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Abstract—Mobile phones are among the most popular consumer
devices, and the recent developments of 3G networks and smart
phones enable users to watch video programs by subscribing data
plans from service providers. Due to the ubiquity of mobile phones
and phone-to-phone communication technologies, data-plan
subscribers can redistribute the video content to nonsubscribers.
Such a redistribution mechanism is a potential competitor for the
mobile service provider and is very difficult to trace given users’
high mobility. The service provider has to set a reasonable price
for the data plan to prevent such unauthorized redistribution
behavior to protect or maximize his/her own profit. In this paper,
we analyze the optimal price setting for the service provider by
investigating the equilibrium between the subscribers and the
secondary buyers in the content-redistribution network. We model
the behavior between the subscribers and the secondary buyers
as a noncooperative game and find the optimal price and quantity
for both groups of users. Based on the behavior of users in the
redistribution network, we investigate the evolutionarily stable
ratio of mobile users who decide to subscribe to the data plan.
Such an analysis can help the service provider preserve his/her
profit under the threat of the redistribution networks and can
improve the quality of service for end users.

Index Terms—Game theory, mobile video streaming, pricing.

I. INTRODUCTION

T HE explosive advance of multimedia processing tech-
nologies are creating dramatic shifts in ways that video

content is delivered to and consumed by end users. Also, the
increased popularity of wireless networks and mobile devices
is drawing lots of attentions on ubiquitous multimedia access
in the multimedia community in the past decade. Network
service providers and researchers are focusing on developing
efficient solutions to ubiquitous access of multimedia data,
particularly videos, from everywhere using mobile devices
(laptops, personal digital assistants, or smart phones that can
access 3G networks) [1], [2]. Mobile-phone users can watch
video programs on their devices by subscribing to the data
plans from network service providers [3], [4], and they can
easily use their programmable hand devices to retrieve and
reproduce the video content. To accommodate heterogeneous
network conditions and devices, scalable video coding is also
widely used in mobile video streaming [5]–[7]. Video appli-
cations over mobile devices have drawn lots of attentions in
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the research community, such as quality measure [8], [9] and
error control [10]. There is also a rich body of literature on
user interactions in electronic commerce in wireless networks
such as cooperative content caching in wireless ad hoc net-
work [11]–[13] and secure transactions [14]. Therefore, it is
important to understand end users’ possible actions in order to
provide better ubiquitous video access services.

According to a survey on the popularity of mobile devices
[15], almost every person has at least one cell phone in devel-
oped countries, and video consumption over mobile devices is
an emerging trend [16]. With such a high popularity and the
convenient phone-to-phone communication technologies, it is
very possible for data-plan subscriber to redistribute the video
content without authorization. For example, some users who
do not subscribe to the data plan may wish to watch television
programs while waiting for public transportation, and some
of them might want to check news from time to time. Hence,
these users have incentives to buy the desired video content
from neighboring data subscribers if the cost is lower than the
subscription fee charged by the service provider. Unlike generic
data, multimedia data can be easily retrieved and modified,
which facilitates the redistribution of video content. In addition,
subscribers also have incentives to redistribute the content
with a price higher than their transmission cost, as long as
such an action will not be detected by the content owner. Due
to the high-mobility, time-sensitiveness, and small-transmis-
sion-range characteristics of mobile devices, each redistribution
action only exists for a short period of time and is very diffi-
cult to track. Consequently, a better way to prevent copyright
infringement is to set a pricing strategy such that no subscriber
will have the incentive to redistribute the video.

Nevertheless, the mobile network service provider might be
more interested in setting the content price to maximize his/her
own profit than protecting copyrights. The service provider’s
profit can be represented as the total number of subscriptions
times the content price. If the content price is high, mobile users
have less incentive to subscribe to the data plan, which might
result in less subscription. However, on the other hand, the con-
tent price in the redistribution network may get higher due to less
subscribers and more secondary buyers. In such a case, although
a subscriber pays more for the video stream, he/she also gets
more compensation by redistributing the data. Hence, setting
the content price higher does not necessarily reduce the number
of subscriptions, and it is not trivial to find the optimal price that
maximizes the service provider’s utility.

The service provider, the data-plan subscribers, and the
secondary buyers who are interested in the video data interact
with each other and influence each other’s decisions and perfor-
mance. In such a scenario, the game theory is a mathematical
tool to model and analyzes the strategic interactions among
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rational decision makers. Recently, the game theory has drawn
great attention in multimedia signal processing [17], [18]. We
first model the user dynamics in the redistribution network as
a multiplayer noncooperative game and obtain the equilibrium
price from which all users have no incentives to deviate. Hence,
such an equilibrium price will serve as the upper bound for the
price set by the network service provider to prevent copyright
infringement. Due to the small coverage area and the limited
power of each mobile device, a subscriber can only sell the
content to secondary buyers within his/her transmission range,
and the distance between users and the channel conditions
dominate users’ decisions. Then, we add the service provider as
a player to the game to analyze the optimal pricing for the ser-
vice provider in the video streaming marketing network. Since
the mobile users can change their decisions on subscribing or
resubscribing, the content owner is interested in the number
of subscribers that is stable over the time. Therefore, a robust
equilibrium solution is desired for the service provider. Hence,
we formulate the video streaming marketing phenomenon as an
evolutionary game and derive the evolutionarily stable strategy
(ESS) [19] for the mobile users, which is the desired stable
equilibrium for the service provider.

The rest of this paper is organized as follows: We introduce
the system model in Section II. We then analyze the optimal
strategies for all users in the redistribution network and prove
the existence of the equilibrium when there is only one sec-
ondary buyer in Section III. We then analyze the mixed-strategy
equilibrium for the scenario with multiple secondary buyers in
Section IV. In Section V, the content owner is also considered
as a player who sets the price to maximize his/her payoff but
does not prevent the video redistribution among users. Conclu-
sions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we will introduce the channel, transmission,
and video rate-distortion models for the transmission of video
streams over wireless networks.

