to solve the cigenvalue problems. These methods re-
quired the computation of the unitary matrix Q. However, prob-
lems exist in the concurrent computation of @ and the pipeline
operation of the QR iteration. Torralha and Navarro [14] further
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purposed a size-independent linear array for QR iteration and
essenberg reduction. While this approach can provide an effi-
cient computation of one iteration of the QR iteration, it is not
obvious how to pipeline the iteration.

For some system applications, the efficient computation of
singular values is sufficient, while in other applications such as
antenna beamformation, spectral estimation, direct finding, etc.,
the eigenvectors are crucially needed. This makes practical im-
plementation of systolic arrays discussed above difficult for many
applications since they either cannot compute the cigenvector
or cannot obtain the eigenvector without broadcast. A system
which consists of several systolic modules to compute the MUSIC
algorithm has been proposed in [12]. However, communication
problems among the modules and the difficulty of matching the
pipeline rates and timings among different modules may posse
difficulties for practical implementation.

Presently, there is no known simple efficient systolic array
approach for the generation of eigenvectors. The main reason is
that there is no single architecture that is capable of handling
all the steps required in the algorithm such that we can pipeline
the successive iterations readily. The communication cost among
different architectures is high and the interface problem for an
efficient data flow is demanding. In this paper, we propose a
multi-phase systolic algorithm to solve the spectral decomposi-
tion problem based on the QR algorithm. A triangular systolic
array is designed based on the multi-phase concept. A key fea-
ture in our method for the successfully application of the QR
algorithm is that the @ matrix of the QR decomposition can be
computed explicitly by multiphase operations. With the proper
feedback of this Q matrix, the QR algorithm can be computed
and pipelined effectively in a single systolic array. From the ac-
cumulation of those Q matrices in another array, eigenvectors
and singular vectors can be computed without needing global
communication inside the array.

2 Systolic Array Matrix Processing

In this section, we consider some preliminary matrix and associ-
ated systolic array operations needed in the multi-phase systolic
algorithm for spectral decompositions.

A. QR Decomposition

A non-degenerate m X n rectangular matrix A can be factor-
ized into two matrices @ and R such that A = QR, where @ is
an m X m unitary matrix and R is an m X n upper triangular
matrix. The matrix @ can be computed using sequences of Given
rotations. An elementary Givens transformation has the form of
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Fig.1 Triangular systolic array for QR decomposition.
Table 1 Operations of the processing cells for different phases.
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QR arrays have been considered by Gentleman and Kung [5],
Heller and Ipsen [8], and Luk [10]. In particular, the computa-
tion of the Q matrix without broadcast is difficult for the array
considered in [10]. On the other hand, [5] has shown that a tri-
angular systolic array can be used to obtain the upper triangular
matrix R based on sequences of Given rotations. This systolic ar-
ray is shown in Fig.1 and the operations of the cells are described
in the first column of Table 1. While the rotation parameters are
propagated to the right, the @ matrix will not appear directly at
the right as originally suggested by [13].

B. Computation of R~Tz

In [7], Comon and Robert presented a rectangular systolic
array for the computation of B~*A, where B and A are square
and rectangular matrices respectively. For the special case where
B is an upper triangular matrix denoted by R, instead of a full
dense matrix, McWhirter and Shepherd [11] used the property
that a triangular array can compute R-Tz in one phase with the
matrix R prestored in the triarray. The corresponding systolic
array to implement the above algorithm is the same as the one
shown in Fig.l. The operations of the cells are shown in the
second column of Table 1.

C. Triangular-Matrix Multiplication

The multiplication of a triangular matrix 2 and an rectan-
gular full dense matrix B can be done by using the same array
as in Fig.1, with R prestored in the triarray and the operations
shown in the third column of Table 1, this multiplication can be
easily obtained if B is inputted row by row.

3 QR Algorithm

In this section we revicw briefly the basic operation of the QR
algorithm, in order to present our new results in Section 4. For
a complex-valued nxn matrix A, it states that there is a unitary
transform U such that R = UAU™ is a upper triangular matrix
with diagonal eigenvalues of descending order. This follows from
the QR Algorithm [6, 15] where by setting A; A, we have
Ap = QiR and Apyy = RiQrx = QP AQy, k=1,
unitary Q and upper triangular Rj. Furthermore, A; converges
to the upper triangular matrix with diagonal cigenvalue clements.
However, it is not obvious how to compute the cigenvectors from
those Q4 and Rj we have calculated. With similar derivations as
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Q. From the above discussions, we have

Akpr = QFOQIL - Q40102+ Q1. (2)
Define
. &
Qr = []Qi=01Q2 Q.
i=1
} 1
Re = J]Ri=RcRiy- R1 (3)
1=k
Then we have
QrAkrr = Q. )
Thus the multiplication of QkRk can be expressed as
OxRe = Q1Qa- - QuRiRir - B
= QrordkRicr = Qo Rimy = AF = Ak (5)
Let the eigenvalues of A satisfy, |A1] > |A2] > -+ > |An].

