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Abstract—Recent development in multimedia processing and
network technologies has facilitated the distribution and sharing
of multimedia through networks, and increased the security
demands of multimedia contents. Traditional image content pro-
tection schemes use extrinsic approaches, such as watermarking
or fingerprinting. However, under many circumstances, extrinsic
content protection is not possible. Therefore, there is great interest
in developing forensic tools via intrinsic fingerprints to solve
these problems. Source coding is a common step of natural image
acquisition, so in this paper, we focus on the fundamental research
on digital image source coder forensics via intrinsic fingerprints.
First, we investigate the unique intrinsic fingerprint of many
popular image source encoders, including transform-based coding
(both discrete cosine transform and discrete wavelet transform
based), subband coding, differential image coding, and also block
processing as the traces of evidence. Based on the intrinsic fin-
gerprint of image source encoders, we construct an image source
coding forensic detector that identifies which source encoder is
applied, what the coding parameters are along with confidence
measures of the result. Our simulation results show that the
proposed system provides trustworthy performance: for most test
cases, the probability of detecting the correct source encoder is
over 90%.

Index Terms—Image source coding, intrinsic fingerprint, multi-
media forensics.

. INTRODUCTION

ITHIN the past decades, the explosive combination

of multimedia signal processing, communications,
and networking technologies has facilitated the sharing of
digital multimedia data and enabled pervasive digital media
distribution. Digital images, in particular, have been widely
used in news reporting, insurance claim investigation, crim-
inal investigation, and many other applications. However, the
digital nature of information also allows individuals to access,
duplicate, or manipulate information beyond the terms and
the conditions agreed upon, for example, with the assistance
of popular image editing software such as Adobe Photoshop.
Therefore, the traditional faith that a photograph tells the truth
is diminished for digital images, and it raises critical issues
about the legitimacy and authenticity of the image.
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Image forensics offers the ability to verify the credibility and
validate the origin of digital images. Conventional forensic tech-
nologies use proactive and additive means to protect multimedia
content by hiding additional information in the original signal.
For example, the idea of the trustworthy camera was proposed
in [1] to make the trustworthiness of digital images accountable,
where a digital watermark was embedded into the image at the
instance of its acquisition. Any later tampering of the image can
be detected based on the changes on the digital watermark. Sim-
ilarly, in traitor-tracing digital fingerprinting, user identification
information is embedded in each distributed copy to identify the
corresponding user and trace the source of the illicit copies [2].
However, they require that all camera manufacturers agree upon
a common standard, and for some real applications, it may be
too expensive and impractical to implement such extrinsic pro-
tection mechanisms.

Often it is not possible to enforce content protection through
any extrinsic means. However, for each copy of multimedia
data, its acquisition, processing, and transmission process
constitutes a unique data path. To ensure that multimedia
data are processed by the appropriate entities for intended
purposes only, its data path must be validated by identifying
each of its steps: acquisition, source coding, channel coding,
transmission, and other possible processing at the user’s side.
Each operation leaves its unique artifact in the image. Such
intrinsic “fingerprints” are naturally and inherently generated
throughout the chain of content acquisition and processing, and
they provide evidence to help identify the origin and detect the
alterations of multimedia content. Thus in the scenarios where
extrinsic content protection techniques are not applicable,
image forensics via intrinsic fingerprints offers technologies to
detect alterations and identify the source of the image without
any proactive protection mechanisms. Fig. 1 illustrates the
difference between the methodologies that rely on extrinsic
operations to protect multimedia content versus those that
employ intrinsic fingerprint analysis. With extrinsic protection
of multimedia, an additive signal is embedded into the image
before distribution and is available to the forensic detector,
while with intrinsic-fingerprint forensics, the only input to the
forensic detector is the received image in a raw format.

Image forensics via intrinsic fingerprints can be applied to
identify many types of image processing. For instance, it is often
useful to determine the source of image acquisition: a digital
camera or a postediting software. Since most image acquisition
devices reduce the data size by applying lossy encoders to the
images, there are prior arts in the literature which identify the
camera model based on the JPEG quantization table [3]. Foren-
sics on other steps in image compression such as block size
estimation [4]-[7] via the intrinsic fingerprints have also been
studied in the literature. In this paper, we build a framework
to integrate the image source encoding forensics that provides a
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Fig. 1. Multimedia security using extrinsic means versus intrinsic information.

general methodology and fundamental research of image source
coding identification.

