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ABS 7’ RAC T 

I n  this paper, we propose a multi-phase systolic algorithm 
to solve the spectral decomposition problem based on QR algo- 
rithm. Tlie spectral decomposition constitutes one of the most 
computationally intensive needs of modern signal processing ap- 
plications. While the QR algorithm is well known to  he an ef- 
fective method to solve the eigenvalue problem, there is still no 
single systolic array architecture that can compute tlie unitary 
(2 matrix readily and perform the QR algorithm efficiently. Pre- 
vious methods based on the Jacobi-like approach required global 
communication or broadcayt in computing the eigenvector, and 
methods using the QR algorithm had communication problems 
among different architectures. In this paper, we show that the Q 
matrix can be computed easily by using a multi-phase systolic al- 
gorithm and thus the eigenvectors can also be computed without 
any global communication in the array. Details on these multi- 
pliase operations of the QR algorithm as well as architectural 
consequences are discussed in the paper. 

1 Introduction 

Computing the spectral decomposition of a matrix is an impor- 
taut issue in many modern signal processing and system appli- 
cations. The  feasibility of real-time processing for sophisticated 
modern signal processing systems, depends crucially on efficient 
impleitientation of parallel processing of the algorithms and asso- 
ciated architectures needed to perform these operations. While 
niany variations exist i i i  the literatures for solving these matrix 
problenis, tlir heart of all these iterative methods are based ei- 
tlirr 011 the Jacobi-IIcste~ines method or the QR algorithm [6,15].  
Since present VISI  technology is capable of building a multipro- 
ccssor system on a cliip, many researchers have proposed different 
parallcl processing architectures to  solve eigenvalue and singular 
value decomposition (SVD) problems. 

Lirk [9], Drent [l], and Gao and Thomas [3], have used effec- 
tively tlie Jacob-like method to solve these problems for either 
a multiprocessor system or systolic array. While the Jacobi-like 
nictliotl, as considered in [9], is currently known as one of the 
most eFfective parallel SVD algorithm for full dense matrices, the 
roinputations required to obtain the rotational matrices needed 
i r i  this approa.cli to  obtain the singular vectors are not simple and 
can not bc obtained without broadcast [9]. 

On the other hand, other researchers [8, 131 have used QR 
algorithm to solve tlie eigenvalue problems. These methods re- 
qiiirrtl tlir computation of the unitary matrix Q. However, prob- 
lems exist i n  the concurrent computation of Q and the pipeline 
oprratioii of the QR __- itcratioii. - Ti~ i I ; i I l~a  a n d  Navarro [14] furlhcr 
Thia work i a  p a r l i a l l g  *upported by UC MICRO grant and t h e  N S F  N C & . ~ ~ I + ( O I  

purposed a size-independent linear array for QR iteration and 
IIessenberg reduction. LVhile this approach can provide an ea- 
cient computation of one iteration of the QR iteration, it is not 
obvious how to  pipeline the iteration. 

For some system applications, the efficient computation of 
singular values is sufficient, while in other applications such as 
antenna beamformation, spectral estimation, direct finding, etc., 
the eigenvectors are crucially needed. This makes practical ini- 
plementation of systolic arrays discussed above difficult for many 
applications since they either cannot compute the eigenvector 
or cannot obtain the eigenvector without broadcast. A system 
which consists of several systolic modules to  compute the MUSIC 
algorithm has been proposed in [12]. However, communication 
problems among the modules and the difficulty of matching tlie 
pipeline rates and timings among different modules may posse 
dificulties for practical implementation. 

