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Abstract - One-chip VLSI design consideration for area*time?
optimal FFT shuffle-exchange architecture is considered and a
systolic-network architecture for the computation of the FFT is
presented. This architecture has the same asymptotically
optimal theoretical O(NalogaN) area*time2 complexity as the
FFT shuffle-exchange architecture, but is more suitable for
one-chip VLSI design. In this paper, architectures which are
feasible for an one-chip FFT design, as well as for
shuffle-exchange type fast discrete orthogonal transforms such
as Generalized transform, Cosine transform and Slant transform
are also discussed.

I. Introduction

Most signal processing techniques involve intensive
arithmetic computations. The low-cost, high-density, fast VLSI
devices can satisfy the ever-increasing demands of speed and
performance in modern signal processing and make
super-computing practrical. The traditional criterion of
component count is no longer adequate to establish a scale of
comparison among various solutions of a given problem. The
number-of-slements criterion is substantially based on the fact
that processing elements and their interconnections are
realized by different media. This difference disappears in VLSI
since all the elements are layouted with the same design and
process technologies on the surface of silicon chip.

A great deal of work has been performed in recent years to
establish bounds on the cost of VLSI structure [9). For any given
problem, it is of great interest to explore the tradeoffs
between the area and time of a dedicated circuit developed to
solve that problem. In general, two key parameters are used in
evaluating such a cost: the time taken by the structure to solve
a single problem; and the area occupied on the silicon chip.
Limits on area-time performance, area'timez, have been
proved for a number of important problems, including sorting,
matrix multiplication, decoding, binary multiplication, and fast
Fourier transformation [1,3,6,7]. The fact that there is a
theoretical limit to area‘time? performance suggest that
designs be evaluated in term of how closely they approach the
limit. Even thougth such asymptolic analysis can give insight
into performance evaluation and design; however, today's VLSI
technologies still cannot support the one-chip design for a large
number of sample points. The small constant factors that do not
appeal in the asymptolic order are important when the sampie
points are small. Therefore, the asymptolic complexity cannot
really reflect completely the performance, especially the area
factor, for small sample points one-chip design.
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The VLS! implementation of fast Fourier transiorm (FFT)
has received considerable attention recently. Part of the
reasons are that the FFT is the most well-known transform and
is more frequently used in signal processing than any other
transforms. Several architectures have been proposed and
designed on VLSI chip [1,3,7]. For the N-element Fourier
transform, it has been shown that no circuit can have a better
area*time? performance than O(NzlogzN) [1,9]. Nine designs
were also compared and discussed in [1]. Some of the designs
are very fast but occupy more area than that of the slower ones;
some area-efficient designs are slower than those that need
more area. The product of area and the square of the time
needed to perform the FFT cannot be smaller than O(NzlogzN). In
[1], Thompson showed that, by using full parallel processing, the
shuffie- exchange architecture (or FFT network) is the fastest
one with time complexity O(logN) among the optimal structures
and is relativery simple intuitively. Since it is an area*time?
optimal structure with the smallest time complexity, the area
complexity is, of course, the largest one with an area
complexity O(NZ). That is, it is a very area consuming structure.
As in Fig. 1a, shuffle-exchange architecture has regular data
flow and simple communication schemes (although not locally)
which is very suitable for fast transforms. In the following
sections, a systolic-network architecture for FFT which has the
same optimal theoretical O(NzlogzN) area*time? complexity as
shuffle-exchange architecture asymptotically, but with smaller
constant factor is presented. The generalization of this FFT
systolic-network architecture to some shuffle-exchange type
fast discrete orthogonal transforms such as Generalized
transform, Cosine transform, and Slant transform are also
discussed.

Il. The Systolic-Network Architecture
A_S D -

In Fig. 1b the basic multiply-add cell of a shuffle-exchange
FFT is shown. Each celi has three bit-series inputs wk, Xg» and Xq.

It produces two bit-series outputs

¥1= %o - WK xq

Yo= Xo+Wix, (1)
Such multiply-add cells perform the binary addition and
multiplication functions. For an eight-point, N=8, FFT as in Fig.
1a, it requires twelve multiply-add cells. It is well known that
the area needed for multiplication is much more than that of
addition. For today's technology only about three or four eight
by eight bits multipliers can be built into one 64-pin chip. The
reduction of the multiplication is necessary if we wish to
implement the FFT in one-chip with larger number of samples N.



A four-point FFT need no multiplication since the twiddle
factors are 1, -1, i, and -i only. Based on that fact, the four-point
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Flg. 1 The shuffle-exchange architecture for FFT and it's basic cell.