The system diagram is shown in Fig. 1. There are sub-
scribers in the network, who are trying to sell the video content
to secondary buyers. Here, we assume that the content is
redistributed through direct links between the subscribers and
the secondary buyers, i.e., these mobile users form an ad hoc
network. Given the current technology, such direct link can be
Bluetooth or Wi-Fi. At the beginning, each subscriber sends
his/her own price per unit transmission power, as well as the
probing signal to secondary buyers. Since the price information
contains only a few bits, we assume that it can be immediately
and perfectly received. The probing signal enables secondary
buyers to estimate the maximal achievable transmission rate. A
secondary buyer has to decide how much power he/she wants to
buy from each subscriber. Since scalable video coding is widely
used in mobile video streaming [5], secondary buyers can pur-
chase different coding layers of the video from different sub-
scribers and combine these streams during the decoding process.
Any higher layer mechanisms for such wireless ad hoc networks
such as bootstrapping algorithms [20], [21] can be applied to the
redistribution network and will not change the analysis in the
following sections.

Fig. 1. Example of a mobile video-stream redistribution network.

Assume that the th secondary buyer purchases a part of
the video stream from subscriber with transmission power

. We assume that there is a channel dedicated for transmis-
sions among users [22], [23] and this channel is a slow-fading
channel with channel gain ; the distance between them is

, and the variance of the additive white Gaussian noise at the
receiver’s side is [24]. Let be the set of subscribers from
whom the secondary buyers purchase the video. Assume that
the total bandwidth available for the video redistribution net-
work is , which will be evenly allocated to all subscribers
from whom secondary buyers purchase the video stream. The
signal-to-noise ratio (SNR) and the maximal achievable bit rate
of the video stream between and are

(1)

where is the capacity gap [25], [26].
For video streaming services, two commonly used objective

quality measurements are the video’s peak SNR (PSNR) and the
streaming delay. Here, we adopt the polynomial delay model as
in [27]. The overall delay at the secondary buyers’ end is the
network delay between the subscribers and the service provider
plus the maximal processing time of the subscribers. Here, we
assume the users for an ad hoc network, and the communication
is through direct links. Therefore

(2)

where is the number of subscribers from whom the sec-
ondary buyers purchase the video stream and is the number
of subscribers within the coverage of the same base station,
who are currently using the data service but cannot establish
direct link to secondary buyers or are not willing to redistribute
the video content. is the maximal number of users that the
network service provider can simultaneously afford.

is the network delay between subscribers and the ser-
vice provider, and is the processing time of subscriber .
From (2), we can see that, when the secondary buyer is pur-
chasing the video from more subscribers, both the network delay
and the processing delay of the video stream will be higher.
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Without loss of generality, in this paper, we use the two-pa-
rameter rate-distortion model [28], which is widely employed
in a medium-to-high bit rate situation, and the analysis for other
models is similar. The two-parameter rate-distortion model is
given as follows:

Distortion (3)

where and are two positive parameters determined by the
characteristics of the video content and is the rate of the video.

Note that a secondary buyer is able to purchase the video
from different subscribers in two different ways. Since the
log and exponential functions are convex over and the
exponential functions are nondecreasing over , it is easy to
prove that buying different layers from different subscribers is
a better choice since buying all layers from one subscriber is
just a special case. The total bandwidth for the redistribution
network is , which is equably shared among the subscribers
who are going to transmit. Hence, when the number of sub-
scribers from whom the secondary user purchases, i.e., N ,
increases, the bandwidth for transmitting each layer is smaller.
Given the bit rate in (1), the mean square error of the video
stream reconstructed by the secondary buyer is

(4)

If the subscribers do not share the bandwidth equally, then

where is the bandwidth allocated to subscriber . Al-
though we assume that the subscribers equally share bandwidth

, however, the following analysis can be applied to any
.

III. OPTIMAL STRATEGIES FOR THE

SINGLE-SECONDARY-BUYER CASE

In this section, we will first focus on the scenario where there
is only one secondary buyer, i.e., . we will model the be-
havior of the subscribers and the secondary buyer as a Stackel-
burg game [29], [30] and then analyze and prove the existence of
the equilibrium that leads to the optimal strategies for all users.
When there is only one secondary buyer, we can remove super-
script for the secondary buyer index and have

(5)

A. Video-Stream Redistribution Game Formulation

Since the video-stream redistribution network is a dynamic
system in which all users have high mobility that can join and
leave anytime, it is very difficult to have a central authority to
control the users’ behavior. In addition, since this redistribu-
tion is unauthorized and illegal, to minimize their risk of being
detected by the service provider, the participating users (sub-
scribers and secondary buyers) have no incentives to trust one
extra person and the central authority, and a distributed strategy
is preferred.

Given the fact that there is only one secondary buyer, we pro-
pose a Stackelburg game model to analyze how the secondary
buyer provide incentives for subscribers to redistribute the video
stream and find the optimal price and quantity that the secondary
buyer should offer. The ultimate goal of this analysis is to help
the content owner to set an appropriate subscription fee such that
the equilibrium of the game between the subscribers and the sec-
ondary buyers leads to negative payoffs. Thus, subscribers will
have no incentive to redistribute the video.

Before the game starts, each user, either a subscriber or the
secondary buyer, will declare his/her presence to all other users
within his/her transmission range.

• Game Stages: The first stage of the game is the sub-
scribers’ (leaders’) move. For each subscriber , he/she
will set his/her unit price per unit transmission power,
as well as his/her maximal transmission power .
Then, in the second stage of the game, the secondary buyer
(follower) will decide from whom to buy the video and how
much power he/she wants the subscriber to transmit. The
secondary buyer then pays each subscriber accordingly at
the price that the subscriber sets in stage 1.

• Utility function of the secondary buyer/follower: We first
define the secondary buyer’s utility function and study
his/her optimal action. The secondary buyer gains
rewards by successfully receiving the video with a certain
quality. On the other hand, has to pay for the power that
the subscribers use for transmission. Let be the power
that the secondary buyer decides to purchase from the
th subscriber , the channel gain between and is

, and the distance between them is . Therefore, given
the video rate-distortion model, the utility function of the
secondary buyer can be defined as

(6)

where is formulated as in (2), is a user-defined
constant measuring the received reward if the PSNR of
the reconstructed video is improved by 1 dB, and is
a constant measuring the user’s loss if the video stream is
further delayed by 1 s. is the maximal PSNR of
the video that can be obtained by subscribing to the service,
and is the price set by the content owner.