Denote the matrix eigenvectors and eigenvalues of A by X" and
A respectively. Then A* is given by A = XA*X -1, Let the QR
decomposition of X be X = QR and the LU decomposition of

X~!be X~! = LU, where L is an unit-lower triangular matrix.
Then
AF = QRALU = QR(A¥LA=%)AYD, (6)
where
AYLA™* = T+ Ey, (7
and
LN/ Ak, i> ]
E- = 7 ' 7 b R
(B { 0, otherwise. (%)

Therefore, when % is large enough, we have limg_ ., Ex = 0 and
thus A¥LA™* approachs the identity matrix. Then (6) can be
rewritten as A¥ — QRAXU. Since the term RA*U is an up-
per triangular matrix, comparing to (5) we can sce that Q — Q
when k islarge. That is, the Q matrix of the QR decomposition of
AF approachs to that of the Q matrix of the QR decomposition of
the matrix of eigenvector X. Define Qk = [Ql’iz’“"ﬁn]’ X =
[21,29, -+, 2,], and r; as the (i, ) clement of R. From Qx — X,
we find rngl — z; when £ is large. Since z, is the eigenvector
associated with the largest cigenvalue, we conclude that the first
column of the matrix Q) approach the cigenvector associated



Fig.2 Phase 1. The QR decomposition

with the largest eigenvalue of matrix A when k is large. If the ma-
trix A is symmetric, which is often the case for many signal pro-
cessing applications, the similar transformation Agy; = QﬁAQk
is also symmetric. Since A4y, approaches the noper triangular
matrix by the QR algorithm, Ayyq approaches a diagonal ma-
trix. Thatis 4y — A = R and QxA — X. In this case, for
large &, the columns of Qi become proportional to the columns
of eigenvector in X

If A is real, then Ay will converge to a real block upper tri-
angular matrix with 1 X 1 and 2 x 2 main diagonal blocks. The
complex conjugate pairs of eigenvectors of the 2 x 2 blocks can
be solved easily using the quadratic formula. When A is not a
square matrix, the singular values and vectors are of interest.
For a m x n matrix B, where m > n, the SVD of B shows
B =UxVT, where U is a m x n matrix of orthogonal columns,
V is a m X n unitary matrix, and X is a n X n diagonal matrix
with diagonal elements called singular values given in descending
order, For most situations where high condition numbers are not
encountered, a simple symmetric n x 7 matrix C = BT B can be
formed and the matrix V can be found by direct use of the QR
algorithm. Similarly, U can be found by using D = BBT.

4 Multi-phase Triangular Systolic Array

In this section, we introduced the multi-phase systolic algorithm
to compute the QR algorithm. We shall show that our methods
compute the Q matrix explicitly without requiring any global
communication. Before we consider the multi-phase algorithm, a
communication switch is first discussed. A circular multiplezer is
a device which takes its inputs and distributes them in different
output positions. We use a skewed row to represent the circu-
lar multiplexier. The computation of a QR algorithm consists of
two basic steps. Initially, set Ay = A. (1) for k = 1,2, -, com-
pute Ay = Qi Ry; (2) compute Arpy = RiQp, stop if converge,
otherwise go back to step (1).

The QR Decomposition triarray proposed by Gentleman and
Kung [5] is used in our approach. The R matrix is stored in the
triarray after the computation. To compute the matrix Apy; in
step (2), the @ matrix has to be computed first. Let us call
the computations in step (1) and step (2) an iteration. Several
iterations are required for A to converge. For each iteration, we
propose a three phase operation on a triarray as follows:

Fig.3 Phase 2: Computing the Q matrix.
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Fig.4 Phase 3: Computing the matrix product RQ.

o Phase 1: QR decomposition for Ag
Compute the QR decomposition of the matrix A; = Qx Ry,
with the upper triangular matrix Ry being stored in the
triarray [5). The data in Ay is inputted row by row skewed
in time as shown in Fig.2.

Phase 2: Computing the Q4 matrix
From the QR decomposition, we have R,:TAT = QLT Let
the it* column of matrices AL and QF be denoted by g;
and g, respectively. Then
R/:T[ﬁlvﬂ'lv"'?Qn}:[ﬁpﬂzv""gn]' (9)
Section 2 showed that R;Tgﬂ_ can be computed in a triarray
same as the one used in Phase 1. Since the i** column
of AE is the it* row of A, then with Az inputted row by
row skewed in time as shown in Fig.3, the operations of the
processing cells are given in the second column of Table 1.
The triarray computes the Qx matrix of Ax. The matrix
@y is then outputted row by row as shown in Fig.3. In
order to start Phase 3, the matrix Q has to be in the form
of Fig.4. Observe that the output Q of phase 2 shares the
same snap-shot order as the desired arrangement of Q) in
Phase 3 after a transpose operation. A circular multiplexer
is used to distribute each column output of @ into row
input as indicated in Fig.3.