There exists some literature devoted to identify the unique
features associated with each form of image processing, for
example, resampling [8], inconsistent noise patterns [9], copy
and paste [10], double compression [11], [12], etc. Inconsistency
in higher order statistics, such as the bispectrum and bicoherence
[13], were used to identify contrast changes such as gamma
correction [14] and other nonlinear operations on images [15].
Inconsistency in lighting conditions [16], geometry invariants,
andconsistency of cameracharacteristics[17] werealso proposed
to detect image alteration. The work in [18] used wavelet-
based features to detect image tampering. Physics-motivated
features were introduced to distinguish photographic images
and computer graphics [19]. To identify the source of an
image, pixel defects [20] and image sensor noise [21] were
used to uniquely identify the source camera. Features such
as RGB-pair correlation and neighbor center of mass [22]
were extracted as features and a support vector machine were
used to train classifiers to identify the camera. In [23] and
[24], color filter array and color interpolation were used to
classify the camera brands.

This paper investigates the identification of source coding al-
gorithms which is often an unavoidable step in image acquisi-
tion and transmission. Each compression scheme leads to dif-
ferent types of distortions. These distortions become an intrinsic
part of the compressed image, acting like a fingerprint. By dif-
ferentiating amongst these distortion types, we can identify the
scheme and estimate the parameters used to compress a digital
image.

Source coder identification has many applications in multi-
media security, coding, and communication, particularly when
we lack access to the original signal or the device. As mentioned
earlier, we can verify the datapath integrity of multimedia data.
For example, consider two datapaths A and B. Image X4
travels over datapath A and image Xp travels over datapath
B. Each datapath consists of different digital cameras used
for image acquisition, different source coders, and different
transmission channels. We can certify the datapath taken by
possibly examining evidence of a particular color filter array
used by the camera, the intrinsic fingerprints produced by the
source coder, and traces of error concealment due to channel
errors or network failure.

Also, digital image integrity is of paramount importance in
many forensic scenarios. The Scientific Working Group on

Image Source Encoders

N

Transform Subband Coding Differential
Coding / \ Image Encoders
DCT- DWT- DCT LPC
Based Based Subband Subband

Fig. 2. Tree-structure of the image coding forensics system.

Imaging Technologies—part of the International Association for
Identification, an organization devoted to forensic science—cites
potential legal ramifications regarding the use of digital image
processing in forensic contexts [25]. For example, compression
is often an unavoidable step in the image acquisition process.
The compression history of an image may become relevant in
judicial proceedings, since one could argue that compression
artifacts had obscured relevant information.

Unfortunately, the compression algorithm and settings may
not be immediately obvious, especially if performed automati-
cally as a result of the acquisition device (e.g., compression in
digital cameras). In this case, when the compressor is unknown
and possibly proprietary, is there any way to determine the com-
pression algorithm? This information is critical in subsequent
quantitative image analysis, where the use of image compres-
sion can degrade the accuracy of object measurements. Such
inaccuracies could lead to an incorrect diagnosis from a med-
ical image, or an incorrect statement of guilt regarding a sub-
ject involved in a crime as viewed by a surveillance camera.
Through nonintrusive forensic analysis, we can identify the na-
ture of the processing module in the absence of the original
image, thereby offering some measure of confidence regarding
subsequent image analysis.

The primary objective of this paper is to introduce a forensic
methodology that uses intrinsic fingerprints to detect traces and
identify the history of source coding operations applied to dig-
ital images. Section Il formulates the problem and introduces
the system model. In Section 111, we address the identification
of preprocessing applied to the image before compression. In
Section 1V, for each source encoder studied in this paper, we
analyze its unique intrinsic fingerprint and propose a similarity
measure to quantify the likelihood that an image is compressed
using this source coding scheme. In Section V, we propose an
image source coding forensic detector that uses intrinsic finger-
prints to identify the source coding scheme used to compress an
image, estimate the coding parameters, and provide confidence
measurement of the detection results. Section V1 shows simula-
tion results. Conclusions are drawn in Section VII.

Il. PROBLEM FORMULATION AND SYSTEM MODEL

Given a received and decoded image which has been source-
encoded once, we analyze the image in order to answer which
compression scheme was used to compress the image, if any
preprocessing such as blocking was performed before compres-
sion, what the parameters of the coding scheme are, as well as
how confident we are of the detection and estimation results.
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Fig. 3. Overview of the proposed system model for source coder identification.

To answer the above questions, the first step is to catego-
rize the major source encoders. Today, discrete cosine trans-
form (DCT)-based encoders [26] such as JPEG are the most
widely used image encoding schemes. Discrete wavelet trans-
form (DWT)-based encoders like JJEG2000 and SPIHT are also
widely used in modern image source coding, and they can be
viewed as special realizations of subband encoders which share
the same intrinsic fingerprints. Therefore, to make our system
more generalized, it is important to investigate the common in-
trinsic fingerprint of subband coding [27]. Differential image
encoders remove the redundancy among pixels by spatial fil-
tering. This technology is still in use today as seen in the in-
traprediction mode in H.264 [28], video interframe prediction,
and lossless JPEG. Therefore, to provide a fundamental tech-
nology, our forensic system includes these three source coding
schemes, as shown in Fig. 2.

