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ABSTRACT

Multimedia social network analysis is a research area with
growing importance, in which the social network members
share multimedia contents with all different purposes and an-
alyzing their behavior help design more secured and efficient
multimedia and networking systems. In this paper, we fo-
cus on multimedia fingerprinting social network, in which
multi-user collusion being a powerful attack, where a group
of attackers collectively undermine the traitor tracing capabil-
ity. During collusion, different colluders have different objec-
tive,s thus, the colluders form a social network and an how
to achieve agreement on distributing the risk/profit among
colluders and ensure fairness of the attack is a crucial ques-
tion. This paper models the dynamics among colluders as
a non-cooperative game, propose a general model of utility
functions and study four different bargaining solutions of this
game.

Index Terms— Multimedia social network analysis, game
theory

1. INTRODUCTION

A social network is a social structure made of nodes (which
are generally individuals or organizations) that are tied by
one or more specific types of interdependency, such as val-
ues, friendship, conflict, financial exchange, trade, etc. In the
paste decade, social network analysis has become a popular
topic in sociology, economics, information science and many
other disciplines in which people are studying how to model
the relationships between members at all scales, from inter-
personal to international.

In a multimedia social network, a group of members form
a dynamically changing network infrastructure to share and
exchange multimedia contents, as well as other resources.
By participating in multimedia social networks, the mem-
bers receive rewards by being able to access extra resources
from other members, and they also contribute their own re-
sources. Members in multimedia social networks aim to max-
imize their own payoff, and different users have different (and
often conflicting) objectives. Thus, an important issue in mul-
timedia social networks is to understand the strategies that
members will play when negotiating with each other and study
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how they achievefairness. Game theory [1,2] provides a fun-
damental tool to study the fairness dynamics among multi-
media social network members. By analyzing the human be-
havior in multimedia social networks, both the users and the
system designer will have a clear picture of what’s the profit
every user can get in this multimedia social network, thus ul-
timately lead to systems with more secure, efficient and per-
sonalized services.

In this paper, without loss of generality, we use the mul-
timedia fingerprinting system to illustrate the modelling and
analysis of user behavior in multimedia social networks. Dig-
ital fingerprinting embeds a unique label, known as finger-
print, into every distributed copy to track the usage of multi-
media data to protect multimedia from illegal usage and unau-
thorized redistribution. Multi-user collusion is a powerful at-
tack in digital fingerprinting system, where a group of attack-
ers work together to effectively remove the identifying infor-
mation, thus these colluders form a social network.

In the colluders’ social network, members collaborate with
each other to reduce their chance of being caught and share
the profit of redistributing the colluded redistributed multime-
dia content. Every member wishes to minimize his/her risk
and maximize his/her profit, which definitely conflict with
each other. To address this conflict, members in the collud-
ers’ social network have to agree on how to distribute the risk
and achieve “fairness” of the attack. To analyze the dynamics
among the members in colluders’ social network, we model
the members behavior as a non-cooperative game where each
colluder tries to maximize his/her individual payoff under the
fairness constraint. We consider different definitions of “fair-
ness”, investigate how the colluders would like to share the
risk and the profit, and study different bargaining solutions:
Nash-Bargaining, Max-Min, and Max-Sum solution.

The rest of the paper is as follows. Section 2 introduces
the multimedia fingerprinting systems that we consider in this
paper, and formulates the fairness dynamics among colluders.
We define the utility functions and the four fairness criteria
in Section 3. We show simulation results in Section 4, and
conclusions are drawn in Section 5.

2. SYSTEM MODEL
2.1. Scalable Video Coding Systems

Nowadays, scalable video coding is widely adopted to ac-
commodate heterogenous networks and devices with different



storage and computing capability. It decomposes the video
sequence into different layers of different priority. The base
layer contains the most important information of the video
and is received by all users, and the enhancement layers grad-
ually refine the reconstructed sequence at the decoder’s side
and are only received by users with sufficient bandwidth. With-
out loss of generality, we consider a two-layer temporally
scalable video coding system, where different frames are en-
coded at different layers [3]. Take MPEG-2 video coding as
an example, the base layer includes all the I frames, and the
enhancement layer may contain all the P and B frames.

DefineFb andFe as the sets containing the indices of the
frames that are encoded in the base layer and the enhancement
layer, respectively; and letF (i) be the set that contains the in-
dices of the frames that useru(i) receives.U b is the subgroup
of users who receive the base layer only; andU b,e contains
all users who subscribe to the high quality version containing
both layers.