The aforementioned utility definition can be viewed as the
difference between the utility if the secondary buyer buys the
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video stream from the subscribers and the utility if he/she sub-
scribes to the data plan. If the secondary buyer has subscribed
to the data plan, then he/she will receive the video with the
maximal PSNR, the delay of the video stream will only be the
network delay, and the number of network users who are using
the data service will be in this case. The first term in (6)
reflects the visual quality difference between the subscriber’s
video stream and the service provider’s video stream. The
second term considers the delay difference between the sub-
scriber’s video stream and the service provider’s video stream.

was defined in (2), and is the delay profile
if the secondary buyer subscribes to the data plan and becomes
an extra subscriber in the network. The third term indicates
the price difference. The two constants and control the
balance between the gain and the loss of the secondary buyer.
Since the service provider can always offer better video quality,
i.e., and , all three
terms of (6) are not positive. If the secondary buyer is very con-
cerned about the video quality, i.e., and are high, then (6)
may be negative, and the secondary buyer will subscribe to the
data plan himself/herself. Note that this redistribution behavior
is not limited to video contents. For other digital contents, the
reward terms of (6) will change according to the types of the
content, but the payment term will remain the same.

• Utility functions of the subscribers: Each subscriber can
be viewed as a seller, who aims to earn the payment that
covers his/her transmission cost and also to gain as much
extra reward as possible. We introduce parameter , i.e.,
the cost of power for relaying data, which is determined
by the characteristics of the device that subscriber uses.
Hence, the utility of can be defined as

(7)

where is the power that subscriber uses to transmit to
the secondary buyer. Thus, subscriber will choose price

that maximizes his/her utility .
The choice of the optimal price is affected by not only the

subscriber’s own channel condition but also other subscribers’
prices, since different subscribers noncooperatively play and
they compete to be selected by the secondary buyer. Thus, a
higher price may not help a subscriber improve his/her payoff.

B. Equilibrium Analysis

The aforementioned video-stream redistribution game is a
game with perfect information, and the secondary buyer has per-
fect information of each subscriber’s action (the selected price).
According to backward induction [31], a game with perfect in-
formation has at least one equilibrium. Therefore, the optimal
strategies for both the secondary buyer and the subscribers exist
and can be obtained by solving the optimal decision for each
stage using backward induction.

1) Secondary Buyer’s Optimal Strategy: We analyze the
game using backward induction and first study the secondary
buyer’s optimal strategy for a given price list from the sub-
scribers. The secondary buyer aims to determine the optimal
power that should buy from each subscriber to maximize
his/her own utility defined in (6).

Let be the set including all subscribers who want to sell the
video to the secondary buyer. Given that the secondary buyer
purchases the transmission power from subscriber , the
secondary buyer’s received video rate is

(8)

where is the indicator function. Following the rate-distortion
model in (5) and the transmission rate given in (5), the first term
in (6) can be rewritten as a function of the transmission rate and
is equal to

(9)

where and is the video rate provided
by the service provider.

Combining (5) and (6) with the aforementioned equation, we
can formulate the utility function of as a function of

. According to [27], the network delay of the 3G network
is reciprocal to the network utilization percentage. Hence, the
optimal strategy for the secondary buyer is

s.t.

where

(10)

and is the network constant [27].
Note that, in (10) and (8), and

are piecewise continuous func-
tions and are not necessarily continuous cross different sets
of . Therefore, the optimization problem
cannot be solved at once for the whole feasible set and has
to be divided into subsets. Define subset as the set with
indexes of all the subscribers from whom the secondary
buyer purchases the video stream and among whom subscriber

has the largest processing delay. Let
be the corresponding power vector, where is the power that
the secondary user purchases from subscriber .

We can find the optimal power vector for subset
by making the first-order derivative of with respect to be
zero, i.e.,

(11)

where . Therefore, if the secondary buyer
purchases from any subscribers with the same maximal pro-
cessing delay, then

(12)
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is the optimal solution. Note that (12) can be proved to be the
unique maximizer for the subscriber set by finding the
maximizer on the boundary. From (12), given the same max-
imal processing delay and the same number of subscribers from
whom the secondary buyer is going to purchase, the second
buyer purchases less from subscribers with higher prices. Also,
the secondary buyer tends to purchase more from subscribers
with better channels.

After the maximizer over each feasible subset is obtained,
the secondary buyer should choose the one that gives himself/
herself the largest utility. Let be the optimal decision of the
secondary user; then, .

2) Subscribers’ Best Strategies: The optimal price
should satisfy

s.t. (13)

or be on the boundary, which means . Given a set
of subscribers , this problem is a convex optimization
problem, and the solutions can be numerically found. Note that
the subscriber is willing to redistribute the video stream only
if he/she can profit from the redistribution action. Therefore, a
subscriber’s claimed price should be higher than his/her cost.

C. Existence of the Equilibrium

In this section, we will prove that the optimal strategies of
subscribers in (13) and that of the secondary buyers in
(12) form an equilibrium. By definition, if is an equi-
librium, then is the best response of subscriber if other sub-
scribers choose and the secondary buyer chooses ,
and is the secondary buyer’s best response if subscribers
choose prices .

Note that the optimization problem in (10) can be only done
by dividing the problem into subproblems with different sets of
subscribers from whom the secondary buyer actually purchases
the video stream, i.e., . Therefore, here, we first prove that,
given any , (12) and (13) form an equilibrium for the sec-
ondary buyer and all subscribers in . Then, the actual equi-
librium is the one that maximizes the secondary buyer’s utility
among these solutions.