FFT can be built in a systolic complex number adder as shown in
Fig. 2a. The basic function cell is shown in Fig. 2b. For a radix 2
eight-point FFT systolic-network architecture, we combine the
multiply-add cell which is used in a shuffle-exchange FFT with
the four-point systolic complex number adder as shown in Fig.
3a. There are three kinds of basic cells for systolic-network
architecture.

« the leat cell is a complex number adder which
communicates with external data inputs and sum with
the previous cell output and the twiddle factors sent from
buffer memory.

« the node cell which is a multiply-add cell which per-
forms equation (1) and the outputs are the FFT result.

+ the buffer memory which is composed of shift register.

The input data are loaded in a skewed fashion. At each clock
period, the data from the external and buffer memory are sent
to the leaf cell and then the outputs of each leaf cells are
pipelined from left to right. The outputs, which come out in
order of X(0), X(4); X(1), X(5); X(2), X(6); X(3), X(7), from the node
cell are the transformed result as we expected. The total area
required is much less than that of shuffle-exchange architecture
because of the reduction of multiplication. If the cells of the
first two columns of the shuffle-exchange architecture are
replaced with complex number adder, it still need four
multiply-add cells to perform the multiplication. Because of the
area limitation of the multiplication, only a eight-point FFT can
be bulit in one chip using the shuffle-exchange architecture;
evan though it is optimal in the sense that the area‘time?
achieves the lowest bound. On the other hand, a 16-point FFT can
be built by using the systolic-network architecture since only
four multipliers are required. A 16-point FFT systolic-network
is shown in Fig. 3b.

Since the number of leaf cells is logo(N/4) and the number of
node cells is (N/8)‘log,(N/4), when N is large, the system is
dominated by the node cells in the shuffle-exchange

architecture. Therefore, the area‘time? complexity of the FFT
systolic-network architecture approach that of FFT
shuffle-exchange architecture asymptolically. That is, it also
achieves the lowest bound of the area*time? complexity of
order O(NzlogzN). When the number of sample points is small,
the systolic-network architecture have a smaller chip area, but
the tradeoff is that the throughput of the systolic-network
architecture is one third that of shuffle-exchange FFT. If the FFT
is implemented by using the systolic matrix multiplication only
and is not combined with the shuffle-exchange architecture, the
throughput will be reduced further and the trancation errors
resulting from cascading of the muitiply-add cells will become
serious. Therefore, the combination of the four-point systolic
complex number adder and shutfle-exchange architecture is

X3
Xy Xa
% X X 3
Xo bl Xy *3
X X, Xz
Re & Im
Switch
o] >
]

(b)

o X% % X,

Xq X Xs X,

(b)
Fig. 3 8-point and 16 point FFT systolic-network architectures.
optimal in the sense that few multipliers are needed for small
sample points and the area*time? complexity is optimal when
the number of the sample points become large.

B. Computational Problems

One important question is that what kinds of computational
problems can make good use of this architecture? A four by four
DFT matrix requires 16 multiplications and 12
additions/subtractions. An decimation in time FFT matrix is
obtained by exchanging the second and third columns. An
decimation in frequency FFT may also be obtained by exchanging
the second and thira rows. Only eight multiplications and eight
additions/subtractions are required for the computation of both
matrices since the matrices can be recursively decomposed
after rows or columns exchanges. We find that if the matrix,
under either the exchanging of rows or cloumns (i.e., either
decimate in time or in frequency), can be partitioned into four
blocks which can also be partitioned recursively further, then it
can make good use of this architecture. That is, a 2M*2™ matrix
[A(m)] can be decomposed into four 2M-1+2M-1 matrices
[A1(m-1)] and [A5(m-1)] as given by
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A (m-1)] :IA‘("H)]]

[AmM) ] =
] A (m-1)] [A (m-1)]
or
A (m-1)] (A, (m-1)]
[AM]=
A (m-1)] [A(m-1)]
The requirements that the [A{(m-1)] and [Aj(m-1)]

sub-matrices can be further decomposed recursively like [A(m)]
are necessary conditions in order to apply the proposed
systolic-network architecture. It should be noted that if the
final four by four sub-matrix is not composed of only {0, 1, -1, i,
-i}, then the shuffie-exchange architecture need to be used.

c. S E

A radix 2 16-point FFT can be built in one chip by using the
proposed systolic-network architecture. To consider a 32 or
more -points radix 2 FFT, we need to use some bridge
multiply-add chips which contains four multiply-add cells in one
chip.