Fig. 3 illustrates our proposed system model. All of the test
images used throughout this work are digital grayscale images
with eight bits per pixel. Given a test image S, we develop an it-
erative source coder identification and verification system. The
first step of the identification process is to identify any prepro-
cessing performed upon the image before compression. Then,
for each candidate source coding scheme in Fig. 2, we look for
its trace in the test image and calculate its similarity measure
(that is, the likelihood that the test image was compressed using
this source coding scheme). We then select the one that gives the
highest similarity measure and estimate the coding parameters.

The next step is to verify our estimation result. If we select
the correct source coding scheme and accurately estimate all
of the coding parameters during the classification stage, then if
we compress and decompress the input test image S using the
selected source coding schemes with the estimated parameters,
then the output S will be identical to the test image S except for
rounding errors. When the difference between S and S is smaller
than a threshold, we stop the search process and output the con-
fidence measure of the system. Otherwise, we take this source
coding scheme out of our search space, select another candidate
in Fig. 2 with the second highest similarity measure, and repeat
the classification and the parameter estimation processes again
until we find one solution that satisfies the stopping criteria. If

we search over the entire image coding scheme set and none of
them can pass the verification stage, the system outputs the error
message “No source coding scheme detected.”

I1l. IMAGE BLOCK PROCESSING IDENTIFICATION

As shown in Fig. 3, to begin the forensic process, we must first
address any form of preprocessing performed upon the image.
Detection of preprocessing is an obvious and crucial first step,
because any inaccuracies at this stage could possibly invalidate
all subsequent tests. The most common form of image prepro-
cessing is block processing, which we focus on here.

Existing work in block processing measurement is not tai-
lored to answer this question due to strong assumptions placed
upon the input data. Works such as Minami and Zakhor [4], Tan
and Ghanbari [5], Liu and Bovik [6], and Gao et al. [7] assume a
priori that the image data is compressed through an established
scheme such as JPEG or MPEG with some known block size.
In a forensic scenario, we have no idea of the block size. Given
this problem, we need a scheme that does not rely on such strong
assumptions regarding the block size.

A. Intrinsic Fingerprint Analysis

Blocking artifacts may appear as a result of coarse quantiza-
tion of individual blocks either in the spatial domain or the trans-
form domain. Since quantization is performed on each block
separately, a boundary will appear between the blocks as an
abrupt change in the luminance value. For an original, unquan-
tized image, this artifact is unlikely to appear because natural
images have smooth variations, on the whole. Considering the
luminance discontinuities present across block boundaries, the
gradient magnitude image should reveal the presence of block
artifacts.

Therefore, after computing the gradient magnitude of each
row and column in a block-processed image, we expect to find
peaks at every block boundary position. We can further reveal
these peaks by averaging the gradient magnitudes of all rows (or
columns) together. Let X be the input image of size M x N,
and X (4, 7) be the luminance value of pixel (z,j), where 7 €
{0,...,M —1}and j € {0,..., N — 1}. First, obtain the gra-
dient image along a desired direction. For example, we operate
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Fig. 4. Signals m.and , for JPEG-compressed Lena with a block size of 16.

along the vertical direction to obtain D (4, j) = X (¢,7) — X (i —
1,7), i€ {l,...,M—1}.

Then obtain the average of the gradient magnitude by aver-
aging along the orthogonal direction. For example, we now av-
erage along the horizontal direction, where

Ui = 5 Y D))

Let B be the block size, if it exists. If block processing is present,
the one-dimensional signal d will have peaks at multiples of the
blocksize (i.e., ati = kB, for k € Z). To extract these peaks, we
use median filtering as follows. Let d,,, be the median-filtered
version of d: d,,, () = median {d(: — 1),d(3),d(i + 1)}. If we
subtract d,,, from d itself, we will obtain the peaks in d which
we call d,, the intrinsic block artifact fingerprint

dp(i) = d(i) = dp (0)- o)

Fig. 4 shows the signals d, d,,,, and d,, for the 512-by-512 test
image Lena which has been JPEG-compressed using a block
size of 16 and standard JPEG compression table. We expect d,,
to resemble an impulse train, where the magnitude of the im-
pulses is determined by the strength of the block artifacts, and
the period of the impulses is determined by the block size.

One problem we face is the presence of spurious peaks in
the signal d, as a result of edges from objects in the image.
Note that an edge will have the same gradient direction along its
entire length. However, the gradient direction of block artifacts
will oscillate. Therefore, we perform the following test. Let the
signal ¢(7) be a sum of the gradients

N-1
1

(i) = > DG,j), i€{l,....M—-1}. (3

=0

A peak in this signal will indicate the presence of an edge.
Therefore, we find ¢, = ¢ — c,,,, where c,, is a median-filtered
version of c. Then we set d,,(7) = 0 for all ¢, where ¢, (i) > ,
for some suitable threshold 7. For the images used in our data
set, the value 7 = 5.0 maximizes the number of correctly esti-
mated block sizes among all images tested. Images which use
more or less than eight bits per pixel may require a different
threshold,; this value can be chosen by the system designer based
upon the nature of the images processed.