For any given , the optimization problem in (10) is equiv-
alent to

s.t.

where (14)

We first show that solution in (12) is the global optimum
of (14) by showing the objective function in (14) being a con-
cave function in . The second-order derivatives of in (14)
are

and

(15)

Moreover, is a continuous function of . Thus, for
, is strictly concave in and jointly concave over

as well. Therefore, solution in (12) is the global optimum
that maximizes the secondary buyer’s utility . Furthermore,
in the real scenario, the secondary buyer can gradually increase
power for each subscriber to reach the optimal solution
if there is information mismatch. For example, the knowledge
of channel coefficients may change slowly, and the secondary
buyer needs to adjust the strategy accordingly.

Then, we will show that, when other subscribers’ prices are
fixed, subscriber cannot arbitrarily increase price to get
higher payoff. Given , we take the first-order derivative of
the optimal in (12) with respect to price , i.e.,

(16)

which means that is a decreasing function of . Such
a phenomenon is reasonable since the secondary buyer tends to
purchase less from subscribers with higher prices. Furthermore,
when other subscribers’ prices and the power that the secondary
buyer purchases from each subscriber are fixed, the utility of
subscriber is a concave function of price . The first-order
derivative of subscriber ’s utility with respect to price is

(17)

and we can also derive the second-order derivative of subscriber
’s utility with respect to price , i.e.,

(18)

Therefore, is concave with respect to price . Due to the
concavity of , subscriber can always find its optimal price

. As a result, form an equilibrium.

IV. MULTIPLE SECONDARY BUYER CASE

In this section, we will extend the optimal strategy for the
single-secondary-buyer case to the scenario with multiple sec-
ondary buyers.

A. Game Model

Assume that there are subscribers and sec-
ondary buyers. The first two stages of the game are the
same as the single-secondary-buyer scenario, i.e., each sub-
scriber declares the price per unit energy , and then, each
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secondary buyer chooses the transmission power vector
, where is the power that

the secondary buyer plans to purchase from subscriber .
With multiple secondary buyers, each subscriber may receive
several power purchase orders from different secondary buyers.
In our paper, we let one subscriber transmit to one secondary
buyer only. Thus, in the multiple-secondary-buyer scenario, the
game model has an additional stage in which each subscriber

chooses the secondary buyer who purchases the largest
among all the secondary buyers. Thus, for buyer ,

the set of subscribers who will transmit video data to him/her is

(19)

Since each subscriber will answer to the secondary buyer who
purchases the highest power, subscriber ’s utility function is

(20)

For a secondary buyer , his/her utility becomes

(21)

where

(22)

B. Mixed-Strategy Equilibrium

Given the aforementioned definition of the utility functions,
our next step is to find the subscribers and the secondary buyers’
optimal decisions from which no one in
the system has the incentive to deviate.

Given the subscribers’ price list , for a secondary buyer
, the choice of the optimal power quantity is not only

influenced by the channel conditions and the distances between
subscribers and the secondary buyer but also depends on
the number of subscribers from whom can purchase the
video stream. For instance, if is the only secondary buyer
within the transmission range of , would always tend to
use the optimal power in (12). If has to compete with other
secondary buyers, he/she might need to increase offer or
switch to other subscribers.

The deterministic way to find the optimal strategy is to model
the competition among secondary buyers as an auction problem.
However, in a fast-changing mobile network, secondary buyers
may not have enough interactions to learn how much others
value the transmission power and the video bit stream. Also,
without a central authorization, the final bided price may not be
revealed to all subscribers. Instead, we focus on finding the op-
timal probability distribution over possible strategies and find
the mixed-strategy equilibrium of the game. We will use back-
ward induction to find the equilibrium. Backward induction first
considers any decision that is made just before the end of the
game, i.e., after each move stemming from this decision, the

game ends. If the player who makes such a decision rationally
acts, he/she will choose the best move for himself/herself.

When using backward induction, given the subscribers price
list for the unit transmission power , the secondary buyer

chooses the probability function that maximizes
his/her own payoff, i.e.,

(23)

where is as defined in (21), or equivalently, each secondary
buyer seeks that satisfies

(24)
where is a constant [31].

We use an iterative best response algorithm for the secondary
buyers to find the probability distribution
below.

1) First, calculate the equilibrium power of each sec-
ondary buyer based on (12) as a single secondary buyer.
Also, let for all .

2) For each , given , solve
(24), and update .

3) Repeat the aforementioned step until the solutions
converge.

We will show the convergence of the aforementioned algo-
rithm by simulations in the next section. After solving for
a given the price vector , the optimal pricing
can be similarly calculated by exhaustive search.

C. Simulation Results

In this section, we will show the equilibrium of the video-
stream redistribution game under different scenarios, as well as
the optimal price for the content owner.

1) Single Secondary Buyer: In our simulations, the sec-
ondary buyer is located at the origin (0,0), and the subscribers
are initially uniformly distributed in a rectangle of size 100
m by 100 m centered around the origin. The pricing game is
played 100 times, and each subscriber changes its location each
time the game restarts. For each subscriber, the location change
is normally distributed with zero mean and unit variance. The
direction of each subscriber’s location change follows the
uniform distribution. For all users, the maximal transmit power

is 100 mW, and the noise level is W. The capacity
gap is , the total available bandwidth is kHz ,

, and /ms, and for subscriber , his/her cost
per unit transmission power is a random variable following
uniform distribution in the range [0.05, 0.15]. The processing
delay of each subscriber is also a uniformly distributed
random variable in ms. We use the video sequence
“Akiyo” in Quarter Common Intermediate Format (QCIF) and
then encode it based on H.264 JM 9.0. The resulted rate-dis-
tortion parameter , and . We set the
maximal PSNR, which is provided by the original content
owner, as 35 dB, and the corresponding maximal bit rate for
Akiyo is kb/s . For simplicity and without loss of
generality, the subscription price for the video sequence is
set to be 0 so that the optimal price for the content owner can be
simply viewed as . It implies that, if the secondary buyer’s
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Fig. 2. Utilities of the users and the optimal video-stream price versus different
number of subscribers.

utility is negative, then he/she has incentives to purchase the
video stream from the content owner.