Phase 3: Computing R;Qx

With the operations of the processing cell as shown in the
third column of Table 1 and the Q obtained in Phase 2,
Fig.4 shows the computation of Agy1 = Rr@Q in the triar-
ray. Then the matrix Ay comes out column by column
from the right side of the triarray. Again, we observe that
Apgy1 shares the same snap-shot order as the desired ar-
rangement of A in Phase 1 after a transpose operation. If
not convergent, a new iteration is repeated by feeding back
Agy1 into the triarray after using a circular multiplexer as
shown in Fig.4. Then Phase 1 operation begins as in Fig.2.

An attractive property of this multi-phase operation is that
the feedback requirement of the matrices in different phases are
identical. Thus, a circular multiplexer is enough for each row
outside the array. Observe that the first column of the matrix
input in Phase 2 and Phase 3 finishes at time n and the next



phase can be started at time n + 1 for this column. We find the

first data output at the right hand side of the triarray is at time
n+1, after passing through the circular multiplexer, can be piped
into the array for the next phase computation without suffering
any delay. If we assume the multiplexer is ideal such the delay in
the multiplexer can be ignored, it takes 3n + (2rn — 1) = 5n — 1
system clocks for one iteration. The (2n — 1) term represents the
initial time to feed the data into the array. Suppose the number
of iteration required for convergence is S, then the total number
of system clocks needed is 3Sn + (2n — 1). Thus, the converge
rate of this algorithm is of the order of O((35 + 2)n). After the
convergence of the A matrix, those values on the boundary cell

are the eigenvalues of the A matrix.
To compute an eigenvector, a matrix multiplication systolic

array can be incorporated with the multi-phase array such that
those matrices @1, -+ ,Q are cumulated to form the @ matrix.
Noted that @ = Qk_1Qx and the matrix Qy_1 is available at
the start of the k™ iteration, while the matrix Q; coming out
at Phase 2 operation of the k% iteration. Then @} is obtained
by multiplying Qj_, and Q) as shown in Fig.d. As discussed
in section 3, for a symmetric A matrix, when A converged, Qx
yields the matrix of eigenvectors. For a non-symmetric A matrix,
the first column of @, yields the eigenvector associated with the
largest eigenvalue.

5 Performance Efficiency

Although there are three phases of operations, the arithemati-
cal operations in Phase 2 and 3 form a subset of the operations
executed in Phase 1. Therefore we do not increase the cell com-
plexity in the multi-phase array. Due to the computation of R=T
in Phase 2 of the operations, it may be numerical unstable for
certain highly ill-conditioning data.

Similar to Luk in [9], by convergence we mean that the pa-
rameter of f(Ax) defined as

2
off(44) = ZST (10)
where N is the number of off-diagonal elements, has fallen be-
low some prechosen tolerance value. As indicated in [9], it is
difficult to monitor of f(Ax) in the parallel computation. Luk
then proposed that the iteration be stopped after a sufficiently
large number S of iterations. In the studies of Brent and Luk
[1, 9], they found that S < 9 for random symmetric matrices of
order n € 230 and S < 6 for n < 24. Therefore, they choosed
S = 10 for n < 100 for Jacobi-like method. Similar to their ap-
proach, we apply the QR algorithm to random nxn symmetric
matrices (a;;), where the elements a;; for 1 < i < j < n were
uniformly and independently distributed in [—1,1]. The toler-
ance to meet the stopping condition is of f(A;) < 107'°. From
our simulations, the number of iterations for a QR algorithm to
converge is in the order of 10 for matrix size smaller than 20 x 20.
Even though we can reduce the matrix to Hessenberg form for
full dense matrix or tridiagonal form for symmetric matrix, and
the QR iteration with origin shift can accelerated the convergent
rate, the number of iteration is still in the order of 10.

This kind of property is not desirable for parallel processing
implementation. It is known that Jacobi-like method may require
more flops as compared to the symmetric QR algorithm. How-
ever, due to parallel implementation, many rotations may take
Place at the same time. The computations involved in QR algo-
rithm and Jacobi-like method are generally of the same complex-
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ity. From these discussions, the one which requires less number of
iterations is more attractive from the parallel implementational
point of view. Furthermore, the convergence rate of an QR itera-
tion depends on the ratio of the eigenvalues. In our simulations,
in more than 10% of the cases, the randomly generated symmet-
ric matrices required significantly larger number of iterations to
converge. This is also an undesirable intrinsic property of the
QR algorithm for parallel implementation as compared to that
of the Jacobi-like method.

6 Conclusions

The multi-phase systolic algorithm proposed in this paper can be
used efficiently to solve the eigenvalue and SVD problems based
on the QR algorithm. In particular, the eigenvectors can be
obtained without global communication using the multi-phase
operations. We showed that the QR algorithm can achieve a
parallel implementation on a single architecture. We will show
a numerically stable multi-phase rectangular array for the QR
algorithm in a future publication. Since the operations in each
phase belongs to the same types of computation, the cell com-
plexity is thus not increased by multi-phase operations. Each
iteration takes O(n) time unit while the time required for con-
vergence is O(Sn), where S is the number of iterations. While we
have demonstrated the advantage of the QR algorithm that can
yield two multi-phase systolic algorithm implementable on single
architectures without requiring global connections, the intrinsic
convergence rate for the QR algorithm make it less attractive as
compared to the Jacobi-like method in parallel implementation.
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