B. Block Size Estimation

Fig. 5 shows the block diagram for our detection scheme.
The periodicity of d, allows us to use a maximum-likelihood
estimation scheme used in pitch detection [29] to determine the
period of the signal d,. Suppose that d, consists of a known
periodic signal s plus zero-mean i.i.d. Gaussian noise

dy(i) = s(i) + i),

Let us express the signal s as a periodic repetition of a signal q
with period B

ief{l,...,M-1}. 4

s(1) = q(i mod B). (5)

To obtain the maximum-likelihood estimate, we maximize the
conditional probability density function p(d,|s, o, B) with re-
spect to the signal parameter s, the noise variance g2, and the
period B. It can be shown that the estimated period B that max-
imizes p(d, s, o%, B) is achieved by minimizing the estimated
noise variance 62(B) as a function of B

B= argmin g62(B). (6)

This is our estimate for the block size along one dimension (e.g.,
the vertical or horizontal dimension). We repeat the process for
the other dimension to obtain the estimate for the block size in
both dimensions.
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Fig. 5. Block diagram for the block artifact fingerprint detection and block size estimation scheme.

C. Intrinsic Fingerprint Detection Performance

After having found an estimated block size 13, we still have
to answer if block processing is truly present. Consider a simple
detection problem with the following two hypotheses:

Hy:d, =n, Hy:d, =s+n. )
Detection of H; implies that our block size estimate is correct,
while H, corresponds to an incorrect block size estimate or
an absence of block processing. Actual execution of a likeli-
hood ratio test requires exact knowledge of s which we do not
have. In theory, we can use the signal-to-noise ratio (SNR) as
a measure of our detection accuracy. The SNR is defined as
SNR = P, /o2. Unfortunately, we only have estimates of s and
o2 instead of their true values. Calculating the SNR using the
signal estimate § is inaccurate since it relies on the accuracy of
the signal estimate itself. Furthermore, since s is not exactly pe-
riodic, the variance in the peaks of s will erroneously contribute
to our estimate of the noise power. In practice, we will use the
observed signal-to-noise ratio (OSNR) for our measure of de-
tection accuracy, defined as

Py
OSNR = —% ®)

o2

where 2 is a modified estimate for the noise power which does
not include the variance of the peaks in s, i.e,

7= > (dp(i) — 3(i; B))” ©)

where the set 7 = {1,...,M — 1\{kB|k € Z}, Z(i; B) =
{kB+ilkez}n{1,...,M — 1}, and

§(i;B):W > dy(D).

1eZ(4;B)

(10)

Fig. 6(a) shows plots of the block size estimation results for
the standard test images Lena. We test for block sizes 4, 8, 16,
32, and 64. To create our block-processed images, we use JPEG
compression with quality factors from 20 to 90. Each circle rep-
resents correct estimation, and each star represents incorrect es-
timation.

We see that correct estimation varies as a function of both
PSNR and block size. Naturally, the strength of block artifacts
decreases as image quality increases. As block size increases,
the signal s has fewer periods, and therefore, our estimate s is
less accurate. For example, as shown in Fig. 6(a), the estimation
accuracy for compressed Lena with block sizes of 4 and 8 in the
horizontal direction is 100%, while estimation for block sizes

of 16, 32, and 64 fails for PSNR above 41.1, 39.5, and 38.6 dB,
respectively. Nevertheless, estimation is still accurate at high
PSNRs where the artifacts are not perceptually visible. Fig. 6(b)
is a close view of the high frequency part of a JJEG compressed
Lena. It is clear that there is no visual blocking effect presence,
however, as shown in Fig. 6(a), our block size estimation works
perfectly.

We also plot the receiver operating characteristic curve to
illustrate our detection accuracy as a function of the OSNR
threshold in Fig. 7 which shows the probability of detection Pp
versus the probability of false alarm Pr for the test in (7). As the
threshold varies, correct estimates with an OSNR that lies above
the threshold are hits. Incorrect estimates with an OSNR that lies
above the threshold are false alarms. This plot uses detection re-
sults from 24 digital images of natural photographs with varying
frequency characteristics, all with size 512-by-512. We test for
the same block sizes and quality factors mentioned previously
and also across both dimensions. We see that our scheme can ob-
tain a Pp of 95.0% for a Pr of 7.4%, and a Pp of 98.0% for a
Pr 0f 16.5%. In practice, we can decrease our OSNR threshold
to accommodate a higher Pp. The cost of a miss (i.e., detecting
no block artifacts when in fact block processing is present) can
be significant in a forensic setting where subsequent forensic
tests depend on some block size estimate.