First, we let , and , which is the number
of subscribers who are currently using the data service but are
not in the redistribution network, varies from 1 to 5, i.e., the
network is not crowded and the number of subscribers is small
when compared with the maximal number that the network can
afford. In Fig. 2, we observe that, as the number of available sub-
scribers increases, the competition among subscribers becomes
more severe; thus, the optimal price for the content owner de-
creases. When there are no more than three subscribers, the av-
eraged utility of the subscribers does not vary much. This is be-
cause, in such cases, the secondary buyer is trying to purchase
the maximum video rate from all subscribers to increase
the reconstructed video’s quality, and these subscribers are not
competing with each other. However, when there are more sub-
scribers, the secondary buyer can easily get the video quality
close to , and subscribers compete with each other
to motivate the secondary buyer to purchase from himself/her-
self. Such a phenomenon is the nature of free market with more
sellers.

Next, we will examine the impact of network quality on the
optimal price of the video stream. From Fig. 2, we can see that
the competition among subscribers dominates their own utili-
ties, and the optimal price for the video stream (at the content
owner’s side) does not vary much when there are more than
three subscribers. Therefore, here, we set the total number of
subscribers as three, and Fig. 3 shows how the video bit rate

and the network usage influence the optimal video-stream
price. In Fig. 3, varies from 5 to 50, and a smaller

means that the current number of users in the net-
work is approaching the network capacity and the network is
more crowded. We select , 84, and 89 kb/s, and
the resulting maximum PSNRs are 30, 35, and 40 dB, respec-
tively. From Fig. 3, we can see that, if the service provider
can offer a good video quality that the redistribution network
cannot achieve, he/she can charge more for the streaming ser-
vice. Also, when the network is very busy with a smaller ,
the video delay dominates the video quality, and therefore, the
secondary buyer tends to purchase from a smaller number of
subscribers, but each subscriber can only provide limited video
quality. Hence, for the content owner, providing a better quality
streaming service is critical when the network is busy, and the
content owner has to maintain the network quality at a level

Fig. 3. Optimal video-stream price versus qualities of network and streaming
service.

that the quality of the video stream is not sacrificed. Further-
more, for a fixed , when the network delay is small enough,
e.g., is less than 10 for PSNR dB, the data ser-
vice price starts to degrade as increases. This is be-
cause the secondary buyer purchases the video from the redis-
tribution network. However, when the network delay is rela-
tively small, buying from more subscribers will not introduce
too much relay, and secondary buyers will be willing to pur-
chase from enough number of subscribers to reach the highest
data rate and the maximum possible . However,
compared with purchasing from the content owner, although the
video rate is the same, delay will be slightly larger. For instance,
when is larger than 20 and PSNR dB, the optimal
data service price starts to get slightly higher since buying from
subscribers introduces a slightly larger delay.

2) Multiple Secondary Buyers: We consider the system setup
where secondary buyers are uniformly distributed in a 100 m
by 100 m square centered around the origin. There are three
subscribers located at (25,10), (25, 10), and (0, 30), respec-
tively. Other system parameters are the same as in the previous
section.

In Fig. 4, we observe that, as the total number of secondary
buyers increases, the competitions among the secondary buyers
become more severe, and the optimal price for the content owner
increases. When there are fewer than three secondary buyers,
the averaged utility of the secondary buyers does not vary much
since each secondary buyer has a high probability to receive the
video from at least one subscriber. Comparing the utilities of
the subscribers and that of the secondary buyers when there are
more than three secondary buyers, it is clear that the increment
in the subscribers’ utilities is much smaller than the decrease in
the secondary buyers’ utilities. Such a phenomenon is because
secondary buyers compete with each other and some secondary
buyers may not even receive anything from the subscribers.

Fig. 5 shows the convergence speed of the iterated algorithm
to find the mixed strategy equilibria. It is clear that the algorithm
converges. With more users in the network, the algorithm takes
more iterations to find the equilibria.

Table I shows the optimal pricing under different simulation
setting. An example of single secondary buyer with three sub-
scribers is shown in Table I(a). From Table I(a), we can see
that the competition among the subscribers results in equivalent
equilibrium price and that the secondary buyer is purchasing an
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TABLE I
EQUILIBRIUM PRICE AND RATE OFFERED BY EACH SUBSCRIBER. (A) SINGLE SECONDARY BUYER. (B) THREE SECONDARY BUYERS

Fig. 4. Utilities of the users and the optimal video-stream price versus different
number of secondary buyers with three subscribers.

Fig. 5. Convergence of the iterated algorithm.

even amount of data from the subscribers. However, for sub-
scriber 2 whose transmission cost is significantly higher than
other subscribers, he/she has to set the price that is the same as
his/her cost and gain zero utility. Table I(b) shows an example of
three secondary buyers and three subscribers with the same cost
parameter as in Table I(a). Note that the equilibrium price set
by subscriber 3 is higher than that of the other two subscribers
because buyer 1 is located so far away from the other two sub-
scribers that subscriber 3 is buyer 1’s only choice if buyer 1
wants to receive the highest-PSNR video. In both examples, the

parameters (distance between users, bandwidth, number of sec-
ondary buyers, and maximal power) allow all secondary buyers
to receive the same-quality video stream from the subscribers so
that the dominating factor of pricing is the competition among
users.

V. OPTIMAL PRICING FOR THE CONTENT OWNER

In the previous sections, we have discussed the equilibria and
the optimal pricing strategy in the video redistribution network.
Our assumption there is that the content owner would like to set
price smaller than the equilibrium price in the redistribution
network. By doing so, the secondary buyers would have no in-
centives to purchase the video content from the subscribers and
will always subscribe to the data plan from the service provider.
However, such a strategy may not always maximize his/her total
income, i.e., the price times the number of subscribers. In this
section, we consider the scenario where the service provider’s
goal is not the prevention of video redistribution but rather the
maximization of his/her own income. We include the service
provider as a player in the game and find his/her optimal strate-
gies.

A. Pricing Game Model and Evolution Dynamics

Here, we model the video pricing problem for the content
owner as a noncooperative game, which can be played several
times. For example, in practical scenarios, the service provider
can always change the price if the total income is below the
expectation. Also, even when the price is fixed, mobile users
can change their mind on whether to subscribe to the data plan
or to purchase from other subscribers. Such natural repetitions
help the players find the equilibrium.