2.2. Scalable Multimedia Fingerprinting System

Fingerprint Embedding We use the spread spectrum embed-
ding [4] to embed fingerprints in the host signal. LetSj be the
jth frame in the video, and for each useru(i) who subscribes
to framej, the content owner generates a unique fingerprint
W(i)

j , with the same length asSj . The fingerprinted frame

is X(i)
j = Sj + JNDjW

(i)
j , which is distributed tou(i).

JND [4] here is used to control the energy of the embedded
fingerprints and make the fingerprinted copy be perceptually
the same as the original one. In this paper, we first gener-
ate independent vector from Gaussian distributionN (0, σ2

w),
and then apply Gram-Schmidt orthogonalization to generate
orthogonal fingerprints for different users.
Multi-user Collusion In this paper, we only consider averag-
ing based collusion because nonlinear collusion can be mod-
elled as averaging collusion with additive noise, and all col-
lusion attacks have similar performance with colluded copies
of the same quality. During collusion, depending on the reso-
lutions of their received copies, the colluders are divided into
two non-overlapping subgroups.SCb is the set including the
indices of the colluders who receive the base layer only and
SCb,e contains the indices of the colluders who subscribe to
the high quality version.Kb andKb,e are the number of col-
luders inSCb andSCb,e, respectively, andK = Kb + Kb,e

is the total number of colluders.
Without loss of generality, we consider the scenario where

colluders who receive fingerprinted copies of the same reso-
lution agree to share the same risk. Following the work in [3],
colluders apply intra-group collusion first: for each frame
j ∈ Fb that they receive, colluders inSCb generateZb

j =∑
k∈SCb X(k)

j /Kb, and for each received framej ∈ Fb ∪Fe,

colluders inSCb,e calculateZb,e
j =

∑
k∈SCb,e X(k)

j /Kb,e.
Then, the colluders apply inter-group collusion: for each frame
j ∈ Fb in the base layer, colluders generateVj = βZb

j +(1−

β)Zb,e
j + nj where0 ≤ β ≤ 1; and for each framej ∈ Fe

in the enhancement layer,Vj = Zb,e
j + nj . nj is the additive

noise to further deter the detection performance.
Fingerprint Detection: When identifying colluders, the fin-
gerprint detector first extracts the fingerprintYj from framej
in the colluded copy. Then, for each useru(i), the fingerprint
detector calculates the detection statistics

TN (i)(F̆ (i)) =


 ∑

j∈F̆ (i)

〈Yj ,W
(i)
j 〉


 /

√ ∑

j∈F̆ (i)

||W(i)
j ||2,

(1)compares with a thresholdh, and outputs the estimated col-
luder setŜC = {i : TN (i) > h}. When identifying col-
luders, the fingerprint detector can use fingerprints extracted
from all layers collectively. The fingerprint detector can also
examine each individual layer to determine whether a user is
involved in collusion. For example, for useri ∈ Ub,e, F̆ (i)

has three choices,Fb ∪ Fe, Fb andFe.
Different detection statistics have different means, and the

one with the largest mean has the best detection performance.
The work in [5] proposed to estimate the means of different
detection statistics first, and then use the one with the largest
estimated mean when identifying colluders. It was shown that
information about the detection statistics’ means helps signif-
icantly improve the detection performance; and the proposed
self-probing fingerprint detector has approximately the same
performance as the optimum one, which has perfect knowl-
edge of the means and always select the detection statistics
with the best performance.

3. GAME MODEL OF HUMAN BEHAVIOR IN
COLLUDERS’ SOCIAL NETWORK

In this section, we will first define the utility function of every
member in the colluders’ social network, find the feasible set
of the game, and analyze possible bargaining solutions under
different fairness criteria.