Presently, there is no known simple efficient systolic array 
approach for the generation of eigenvectors. The  main reason is 
that  there is no single architecture that is capable of handling 
all the steps required in the algorithm such that we can pipeline 
tlie successive iterations readily. Tlie communication cost among 
different architectures is high and the interface problem for an 
efficient da ta  flow is demanding. In this paper, we propose a 
multi-phase systolic algorithm t o  solve the spectral decomposi- 
tion pioblein based on the Q R  algorithm. A triangular systolic 
array is designed based on the multi-phase concept. A key fea- 
ture in our method for the successfully application of the QR 
algorithm is that  the Q matrix of the QR decomposition can be 
computed explicitly by multiphase operations. With the proper 
feedback of this Q matrix, the QR algorithm can be computed 
and pipelined effectively in a single systolic array. From the ac- 
cumulation of those Q matrices in another array, eigenvectors 
and singular vectors can be computed without needing global 
communication inside the array. 

2 Systolic Array Matrix Processing 

In this section, we consider some preliminary matrix and associ- 
ated systolic array operations needed in the multi-phase systolic 
algoritlim for spectral decompositions. 

A. QR Decomposition 
A non-degenerate m x 11 rectangular matrix A can be factor- 

ized into two matrices Q and R such that A = QR, where Q is 
a n  nz x nz unitary matrix and R is an m x R upper triangular 
matrix. The  matrix Q can be  computed using sequences of Given 
rotations. An elementary Givens transformation has the form of 
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Fig.1 Triangular sybtolic array for QR decoi~ip~siti~~il 

. . .  

I I c 7'; I end ' 

wliere c = r, /  J- and s = xZ/J.:+.:. Several diKerent 
QR arrays have been considered by Gentleman and Icung [SI, 
IIcller and Ipsen [SI, and Luk [lo]. In  particular, the coinpnta- 
tion of the Q matrix \vitlrout broadcast is dimcult for the array 
considered in [IO]. On the other hand, [5] has shown tha t  a tri- 
angular systolic array can  be used to  obtain tlie upper triangular 
niatris R based on sequences of Given rotations. This systolic ar- 
ray is shown in Fig.1 and the operations of the cells are described 
in the first column of Table 1. LVhilc the rotation parameters are 
propagated t o  the right, the Q matrix will not appear directly a t  
the right as originally suggested by [13]. 

B. Computation of R - ~ Z  
In [ 7 ] ,  Comon and Robert presented a rectangular systolic 

array for the computation of F ' A ,  where B and :1 are square 
and rectangular matrices respectively. For tlie special case where 
B is an upper triangular matrix denoted by R ,  instead of a fnll 
dense matrix, hIcWhirter and Shepllerd [ l l ]  used the property 
that a triangular array can compute R - ~ Z  i n  one phase kvi th  the 
matrix R prestored i n  the triarray. The corresponding systolic 
array t o  implement tlie above algorithm is the same as the one 
shown in Fig.1. The  operations of the cells are shown in the 
second column of Table 1. 

C. Triangular-Matrix Multiplication 
The  multiplication of a triangular matris R and an rectan- 

gular full dcnse matrix B can be done by using the same array 
as in Fig.1, with R prestored in the triarray and the operations 
shown in tlie third column of Table 1, this multiplication can be 
easily obtained if B is inputted row by row. 

3 QR Algorithm 

In this section we review briefly the basic operation of the QR 
algoritlim, in  order to present our new rcsnlts in Section 4. For 
a complex-valued nxn matrix A ,  it states that  there is a unitary 
transform U such that R = UAL" is a npper tr iangu~ar matrix 
with diagonal eigenvalues of descending order. This follows from 
the QR Algorithm [ G ,  151 where by setting AI = , I ,  we have 
Ak = (21;Rl; and A k + l  = Ri;l)k = Q f r A k ( 2 k ,  k = l,..., with 
unitary QI; and upper triangular Rr;. Furthermore, Ar; converges 
t o  the upper triangu1a.r niatris with diagonal cigcnvalric elements. 
However, it  is not obvious how to compute the cigcnvcrtors from 
those Qr ;  and Rk we have calculated. Wit,li similar derivations as 

i n  115). liere n.c sliows how to obtain the eigenvcctor associated 
i v i t h  the largest eigenvalue from cumulative miiltiplications of 
(21;. From tlie above discussions. wc have 

AI,+ 1 = Q{ !Qf '_ ,  . . . Q{'.AIQ 1 Q 2  . . . Q r ; .  (2)  