As for the purpose of block size estimation, considering the
horizontal and vertical estimations of the block sizes separately
can provide a guideline of how good the identification method
is. The horizontal and vertical estimations of the block size
might not agree. However, the block processing can use rec-
tangle block sizes such as 4 x 8 and our source-coding forensic
detector has no prior information that the preprocessing block
is square (2 x 2,4 x 4,...) or not. Hence, when the source-
coding forensic detector is identifying the block processing, it
will estimate the block size horizontally and vertically sepa-
rately, and combine the estimation results. For instance, if the
horizontal block-size estimation is 4 and the vertical estima-
tion is 8, then the source-coding forensic detector will adopt the
block size 8 x 4.

IV. INTRINSIC FINGERPRINT ANALYSIS OF SOURCE ENCODERS

As shown in Fig. 3, after estimating the block size, if any, the
forensic detector can start to determine which kind of source
encoder used by utilizing the intrinsic fingerprint of each image
source encoder as trace of evidence. In this section, we analyze
the intrinsic fingerprints of subband coding, transform coding,
and differential image coding. For each type of encoder, we in-
vestigate the intrinsic fingerprint and define a similarity measure
to determine how likely this encoder has been applied.
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Fig. 6. Block size estimation results of Lena.
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Fig. 7. Performance of the block size estimation algorithm.

A. Transform Coding

In this section, we discuss the most commonly used trans-
forms, DCT and DWT.

1) A Unified Approach for Transform Coding: DCT-based
image compression is usually a block-based processing of the
image, where the whole image is decomposed into nonoverlap-
ping blocks of the same size (for example 8-by-8 in JPEG base-
line) and each block is transformed and compressed separately,
while DWT-based source coding schemes often consider the
whole image as a single block, apply wavelet transform to the
entire image, and decompose it into different frequency bands
of different statistics. We unify the transformation mechanisms
of DCT coders with that of embedded DWT by drawing some
insight from [30], which treated each 8-by-8 block of transform
coefficients in a DCT-block coder as a 64-subband decomposi-
tion of the original 8-by-8 image block. In other words, we take
the (0,0) coefficients of all blocks as a subband, treat all (0,1)
coefficients as another subband, and so on.

After tiling all of these subbands together, we obtain a co-
efficient subband representation similar to the one shown in

Fig. 8. Left: Reorganization of 4-by-4 DCT coefficients into subbands. Right:
Histograms for each coefficient subband.

Fig. 8. In this figure, a discrete cosine transformation with block
size of 4 was applied to the original uncompressed image Lena.
All of the DCT coefficients of the same frequency are com-
bined into one subband, and these subbands are tiled together.
For example, the subband on the first row and first column of
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Fig. 9. Example coefficient histograms of two images previously compressed with different schemes. Left: DCT coefficient histogram of position (0,1) after JPEG
decoding. Right: Wavelet coefficient histogram of the level-4 LH subband after SPIHT decoding.

the left image is tiled from the DC coefficient, and the sub-
band on the first row and second column is tiled from all the
(0,1) DCT coefficients. The corresponding subband histograms
are shown in the right figure in Fig. 8. Therefore, we can state
that for both types of transforms, if we perform the appropriate
subband decomposition and then observe the histogram within
each subband, we should find histogram peaks. We can apply
the same concept to JPEG2000 images which have been coded
using tiling. JPEG2000 allows the use of optional tile sizes of al-
most any size; subsequent coefficient transformation and quan-
tization is performed on each tile separately. Nevertheless, if we
obtain the wavelet coefficient subbands from each tile and then
reorganize them as mentioned earlier, we arrive at a single co-
herent wavelet decomposition.

2) Intrinsic Fingerprint Analysis: First, we consider a DCT
block coder. During quantization, the DCT coefficients are dis-
cretized. During inverse quantization, the quantized coefficients
are multiplied by the quantization step size. As a result, we ex-
pect to find peaks in the histogram at multiples of the step size
and zeros elsewhere. However, as noted by [31], due to the trun-
cation and rounding affects caused during reconstruction, the
histogram peaks do not appear as perfect impulses, as shown in
Fig. 9, where Fig. 9(a) shows the DCT coefficient histogram of
position (0,1) of JPEG compressed Lena.

Next, consider an embedded DWT coder. Each embedded
coder has its own algorithm for deciding the order in which the
zerotree is traversed and the coefficients are transmitted. Since
the coefficient values are bit-plane encoded, the transform coef-
ficient histogram of the previously compressed image will also
contain peaks at the designated reconstruction values, though
not necessarily evenly spaced. Fig. 9(b) shows the coefficient
histogram at the level-4 LH subband of a SPIHT-coded image
with a bit rate of 1.0 bit per pixel. Although quantization is used
inall source coding schemes to reduce the bit rate, we could only
observe such coefficient histogram peaks in the domain where
quantization is applied. For an image that is compressed using
subband coding or differential image coding, its DCT or DWT
coefficient histograms do not contain such peaks. In addition, for
a DCT-compressed image, such peaks do not exist in its DWT

coefficient histogram either, and vice versa. Therefore, DCT or
DWT coefficient histogram peaks can be used to identify trans-
form-compressed images, as well as to differentiate DCT-com-
pressed images from DWT-compressed ones.