The basic elements of the game are listed below.
• Game Stages: In the video pricing game, the first mover

is the service provider, who first sets the price of the video
content . Then, mobile users who are interested
in the video content decide whether to subscribe to the
video streaming service. Since, based on the analysis in
Sections III and IV, the redistribution of the video content
is possible, mobile users also take into consideration the
possible payoffs that they can get in the redistribution
network when making the decision.

• Utility function of the service provider: Obviously, the
content owner’s utility is the price times the number of
subscribers, i.e.,

(25)
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where is the number of subscribers. With a higher price,
there will be fewer subscribers and a smaller value, par-
ticularly when it is possible for mobile users to receive the
video content from the redistribution network. Therefore,
the service provider cannot arbitrarily increase the data ser-
vice price and has to consider mobile users’ utilities.

• Utility function of the mobile users: Each mobile user
in has the choice to pay to subscribe to the data
plan or to purchase the content from other subscribers in-
stead. Assume that, among the mobile users,
of them subscribe to the data plan, and the rest of the

users decide not to. Let
and be the utilities that a subscriber and a sec-
ondary buyer can get from the redistribution network as in
Section IV, respectively.
If user decides to subscribe to the data plan, then his/her
utility contains two parts. The first part is from the sub-
scription to the streaming service, where he/she enjoys the
video content with higher quality and shorter delay at a cost
of the subscription fee. The second part is from the redis-
tribution of the video to secondary buyers. Hence, if user
chooses to become a subscriber, his/her utility is

(26)

where is user ’s gain-per-decibel improvement in
the PSNR of the reconstructed video and is user ’s
cost-per-second delay in receiving the bit stream. The
first input parameter in denotes the action
“subscribe.” Note that if or is
equal to 0.
If user chooses not to subscribe to the data plan, his/her
utility only comes from the redistribution network by
purchasing the video content from subscribers, i.e., he/she
gains nothing from the service provider and also pays
nothing to the service provider. Hence

(27)

where the first input “ ” in denotes the
action “do not subscribe.” Note that if

or is equal to 0.
To analyze this game, we first investigate the equilibrium

strategy of the mobile users given the data service price . As
mentioned before, the previously mentioned pricing game can
be repeatedly played, and mobile users may use their previous
experience to adjust their strategies accordingly. Therefore, a
stable strategy for all mobile users that is robust to mutants of
users’ strategies is preferred in the pricing game. To find the
stable equilibrium, we will use the evolutionary game theory to
analyze the evolution of the mobile users’ behavior and to derive
the evolutionarily stable equilibrium, which leads to the optimal
price of the video content.

The evolutionarily stable equilibrium, inspired by biology
mutations, guarantees the stability of the outcome of the game.
The evolutionary game theory focuses on the dynamics of
strategy change more than the properties of strategy equilibria,
which is the core of the traditional game theory. The evolution-
arily stable equilibrium provides guidance for a rational player
to approach the best strategy against a small number of players
who deviate from the best strategy and thus achieve stability.
The evolutionarily stable equilibrium is defined below.

Definition 1: An ESS is action in the strategy space such
that:

• equilibrium condition: ;
• stability condition: if ,

for every best response .
Since each mobile user is not certain of other users’ decisions,

he/she may try different strategies in every play and learn from
the interactions. For example, a mobile user may try to change
from “subscribe” to “do not subscribe” and observe whether
his/her utility received from the redistribution network is sat-
isfactory. During such a learning process, the percentage, i.e.,
the population share, of players using a certain pure strategy
(“subscribe” or “do not subscribe”) may change. The stable per-
centage of mobile users that chooses to subscribe to the data plan
is what we are interested in.

The population evolution can be characterized by replicator
dynamics as follows: at time , let denote the number of
mobile users that subscribe to the data plan, then the subscribers’
population state is defined as

(28)

and is the secondary buyers’
population state. By replicator dynamics, the evolution dy-
namics of at time is given by the following differential
equation:

(29)

where is the first-order derivative of with respect to
time , is the average payoff of mobile users who sub-
scribe to the data plan, and is the average payoff of all
mobile users. is a positive scale factor. We can see that, if sub-
scribing to the data plan can lead to a higher payoff than the
average level, the probability of a user switching to “subscribe”
will grow and the growth rate is proportional to the dif-
ference between the average payoff of subscribers and
the average payoff of all mobile users . The other intuition
behind is that can be viewed as the probability that one
mobile user adopts pure strategy “subscribe,” and the popula-
tion state vector is equivalent to a mixed
strategy for that player. If subscribing to the data plan results
in a higher payoff than the mixed strategy, then the probability
of subscribing to the data plan should be higher, and will
increase. The rate of the increment is proportional to the dif-
ference between the payoff of adopting the pure strategy “sub-
scribe” and the payoff achieved by using the mixed strategy

.
Given the evolution dynamics previously formulated, in the

following sections, we will derive the evolutionarily stable equi-
librium among mobile users in different scenarios.
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B. Analysis of Pricing Game With Homogeneous Mobile Users

A strategy is an evolutionarily stable equilibrium (ESS) if and
only if it is asymptotically stable to the replicator dynamics. In
the pricing game, when time goes to infinity, if (29) is equal
to zero, then is the evolutionarily stable equilibrium. In this
section, we first focus on the scenario where all mobile users
value the video equality in the same way and
and for all , . The scenario in which
different mobile users have different values of the video quality
will be analyzed in the next section.

Let PSNR , then
in the homogeneous case, the utilities of the subscribers and the
secondary buyers are

(30)

respectively. Note that mobile users are homogeneous and they
will have the same evolution dynamics and equilibrium strategy.
Given that is the probability that a mobile user decides to sub-
scribe to the data plan, the averaged utilities of the subscribers
and the secondary users are

(31)

respectively. The average utility of all mobile users is

(32)

Given the aforementioned equation, (29) can be rewritten as

(33)

In equilibrium , no player will deviate from the optimal
strategy, indicating in (33). We can then obtain the equi-
libria, which are , or . To
verify that they are indeed ESS, we will show that these three
equilibria are asymptotically stable, i.e., the replicator dynamics
(29) converges to these equilibrium points.