Define 

I; 

Q k  = ~ Q ; = Q I Q z . . . Q ~ .  
Z=1 

1 

Rr; = R,  = Rr;Rr;-l . . .  R I .  ( 3 )  
,=r; 

Then Ive have 

Qk.-l1;+1 = .41Q1;. (4) 

Thus the mnltiplicatioii of Qr;Rr; can be expressed as 

Let the eigenvalues of d satisfy, ] A l l  > 1x21 > . . .  > IA,I. 
Denote tlic matrix eigenvectors and eigenvalues of :I by S and 
A respectively. Then A' is given by A' = A\-2ik.\='. Let tlie QR 
decomposition of S be S = Q R  and the L1J deconiposition of 
A - '  he  S-' = Lu ,  where L is an unit-lower triangnlar matrix. 
Then 

= Q R A ~ L U  = Q R ( A ~ L A - ~ ) , ~ ~ V ,  (6) 

(71 
where 

A~LP = r + E ~ ,  

and 

Therefore, when k is large enough, we have linrr;+m Er; = 0 and 
thus [,rk approaclrs tlie identity matris. Theii (6) cat; be 
reivritteii as A'; - QR.\"rI. Since the term R.Zr;Zi is a11 lip- 
pcr triangnlar matrix, comparing to (5)  Ive can see tliat & - Q 
when k is large. T h a t  is, tlie Q inatris  of the Q R  decomposition of 
.elk approaclis to  tha t  of the Q matrix of tlie QR deconiposition of 
tlic n i a t r i s  of cigenvcctor S. Define Qr; = [ j l , j 2 , .  . ..<,?I, S = 
[ ~ - , , n . , , . .  . ,K,,], and T , ]  as the ( i , j )  element of R. From Qr ;  - S, 
~ v c  find r l l q ,  4 sl whcii k is largc. Sinrc s, is the eigenvector 
associiltd witli the la.rgcst eigenvalue, BT conclude that tlic first 
column of the matrix Qk approach the eigenvector associated 

- 
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with the largest eigenvalue of matrix A when k is large. If the ma- 
t r is  11 is symmctrir, which i$ often the rasp for many signal pro- 
r i s i n g  applications, the similar transformation A k + l  = 0;' Aa1; 
is also symmetric. Since i l k r l  approaches the nnpcr triaiigular 
matrix by the Q R  algorithm, A1;+? approaches a d i a ~ o n a l  ma- 
tris. That is .,IC - ,I = R and Q1;A - X .  In this case, for 
large k, the columns of Qk become proportional to the columns 
of eigrnvector in S. 

I f  /I is real, thcn A1; will converge to a real block upper tri- 
angular matrix with 1 x 1 and 2 x 2 main diagonal blocks. The 
complex conjugate pairs of eigenvectors of the 2 x 2 blocks can 
be solved easily using the quadratic formula. When A is not a 
sqnare matrix, tlie singular values and vectors are of interest. 
For a 711 x n matrix B ,  where m > n, the SVD of B shows 
B = U E V T ,  where U is a m x R matrix of orthogonal columns, 
I' is a n x n unitary matrix, and C is a n x n diagonal matrix 
with diagonal elements called singular values given in descending 
ordrr.  For most situations where high condition numbers are not 
encountered, a simple symmetric n x n matrix C = E T E  can be 
fornicd and the matrix V ran be found by direct use of the QR 
algoritlim. Similarly, I1 can be found by using D = BDT. 

4 Multi-phase Triangular Systolic Array 

In  t,liis section, we introduced the multi-phase systolic algorithm 
to  roinpute the QR algorithm. LVe shall show that our methods 
romprite the Q matrix explicitly without requiring any global 
coiniiiurrication. Before we consider the multi-phase algorithm, a 
communication switch is first discussed. A circular multiplezer is 
a dcvice which takcs its inputs and distributes them in different 
out,put positions. We nse a skewed row to represent the circu- 
lar  multiplexier. The  computation of a QR algorithm consists of 
two hasic stkps. Initially, set A I  = A.  (1) for k = 1 , 2 , .  . . , com- 
pute A1; = QkR1;; ( 2 )  compute A1;+1 = &Qkr stop if converge, 
otlirrwisc go hack to s t rp  ( 1 ) .  