3) Intrinsic Fingerprint Detection: Having discussed a
major difference between the transform coefficient histograms
of transform-compressed and nontransform compressed im-
ages—the presence of histogram peaks, which is the intrinsic
fingerprint of transform coding—we would like to characterize
this difference between different types of histograms using a
distance metric.

Our goal is to compare the transform coefficient histogram for
the observed image against the transform coefficient histogram
of nontransform compressed image (i.e., no quantization in the
transform domain), and decide how similar the two histograms
are. Although the original coefficient histogram is irretrievable,
we can approximate the original coefficient histogram using
a least-squares approximation. Research has previously shown
that both the histograms of DCT coefficients and wavelet coeffi-
cients of the transform coded image can be accurately modeled
using a generalized Gaussian distribution [32]-[34]. Therefore,
let p; (k) be the probability mass function of the original coeffi-
cients within a subband, modeled as follows for simplicity:

pi(k) = vi exp(Ailk[") (11)
where i is the index of the subband, ~; is a normalization con-
stant, A; < 0, and v; is the same exponent found in the general-
ized Gaussian distribution.

Given a fixed v, linear least-squares can be used to solve for
~ and \. However, this procedure is sensitive to small perturba-
tions in the input data, and it cannot optimize all three param-
eters simultaneously. To overcome these problems, we will use
a nonlinear least-squares method to obtain the best fit. The op-
timization problem is formulated as follows:

min > (p(k) = v exp(AR"))” (12)
Tk
sty >0, A< 0,v > 0. (13)
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(a) DPCM encoded image

Fig. 10.

We use a modified Newton method [35] which calculates the
Newton direction using a modified Hessian which approaches
the true Hessian, and we use a backtracking line search. Fur-
thermore, we incorporate the linear equality constraints on -,
A, and v into the optimization problem by using the log-barrier
function

(p(k) =7 exp(A&]"))? = p(log(7) +log(—A) +log(v))

(14)
where p is some regularization parameter. This method of ex-
ponential curve fitting is relatively fast and offers a very high-
quality model of coefficient histograms. Fig. 10(a) illustrates
the performance of this estimate for an ac coefficient histogram
with a bin width of 0.5 from a differential pulse code modulation
(DPCM)-compressed image transformed using the DCT, while
Fig. 10(b) illustrates the same fitting method applied to an ac co-
efficient histogram after DCT-compression has been performed.
It is clear that the distance between the true histogram and the
least-squares fit is much larger in Fig. 10(b) than in Fig. 10(a).

Now we can calculate how likely the image was coded using
the transform coder by utilizing the fact that the least-square fit
smooth reconstruction of the histogram will have less correla-
tion with the original histogram if the image is quantized in the
transform domain. Hence, we first calculate the correlation Cr;
between the original histogram and the smooth least-square-fit
reconstructed histogram for the ith subband: let p; (k) be the his-
togram of the coefficients in subband 7 from the reconstructed
image and p; (k) be the least-square fit

_In®en®)
N RGIRmG]

Intuitively, (15) represents the cosine value of the angle between
the vectors p; and p;.

Note that if the least-square curve fits well with the histogram
of the received image, then the image is less likely to be quan-
tized in the transform domain. In other words, the image which
we are testing is mostly not compressed by the transform en-
coder. We define the similarity measure for transform coding in
the ith subband M; to measure how likely the image is com-
pressed using transform coding

min
VAV

(15)

2

M; =1~ p;. (16)
If M; is0, which means Cr; = 1 thus the histogram in subband ¢
is the same as the histogram of the image that is not compressed
using transform encoder. In other words, the image which we
are testing is less similar with the image that has passed through
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(b) DCT-compressed image with step size of 15

Coefficient histogram of DPCM-encoded and DCT-encoded image, along with the nonlinear least-squares curve fit.

the transform encoder. We compute M; for all coefficient sub-
bands for which sufficient information exists. Our final simi-
larity measure M .,sform 1S the median of all of these M; values
in the case of block transforms, or a weighted mean in the case
of wavelet transforms. For the wavelet transform, we weight the
similarity value for each subband by the size of the subband be-
fore averaging. This weighting guarantees equal contributions
from all frequencies in the final similarity measure.

The complete transform method identification algorithm is
summarized as follows.

1) Choose a transform to test (e.g., DCT, DWT with Haar
basis, DWT with 9/7 basis, etc.). Transform the image. Ob-
tain the subband representation of the coefficients.