The first step is to guarantee that for all ,
which means that the sum of the probabilities of a mobile user
subscribing to the data plan is not equal to one. We can verify
it by summing up (29) with the reciprocal dynamic function of

, which is

(34)

Combining (29) and (34), we have

(35)
Recalling that and

, the aforementioned equation is equivalent
to . As a result,
for all in the evolution process.

Next, we need to show that all the nonequilibrium strate-
gies of the pricing game will be eliminated during the evolu-
tion process. If the replicator dynamics is a myopic adjustment

dynamic, then all nonequilibrium strategies will be eliminated
during the process. A dynamic is myopic adjustment if and only
if

(36)

where is the strategy space, is the population of users
adopting pure strategy , and is the average payoff
of users adopting pure strategy . For our optimal pricing game,
the strategy space is , where “ ” means “subscribe”
and “ ” means “do not subscribe” and be a secondary buyer.
Combining (29) with (34) and (32), we have

(37)

In (37), the last inequality is from the Jensen inequality, which
says with and

being a concave function of . Therefore, the reciprocal dy-
namics of the pricing game in (29) is myopic adjustment and
will eliminate all nonequilibrium strategies.

From (33), has the same sign as . Ac-
cording to the discussions in Sections III and IV, is a
decreasing function of , whereas is an increasing func-
tion of . Therefore, when goes from 0 to 1, the sign of
either does not change or changes only once.

1) When for all , in the evolution
process, for all , and (29) converges
to , which is an ESS.

2) If for all , in the evolution
process, for all , and (29) converges
to , which is the ESS in this scenario.

3) When has one and only one root ,
and (29) converges to ESS .

Therefore, for each price set by the content owner, we
can find the stable number of subscribers , from
which we can calculate the service provider’s utility. Hence,
given the ESS of the mobile users, by backward induction, the
service provider can easily choose the optimal data service price
to maximize his/her own payoff.

C. Analysis of Pricing Game With Heterogeneous
Mobile Users

In the heterogeneous scenario where different mobile users
value video quality differently, it is very difficult to represent
the average payoff of the subscribers and that of the secondary
buyers in a compact form. Hence, we start with the simple two-
person game and find its ESS. We then extend the ESS into the
scenario with multiple heterogeneous mobile users.
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TABLE II
MATRIX FORM OF THE PRICING GAME WITH TWO HETEROGENEOUS

MOBILE USERS

We first start with the two-player game. Assume that there are
two mobile users with different . If both of them
decide not to subscribe to the data plan, then they pay nothing
and gain nothing from the service provider. Also, since there are
no subscribers, the redistribution network does not exist, and
both players’ utilities are 0. If both decide to subscribe to the
data plan, then the redistribution network also does not exist ei-
ther, since there are no secondary buyers. In this scenario, the
utilities of player is

. If player 1 becomes a subscriber but player 2 de-
cides not to subscribe, then player 1’s utility is , and
player 2’s utility is . Here, and are the utilities that
users 1 and 2 get from the redistribution network as a seller
and a buyer, respectively, and their calculation is the same as
that in Sections III and V. When only player 2 subscribes to the
streaming service, the analysis is similar, and we can obtain the
matrix form of the game shown in Table II. In Table II, each
row represents user 1’s decision, and each column represents
user 2’s decision. For each entry in the table, the first term is
user 1’s payoff, and the second term is user 2’s payoff.

Let and be players 1 and 2’s probability of adopting
the pure strategy “subscribe,” respectively. Then, the expected
payoff of user 1 by always playing “subscribe” is

(38)

and the expected payoff of player 1 when he plays the mixed
strategy is

(39)

Then, we can write the reciprocal dynamics of as

(40)

and similarly

(41)

An equilibrium point must satisfy and ; then,
from (40) and (41), we get five equilibria (0, 0), (0, 1), (1, 0), (1,
1), and .

If we view (41) and (40) as a nonlinear dynamic system, then
the aforementioned five equilibria are ESSs if they are locally
asymptotically stable. The asymptotical stability requires that
the determination of the Jacobian matrix be positive and the
trace of be negative. The Jacobian matrix can be derived
by taking the first-order partial derivatives of (41) and (40) with
respect to and , and

(42)

where and
. By jointly solving and

, we can have the optimal subscription strategies for mobile
users under different scenarios.

1) When and , there is one ESS
(0, 0), and both users tend to not subscribe to the data plan.

2) When and
, there is one ESS (0, 1), and the strategy profile

users 1 and 2 adopt converges to (not subscribe, subscribe).
3) When and

, there is one ESS (1, 0), and user 1 tends to
subscribe, while user 2 tends to not subscribe to the data
plan.

4) When and , there is one ESS
(1, 1), and both users tend to subscribe to the data plan.

We can see that, when is higher with larger and ,
user 1 tends to subscribe to the data plan.

Based on the aforementioned discussion on the ESSs of the
two-player game, we can infer that the users who value the
video quality more (with higher and ) would intend
to subscribe to the data plan. Users with smaller and
would tend to choose “do not subscribe” and become secondary
buyers. However, if the data service price is too high so that
the subscription gives all users negative payoff, no player would
subscribe to the service.

D. Simulation Results

Here, we will verify the derived ESS and show by simulation
results the optimal price for the content owner if he/she wants
to maximize his/her utility. We first test on the homogeneous
scenario that there are six mobile users who are initially uni-
formly located in a 100 m by 100 m square centered around
the origin. All six mobile users have the same gain weighting
factors and /ms. The pricing game is
played 100 times, and each secondary buyer changes its location
after the game restarts. The distance between each secondary
buyer’s locations in two consecutive games is normally dis-
tributed with zero mean and unit variance. The direction of each
secondary buyer’s location change follows the uniform distribu-
tion. Other simulation settings are the same as in Section IV. We
use the video sequence “Akiyo” in QCIF as in the single-sec-
ondary-buyer scenario. The mobile users changes their strate-
gies and evolve according to (29).