?'lie QR Decomposition triarray proposed by Gentleman and 
Knng [5] is used in our approach. The R matrix is stored in the 
triarray aftor tlie computation. To  compute the matrix in 
strp (Z), the (21; matrix has to be computed first. Let us call 
tlir roinpiitations i n  s t rp  (1 )  and step (2) an iteration. Scveral 
iterations are required for A1; to converge. For each iteration, we 
propose a tlirrr phase operat.ion on a triarray as follows: 

Fig.4 Phase 3: Computing the  matrix product 110 

Phase 1: QR decomposition for A1; 
Compute the QR decomposition of the matrix A1; = QkRk, 
with the upper triangular matris Rk being stored i n  the 
triarray (51. The  da ta  i n  Ai; is inputted row by row skewed 
in time as shown i n  Fig.2. 

Phase 2: Computing the Q1; matris 
From the Q R  decomposition, we have R i T A ;  = Q f .  Let  
the it'' column of m a t r i r w  /If  and Q r  be denoted by g, 
and 1, respectively. Then 

Section 2 showed that RkTg can he computed in a triarray 
same as the one used in Phase 1. Since the i t h  column 
of A: is the ith row of R k ,  then with i l k  inputted row by 
row skewed in time as shown in Fig.3, the operations of the 
processing cells are given in the second colnnin of Table 1. 
The  triarray computes the Qk matrix of Ak. The matrix 
Q k  is then outputted row by row as shown in Fig.3. In 
order to start Phase 3, the matrix Qk has t o  he in the form 
of Fig.4. Observe that the output Qk of phase 2 shares the 
same snap-shot order as the desired arrangement of Qk in 
Phase 3 after a transpose operation. A circular multiplexer 
is used to  distribute each column output of Qk into row 
input as indicated in Fig.3. 

Phase 3: Computing RkQk 
With the operations of the processing cell as shown in the 
third column of Table 1 and the Qk obtained in Phasc 2, 
Fig.4 shows the computation of Ak+l = &Qk in the triar- 
ray. Then the matrix comes out column by column 
from the right side of the triarray. Again, we observe that 
A k + l  shares the same snap-shot order as the desired ar- 
rangement of Ak in Phase 1 after a transpose operation. If 
not convergent, a new iteration is repeated by feeding back 
A k + l  into the triarray after using a circular multiplexer as 
shown in Fig.4. Then Phase 1 operation begins as in Fig.2. 

An attractive property of this multi-phase operation is that 
the feedback requirement of the matrices in different phases are 
identical. Thus, a circular multiplexer is enough for each row 
outside the array. Obscrve that the first column of the matrix 
input in Phase 2 and Phase 3 finishes a t  time n and the next 
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phase can be started at  time n + 1 for this colunin. We find tile 
first data  output a t  the right hand side of the triarray is a t  time 
n+ 1, after passing through the circular multiplexer, can be piped 
into the array for the next phase computation without suffering 
any delay. If we assume the  multiplexer is ideal such the delay in 
the multiplexer can be ignored, it takes 3n + (2n - 1) = 5n - 1 
system clocks for one iteration. The (2n - 1) term represents the 
initial time to feed the data  into the array. Suppose the number 
of iteration required for convergence is S ,  then the total number 
of system clocks needed is 3Sn + (2n - 1). Thus, the  converge 
rate of this algorithm is of the order of O((3S + 2)n). After the 
convergence of the Ak matrix, those values on the boundary cell 
are the eisenvalnes of the A matrix. 