2) For each coefficient subband, obtain the histogram. (If in-
sufficient information exists, move on to the next subband.)

3) Approximate the histogram of the original, unquantized
coefficients using nonlinear least-squares estimation.

4) Calculate the similarity measure based on the correlation
between the observed and the approximated original his-
togram.

5) Take the median value (for block transforms) or weighted
mean (for wavelet transforms) of the similarity measures
from all subbands for which sufficient information exists.
This value is the final similarity measure. If this value is
high, then the transform method tested is the one used
during compression.

Before successfully decomposing the image into subbands,
the DWT filter lengths and coefficients should be known to
the forensic detector. Fortunately, there are only few DWT
filter banks in the common DWT-based source encoders such
as JPEG 2000 and SPIHT. Hence the forensic detector can
examine over all possible DWT filter banks.

4) Intrinsic Fingerprint Detection Performance: First, we
show the effectiveness of our method in discriminating between
images which have been compressed using transform-based
encoders versus images which have been compressed via
nontransform based encoders. In Fig. 11, the four starred plots
show the similarity measure for four different images, Lena,
Baboon, Peppers, and Pentagon, which have been compressed
using JPEG (i.e., a DCT with block size of 8 x 8) for quality
factors between 40 and 97. The four triangled plots at the
bottom represent the similarity measure for images which
have gone through nontransform-based compression. Here we
have tested over other encoders studied in this paper, such as
subband and DPCM, and both show similar trend. Hence in
Fig. 11, we use the H.264 intraprediction encoder. Note that
there is a clear distinction between the two sets of lines, even
for a quality factor as high as 97. This separation is achieved
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Fig. 11. Similarity measure as a function of quality factor for test images when
using transform encoder or nontransform encoders.

thanks to the quality of the nonlinear least-squares estimate of
the original coefficient histograms. When least-squares esti-
mation tries to approximate a histogram of coefficients from a
transform-compressed image using a generalized Gaussian dis-
tribution, the curve fit will be poor and the difference between
two histograms will be high, as shown earlier in Fig. 10(b).
Also, the difference between the JPEG-compressed images and
images that were compressed by other source encoders does
not decrease as the quality factor increases. As long as the
image was quantized in the transform domain, its coefficient
histogram will be like Fig. 10(b) independent of the quanti-
zation table is used. Although a higher quality factor implies
a smaller quantization step, the coefficient histogram of the
compressed image still contains noticeable spikes and is very
different from the least-square estimated histogram.

B. Subband Coding

1) Intrinsic Fingerprint Analysis: The subband encoder first
passes the image through a bank of filters, called the analysis
filter bank, and then applies decimation (downsampling) to de-
compose the image into several frequency bands of different
statistics and different perceptual importance. Then, each fre-
quency band is encoded independently using one of several en-
coding schemes (for example, differential image coding or DCT
coding). At the decoder’s side, after decoding each frequency
band, the decoded values are upsampled and passed through
a bank of synthesis filters to generate the final reconstructed
image. There are four sources that will leave traces in a subband-
coded image: lack of perfect reconstruction, aliasing, quantiza-
tion, and signal ringing effect.

When choosing the filter banks, longer filters are often
preferred to minimize the aliasing in the later decimation step.
However, longer filters also produce more serious ringing
effects which are the spurious oscillations in the vicinity of
major edges. When addressing the tradeoff between aliasing
and ringing, most subband coding schemes use longer filters
since aliasing is much less desired than the ringing effect. In
addition, ringing exists in all kinds of subband coding no matter
which encoding schemes are used to compress each frequency

band, and it makes ringing the ideal candidate as the intrinsic
fingerprint for all subband coding schemes. DWT coding can
be viewed as a special case of subband coding, so it also leaves
the same ringing trace in the decoded image. However, in
recent development of image source encoders, DWT encoders
forms a special and widely used family with standard wavelet
bases, so we consider DWT encoders separately using the more
significant intrinsic fingerprints as discussed in Section I\V-A.1I.

2) Similarity Measure: From the previous analysis, the
ringing effect is the most significant trace of all subband coding
schemes. To extract the trace of ringing effect, we first apply a
deringing algorithm to the input image S to generate a deringed
image S,.. The deringing algorithm is maximum-likelihood
based which fits the major edges to flat surface model, as in [36].
We then subtract the deringed image S,. from the test image S
and calculate the difference image S; = S — S,.. The ringing
effects often happen on the edges of the image; therefore, if S
is a subband-encoded image, then the energy of the difference
image S, should concentrate on the edges. If S was compressed
using other schemes, then we would observe that the energy of
S is evenly distributed all over the entire image. Fig. 12 shows
an example of extracting the trace of ringing effect. Fig. 12(b)
shows the difference image S; = S — S,.. If we compare S,
with the edge map S. shown in Fig. 12(a), we can see that
the energy of S, concentrates on the edges. Fig. 12(c) is the
difference image S; = S — S,. of a DPCM-coded Lena with
the same SNR, 36 dB. It is clear that the energy of Fig. 12(c)
does not concentrate on the edges, which shows the observed
phenomenon used to classify subband coding does not happen
in other coding schemes.