Discrete

IIl.  Architectures of

Transforms

Some Orthogonal

Many discrete orthogonal transforms are frequently used in
many transform coding, spectral estimation, and signal analysis
problems [5]. The intensive arithmetic computations of these
transforms are of major problem in implementing them in
real-time applications. Some of these transforms are known to
have fast computational algorithms which are very similar to
FFT. If the shuffle-exchange or systolic-network architecture
can solve these computational problems, then the host
computer can change the twiddle factors in the buffers to
perform different transformations. Such uniform solution
provides more flexibility and simplicity than building different
tramsform in different chips. In this section, some of the
discrete orthogonal transforms which can be implemented in the

shuffle-exchange or systolic-network architecture are
presented.
A. Generalized Transform

Generalized transform is a class of transforms where their
basis vectors are on the unit circle. The transform (GT)q yields

the Walsh-Hadamard transform (WHT),, while (GT),_4, where
n=log,N and N is the number of sample points of data sequence,
yields the discrete Fourier Transform [5]. The transform
matrices [G(L)] can be generated recursively. For r=0,
tHh<m-1)1]

H(m1)] H, (m-1]

H,(m-1]
[Gm ] =[H(m)]=

where [Hp(0)]=1 and [Hp(m)] is the (WHT);, matrix of order 2M*
2m,

Since such kinds of matrices can be decomposed recursively
like the FFT and no multiplication is needed, the WHT can be
implemented by using the systolic-network architecture with
simpler basic cells than FFT. The basic cell is shown in Fig. 4a.

For r=1, 2, 3,..., n-2
(G (m-1)]

G -
(Gim] [tA,(m-n] -[A,(m~1)1]

with [G,(0)]=1 and [G,(1)]= [Hy(1)]. Then [A/(K)] can be

(G,(m-1)]
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recursively generated by

[H,(kr-1)]  [H, (ker-1)]
H, (k1] -[H, (k-r-1)]

and [B(r)] is a r-dependent matrix [5]. Therefore, the proposed

systolic-network is suitable to the entire class of generalized
transforms using the general basic cell shown in Fig. 4b.
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Fig. 4 Basic cells for WHT and Generalize transform.
B. Cosine trandform
Several VLS| architectures for implementation of the
discrete Cosine transform (DCT) have been studied [4,10,11,12].
All of these structures were designed for special-purpose DCT
chip. Makhou! [8] has shown that an N points DCT can be

implemented by using a N points FFT. The procedure consists of
starting with a given real sequence x(n), 0 < n < N-1, perform:

(1) Form the sequence v(n), where v(n) is goven by

x(2n), osnsily
vim) = {x(EN-Zn-1), el <n s

(2) Compute V(k), 0 < k < N-1, the DFT of v(n);
(3) Multiply V(k) by 2exp(-jxk/2N) and take the real part of

By using this algorithm, the DCT can be implemented in
systolic-network architecture by reordering the sequence to fit
the FFT computation.

C. Slant transform

Slant matrix can be generated recursively by decomposing
the matrix as

1 0 1 0
0
day by 0 —ay by
1 0 |Ivz-2 0 Ingz-2
[S)] =—= -
N I I e
—On QN N Oy
L 0 Inja-2 0 ‘ —Iya-2

x (diag[[S(L — D], [S(L-- DI])



where ay=1, by=1/(1+4ay/52)'/2, ay=2byayp, N=4, 8, 16, ...
Computations similar to those for the FFT show that the
shuffle-exchange and systolic-network architectures can also
implement the Slant transform.

IV. Conclusion

Even thougth the area*time? complexity of an VLSI
architecture for a given problem is optimal in the sense that the
bound is achieved, the practical one-chip design of this optimal
architecture is not necessarily optimal when N, the number of
sample points, is small. Since the area‘time? complexity has
been considered from an asymptotic point of view, it does not
show those factors that really affect the design when N is small.
Until the wafer-scale-integration become practical, the
one-chip design of an optimal architecture is still of
considerable interest. In this paper we propose a
systolic-network architecture suited for small sample points
synthesis. The architecture is better than the shuffle-exchange
architecture for an one-chip FFT design and it also achieves the
optimal area'tim92 bound. But the tradeoff is that the
throughput is slowed down by one third that of the
shuffle-exchange architecture.

We can see also that many of the suboptimal discrete
orthogonal transforms can be implemented by using the
shuffle-exchange architecture or the systolic-network
architecture. It is possible to connect such VLSI chip to a
general computer system to perform the real time transform
computation instead of running these transformations in
software. In order to performance different transformations,
the twiddle factors stored in the buffer memories need to be
changed. The details of the communications between the
transform chip and the computer are beyond the goal of this

paper.
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