To compute an eigenvector, a matrix multiplication systolic 
array can be incorporated with the multi-phase array such that 
those matrices Q 1 , .  . . , Q k  are cumulated to form the 0, matrix. 
Noted tha t  Qk = ( j k - l Q k  and the matrix Q k - 1  is available at  
the start  of the kth iteration, while the matrix Qk coming out 
a t  Phase 2 operation of the  kth iteration. Then Q k  is obtained 
by multiplying Qk-1 and Q k  as shown in Fig.4. As discussed 
in section 3, for a symmetric A matrix, when Ak converged, Qk 

yields the matrix of eigenvectors. For a non-symmetric A matrix, 
the first column of Qk yields the eigenvector associated with the 
largest eigenvalue. 

5 Performance Efficiency 

Although there are three phases of operations, the arithemati- 
cal operations in Phase 2 and 3 form a subset of the operations 
executed in Phase 1. Therefore we do not increase the cell com- 
plexity in  the multi-phase array. Due to the computation of R-T 
in Phase 2 of the operations, i t  may be numerical unstable for 
certain highly ikond i t ion ing  data. 

Similar to Luk in [9], by convergence we mean that  the pa- 
rameter o f f ( A k )  defined as 

where N is the number of off-diagonal elements, has fallen be- 
low some prechosen tolerance value. As indicated in [9], i t  is 
difficult to monitor o f f ( A k )  in the parallel computation. Luk 
then proposed that the iteration be stopped after a sufficiently 
large number S of iterations. In the studies of Brent and Luk 
[l, 91, they found that  S 5 9 for random symmetric matrices of 
order n 5 230 and S 5 6 for n 5 24. Therefore, they choosed 
S = 10 for n 5 100 for Jacobi-like method. Similar t o  their ap- 
proach, we apply the QR algorithm to random nxn symmetric 
matrices (a i j ) ,  where the elements aij for 1 <_ i <_ j 5 n were 
uniformly and independently distributed in [-1, I]. The toler- 
ance to meet the stopping condition is off(Ak) 5 lo-*’. From 
our simulations, the number of iterations for a QR algorithm to 
converge is in the order of 10 for matrix size smaller than 20 x 20. 
Even though we can reduce the matrix to Hessenberg form for 
full dense matrix or tridiagonal form for symmetric matrix, and 
the QR iteration with origin shift can accelerated the convergent 
rate, the number of iteration is still in the order of 10. 

This kind of property is not desirable for parallel processing 
implementation. I t  is known that  Jacobi-like method may require 
more flops as compared to the  symmetric QR algorithm. How- 
ever, due to parallel implementation, many rotations may take 
place a t  the same time. The computations involved in QR algo- 
rithm and Jacobi-like method are generally of the same complex- 

ity. From these discussions, the one which requires less number of 
iterations is more attractive from the parallel implementational 
point of view. Furthermore, the convergence rate of an QR itera- 
tion depends on the ratio of the eigenvalues. In our simulations, 
in more than 10% of the  cases, the  randomly generated symmet- 
ric matrices required significantly larger number of iterations t o  
converge. This is also an undesirable intrinsic property of the 
QR algorithm for parallel implementation as compared t o  that 
of the Jacobi-like method. 

6 Conclusions 

The multi-phase systolic algorithm proposed in this paper can be 
used efficiently t o  solve the eigenvalue and SVD problems based 
on the QR algorithm. In particular, the eigenvectors can be 
obtained without global communication using the multi-phase 
operations. We showed tha t  the  QR algorithm can achieve a 
parallel implementation on a single architecture. We will show 
a numerically stable multi-phase rectangular array for the QR 
algorithm in a future publication. Since the operations in each 
phase belongs t o  the same types of computation, the cell com- 
plexity is thus not increased by multi-phase operations. Each 
iteration takes O ( n )  time unit while the time required for con- 
vergence is O ( S n ) ,  where S is the  number of iterations. While we 
have demonstrated the advantage of the QR algorithm that can 
yield two multi-phase systolic algorithm implementable on single 
architectures without requiring global connections, the intrinsic 
convergence rate for the QR algorithm make i t  less attractive as 
compared t o  the Jacobi-like method in parallel implementation. 
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