Fig. 6 shows the content owner’s utility when the PSNRs of
the video stream are 30 and 40 dB, respectively. reflects
how crowded the mobile network is. It is clear that, if the content
owner provides better quality network or video, its payoff can
be increased. Also, for lower quality videos, the content owner’s
utility saturates earlier than high-quality videos with respect to
the network quality, which means that, if the content owner de-
cides to offer low-quality videos, to maximize its utility, it tends
to offer low-quality network as well.

Furthermore, in Fig. 7, we show the utility of the service
provider with heterogeneous mobile users with different eval-
uations of video quality. Similar to the settings in Fig. 6, there
are six mobile users who are initially uniformly located in a 100
m by 100 m square centered around the origin. In Fig. 7(a),
all six mobile users’ gain weighting factor for video quality

, but two of them have a delay gain factor ,
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Fig. 6. Utilities of the service provider versus network quality with
homogeneous mobile users.

Fig. 7. Utilities of the service provider versus network and video quality with
heterogeneous mobile users. (a) � � ���; � � ���, 0.15, 0.2. (b) � � ���,
0.15, 0.2; � � ���. (c) � � ���; � � ����, 0.2, 0.25. (d) � � ����, 0.2,
0.25; � � ���.

two of them have a delay factor , and the rest two
of them are with a delay factor . From Figs. 6 and
7, we can clearly see that providing higher quality network ser-
vice (larger ) gives the content owner a lot more gain
than providing low-quality network service. Also, the utility
difference between providing low PSNR dB and high
PSNR dB video qualities is lesser in Fig. 7(a) than

in Fig. 6. Furthermore, comparing the service provider’s utility
when with the case that in Figs. 6
and 7(a), we can see that providing better network quality gives
the service provider more gain in the scenario as in Fig. 7(a).
Such a result is because, in Fig. 7(a), the users care more about
the video delay than the users in Fig. 6, i.e., for the users
in Fig. 7(a) is higher. It suggests that, when the users are more
concerned about the streaming delay, providing better network
quality brings the service provider more gain than providing
better video quality. In Fig. 7(b), all six mobile users’ gain
weighting factor for streaming delay , but two of them
have a quality gain factor , two of them have a quality
gain factor , and the rest two of them are with a

Fig. 8. Convergence speed and content provider’s utility versus number of the
mobile users. (a) Utility versus number of users. (b) Convergence speed for
PSNR � �� dB.

delay factor /ms. Comparing Fig. 7(a) with (b), it is
obvious that, when some of the mobile users care more about
the video quality, providing competitive video quality gives lot
more gain to the service provider. Comparing Fig. 7(c) and (d)
with Fig. 7(a) and (b), we can also see that, when the users care
more about the video quality (higher and ), the content
owner’s utility will be higher since the content owner can pro-
vide better PSNR and less delay than the redistribution network
can serve. However, when is large, the service provider’s
utility will significantly degrade when the network quality is
bad.

Fig. 8 shows how the total number of mobile users within the
same range influences the service provider’s maximal utility.
To clearly show the factor of user density, the utilities shown
in Fig. 8 are normalized to that of the six users, i.e., the ser-
vice provider’s utility when there are 12 mobile users is divided
by half. We fix , , and /ms,
and the mobile users are randomly located in a 100 m by 100
m square. In Fig. 8(a), we can see that, when the number of
users is large enough (six users for PSNR dB; nine users
for PSNR dB), the utility of the service provider is in-
creasing with respect to the number of users. This is because
the bandwidth dedicated for redistribution is fixed, and when



LIN AND LIU: GAME-THEORETIC PRICING FOR VIDEO STREAMING IN MOBILE NETWORKS 2679

there are more users in the network, the bandwidth for each
subscriber is smaller. Hence, the transmission rate of each sub-
scriber is getting smaller and results in poorer video quality
when the total number of users is increasing. However, when
there are only a few users, (three users for PSNR dB; six
users for PSNR dB), the utility of the service provider
is slightly decreasing when the number of users is increasing.
This is because, when the total number of users is small, there
is not enough competition among the subscribers; therefore, the
data service price of the redistribution network is not very low
compared with that of the service provider. Hence, the users
will tend to directly subscribe from the content owner. Fig. 8(b)
shows the convergence speed versus the number of users in the
network when the video PSNR dB. We can see that, when
there are a lot of users (more than 18 users), the convergence
speed is fast because the users quickly realize that the bandwidth
of the redistribution channel is not enough for streaming video
to many secondary buyers, and when there are less number of
users, a larger number of users result in a more complicated
behavior in the redistribution network; hence, the convergence
speed is slower.

VI. CONCLUSION

In this paper, we have investigated the optimal pricing for mo-
bile video data by analyzing the video redistribution network be-
tween data-plan subscribers and nonsubscribers. We have first
analyzed the equilibrium price of the video stream redistributed
by the subscribers given the number of subscribers and sec-
ondary buyers. Consequently, the results provide a guideline for
the content owner to prevent the redistribution behavior and to
maximize the service provider’s payoff. The redistribution be-
havior has been modeled as a Stackelburg game, and we have an-
alyzed the optimal strategies of both subscribers and secondary
buyers. From the simulation results, a secondary buyer will tend
to buy more power from subscribers with better channel to max-
imize his/her utility. If the total number of the subscribers in-
creases, a secondary buyer can obtain a larger utility value, and
the payment to each subscriber is reduced due to a more se-
vere competition among the subscribers. Also, when the mo-
bile phone network is crowded, a secondary buyer tends to pur-
chase the video stream from fewer subscribers, and the price
for the streaming service can be higher. Nevertheless, the ser-
vice provider should always offer high-quality video stream to
prevent the illegal redistribution of video via such redistribution
networks.

Next, we have extended the model by including the content
owner in the game and letting the mobile phone users decide
whether to subscribe to the data plan. In the extended model,
we model the dynamics between the content owner and the
users who are interested in the video content, and study how
the content owner (the service provider) sets the price for the
data plan to maximize his/her overall income. We have used the
evolutionary game theory to analyze the evolution of the mobile
users’ behavior and have derived the evolutionarily stable equi-
librium, which leads to the optimal price for the content owner
to maximize his/her total income.
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