3.1. Utility Function Definition

During collusion, every member in the colluders’ social net-
work wants to minimize his/her own risk and maximizes his/her
own profit. For colluderu(i), his/her payoff functionπ(i)

should be composed of two terms: colluderi’s loss if being
detected plus his/her profit as follows:

π(i) = −P
(i)
d ∗ L(i) + R(i). (2)

In (2), P (i)
d andL(i) stand for colluderu(i)’s probability and

loss of being detected, andR(i) is the profit thatu(i) gets
by redistributing the colluded multimedia content.L(i) is
the private information of every player in this game, and it
is easy to prove that every player will claim his/her own lost
being the maximum value that this game allow, thus,L(i) =
L(j) ∀i, j ∈ SC. Since the total profit of redistributing
the colluded copy is proportional to its quality: the better the
quality is, the more total profit the colluders can get, and in



temporal scalable video coding scenario, video quality is pro-
portional to the number of frames, thus we propose a general
model ofR(i):

R(i) =
F c/Fmax

[∑K
j=1

(
F (j)

)γ
D

(
P

(j)
d

)]
/M

(
F (i)

)γ

D
(
P

(i)
d

)
.

(3)
WhereF c is the number of frames in the final colluded copy,
Fmax is the largest number of frames among all the sub-
scribers’ copies,F (i) is the number of frames inu(i)’s copy;
K is the total number of colluders, M is the total number of
subscribers, andD(•) is a non-decreasing function. ThusF c

term illustrates the total profit of all the members in colluders’
social network, which is shared by total number of colluders
K, whereFmax andM are the normalization terms. Further-
more, profit is not often shared equally by all the members in
colluders’ social network; one simple reason is that colluders
who subscribed to higher resolution copies are tended to ask
more profit, since they already paid more money to get the
higher resolution copies and if they quit the collusion, quality
of the colluded copy will be lower and directly lead to lower
total profit.

(
F (i)

)γ
in (3) allow the colluders to adjust the

profit distribution based on individual copy’s quality, where
γ ≥ 0 can be determined by the agreement of the colluders’
social network to control how unequal the profit distribution
is: colluders who subscribed to higher resolution copies get
more profit with higherγ. The other reason of unequal profit
distribution that usually happens in colluders’ social network
is that some colluders are willing to be the risk-taker and at
the same time, get more profit. So in our profit model, we
include the non-decreasing functionD(P (i)

d ) to illustrate this
kind of human behavior.

In the following sections, to simplify the analysis and with-
out loss of generality, we assume the colluders who receive
the same quality copies agree to share the same probability of
being detected as in Section 2.2. Thus colluders who receive
the low-resolution copies act as a single player in the game
and they have the same utilityπb, while while colluders who
have the high-resolution copies act as a single player during
the bargaining process and they have the same utilityπb,e.

3.2. Fairness Criteria

Depending on the definition of fairness and the objectives of
collusion, colluders select different collusion strategies and
aim to reach agreement under different fairness criteria. In
this section, we demonstrate the behavior analysis of collud-
ers’ social network by four commonly used fairness criteria
during bargaining.
Absolute Fairness: The most straight-forward fairness cri-
terion is absolute fairness, which means the utility of every
member in the colluders’ social network is equal, where

πAbsolute = π(i) = π(j) ∀i, j ∈ SC, (4)

and, since we assume colluders who receive the same quality
copies have equal utility, (4) can be simplified to

πAbsolute = πb = πb,e (5)

MaxMin Fairness: To guarantee the utility of every one who
participate the colluders’ social network, colluders can also
select the collusion parameters to maximize the minimum util-
ity over all members in the social network, that is,

πmaxmin = max
β

min
i
{π(i) : i ∈ SC}, (6)

which can also be simplified to
πmaxmin = max

β
min{πb, πb,e}. (7)

Max Sum Fairness: Under some circumstances, all the mem-
bers in the colluders’ social network have the same goal so
that they are willing to maximize the total utility over the
whole social network as follows:

πmaxsum = max
β

∑

i∈SC

π(i). (8)

Max sum solution has a desired property that if it is feasible,
it is Pareto-Optimal.

Proof: If πmaxsum = Kbπb
maxsum + Kb,eπb,e

maxsum is
feasible but not Pareto-Optimal, then there exists(πb

maxsum, πb,e′)
or (πb′ , πb,e

maxsum) in feasible set whereπb′ > πb
maxsum, πb,e′ >

πb,e
maxsum by the definition of Pareto-Optimal. Thus there ex-

ists a feasibleπ′ > πmaxsum, which contradict the definition
in (8).
Nash-Bargaining Solution: Nash-Bargaining solution, which
is also Pareto-Optimal [1], is a famous bargaining solution in
game theory, in which the basic idea being proportional fair-
ness. Definition of general Nash-Bargaining solution is as
follows:

g(πb, πbe) =
(
πb − πb∗)Bb

(
πbe − πbe∗)Bb,e

,

where πb∗ = min
β
{πb} , πbe∗ = min

β
{πbe}, (9)

andBb, Bb,e are the bargaining powers ofSCb, SCb,e, re-
spectively. WhenBb = Bb,e = 1, Nash-Bargaining solution
divides the additional utility between the two players in a ra-
tio that is equal to the rate at which this utility can be trans-
ferred. If Bb 6= Bb,e, then the bargaining solution deviates
from the proportional fairness solution and favors the player
with higher bargain power.

4. CASE STUDY AND SIMULATION RESULTS

In this section, we take two different utility functions as exam-
ples to illustrate the human behavior dynamics of colluders’
social network. To have a clear picture of the agreement that
the four fairness criteria will achieve, we first use a simple
utility function as follows:

π(i) = −P
(i)
d ∗ L +

F c/Fmax

K/M
, (10)

which is a special case of (3) whereγ=0 andD(P (i)
d )=1,

meaning the profit of redistributing the colluded copy is equally
distributed to all the colluders. In this case, the feasible region
is convex, and the Pareto-Optimal set also exists as proofed in
our previous work [6]. In real-world social networks, profit is
usually distributed unequally because every member has dif-
ferent personal concern and position in the society, thus we
also consider the more general utility function,
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π(i) =−P
(i)
d ∗ L+

F c/Fmax

(Kb (F b)0.1 + Kb,e (F b,e)0.1)/M

(
F (i)

)0.1

P
(i)
d ,(11)

to illustrate the feasible region when the colluders distribute
profit proportionalto each copy’s quality and risk (probability
of being detected).

4.1. Simulation Setting and Results

In our simulations, we first generate independent vectors fol-
lowing Gaussian distributionN (0, 1), and then apply Gram-
Schmidt orthogonalization to generate orthogonal fingerprints.
The lengths of the fingerprints embedded in the base layer and
the enhancement layer areNb = Ne = 50000, and both two
layers contain 20 frames, respectively. The total number of
users is 500, whereU b = U b,e. The probability of accusing
an innocent user,Pfa, is 10−3. Among theK = 250 col-
luders,Kb = 80 of them receive the fingerprinted base layer
only, and the otherKb,e = 170 of the colluders receive fin-
gerprinted copies of high resolution.

Figure 1 shows the feasible region and the four bargain-

ing solutions in Section 3.2 with utility function as in (10),
and bargaining power in (9)Bb = 1, Bb,e = 3. In this game,
since utility of one player is a non-decreasing function of the
other player’s utility, it can be easily proofed that if absolute
fairness solution is feasible, then it is also a max-min solution.
Compared to the absolute fairness solution, the max-sum so-
lution gives the group with more people more utility, which is,
SCb,e in our case. The Nash-Bargaining with bargain power
Bb = 1, Bb,e = 3 even more favorSCb,e sinceBb,e > Bb,
which usually happens in real-world social network: collud-
ers with higher resolution copies have more bargain power.

Figure 2 shows the feasible region, and, since our anal-
ysis in on the bargaining level, the trend of the bargaining
solutions are independent of utility function definition, which
means our methodology can fit to different problems once the
utility function is defined. Thus here we only show the ”abso-
lute fairness solution” under proportional profit distribution,
which also has proportional fairness characteristics, thus is
labelled as ”proportional fairness” in Figure 2. Comparing
Figure 1 and Figure 2, it is clear that the maximum utility that
SCb can achieve is higher if profit is distributed proportion-
ally, becauseKb < Kb,e, the highest risk ofSCb is higher
thenSCb,e.

5. CONCLUSIONS

This paper studies the behavior modelling and analysis of
the dynamics in colluders’ social network to achieve differ-
ent fairness of collusion. We model the fairness dynamics
among colluders as a non-cooperative game, where each col-
luder aims to maximize his/her own utility through bargain-
ing to achieve fair agreement. We propose a general model of
utility functions which allows unequal profit-distribution, and
analyze human behavior by four bargaining criteria: absolute
fairness, max-min, max-sum, and Nash-Bargaining solution.
Our analysis shows that in colluders’ social network, collud-
ers choose different points in the feasible set, depending on
the colluders’ definition of “fairness” and their agreement on
how to distribute the risk and the profit among themselves,
and our methodology can fit human behavior analysis in dif-
ferent social networks.
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