To quantify the energy distribution of S; on edges, we define
the similarity measure of the subband coding schemes as

[I(S = Sr) * Sl

vV NeHS - S’I‘H .

In (17), S. is the binary edge map of S, where a pixel equals 1
if it is detected as an edge pixel and has value O otherwise. N,
is the number of pixels that are detected as edge pixels. In (17),
the numerator calculates the energy of the edge pixels in the dif-
ference image S — S,., and the denominator is the normalization
term for fair comparison with other similarity measurements. A
larger value of Mg, phana gives us a higher confidence that the
test image S was subband coded.

Fig. 13(a) shows the simulation results on the similarity mea-
sures of four test images that are encoded using different source
coding schemes. The lines that are marked with triangles are
the similarity measures of the images compressed by subband
encoders, and the starred lines are the similarity measures of
those compressed using other encoders (DCT and DPCM). It
is obvious that there is a significant gap between the similarity
measure values of these two groups, and we can easily distin-
guish subband-coded images from nonsubband-coded images.
The trace of subband coding is stronger when the test image has
lower PSNR when compared with the original uncompressed
image.

The typical subband coding will further encode the lowest
frequency subband (the LL band) using other image coding
methods, and the trace of the LL band encoder can also be ex-
tracted from the image. In our system, we include two LL-band

Msubband = (17)
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Fig. 12. Example of similarity measure calculation of subband coding.

encoders: the DCT encoder and the differential encoder as
shown in Fig. 2. We will apply the analysis in Sections IV-A
and IV-C based on S,. to give the similarity measure of the two
subcategories in the subband category.

C. Intrinsic Fingerprint of Differential Image Coding

Although differential image coding (DPCM) is one of the
very first image encoding methods, it is still applied to current
image and video coding standards. The basic idea of differential
image coding is to remove the strong correlation between adja-
cent pixels by representing a pixel as a linear combination of its
neighbors and then quantize the residue in the spatial domain.

Today, the most popular lossy application of DPCM is the
intraprediction mode of H.264 [28]. H.264 mainly uses DCT
to remove the pixel redundancy and the intraprediction in spa-
tial domain as an assistant tool. As a result, the fingerprints
of H.264 must be different from that of the traditional differ-
ential image coding since they use different tools to remove
the pixel redundancy. Therefore, in this section, we propose
two different forensic methods to identify traditional differen-
tial coding schemes and the H.264 intraprediction.

1) H.264 Intraprediction: Prior to encoding, the luma in-
traprediction in H.264 first subtracts some reference samples
from previously encoded and reconstructed blocks. Then, a pre-
diction block (either 4 x 4 or 16 x 16) is formed based on the
reference samples. There are nine modes for 4 x 4 blocks and
four modes for 16 x 16 macroblocks [37]. The residue is trans-
formed by integer DCT bases followed by a uniform scalar
quantization. The quantization step is the same for all coeffi-
cients within the same macroblock. If necessary, the decoded
image will go through a deblocking filter which only effects the
pixels on the block boundaries.

« Intrinsic Fingerprint Analysis: Since residues are quan-
tized in the integer DCT domain, we expect to observe
the same histogram peaks as transform coding if we cal-
culate the residue correctly. However, the boundary pixels
of the decoded image might go through linear filters to re-
duce the blocking effect, thus changing the value of refer-
ence samples in the decoded image. As a result, the peaks
do not appear as perfect impulses, as shown in Fig. 14.
Since the value of the boundary pixels might be changed
by deblocking filters, the residue of the boundary pixels are

not included in the histogram calculation. Fig. 14 shows
the histogram in transform domain of the 64 residues in a
16 x 16 macroblock under the 4 x 4 intraprediction mode
0. The boundary pixels in Fig. 14(a) are not deblocking fil-
tered, thus Fig. 14(a) shows perfect peaks. Fig. 14(b) is the
histogram of the transformed residue pixels after the whole
H.264 reconstruction process (including deblocking). It is
clear that the peaks are not perfect impulses but still much
higher than other values, in comparison to the Fig. 14(c),
which is calculated from a JPEG-compressed image.
Similarity Measure: Since the intrinsic fingerprint of the
H.264 intraprediction is the presence of histogram peaks in
transform domain, we would like to characterize the differ-
ence between different types of histograms using a distance
metric as in Section 1V-A3.

We first need to obtain the estimated residues of each
block (or macroblock). In the encoding process of H.264
intraprediction, the prediction mode is chosen to minimize
the sum of residue energy. Therefore, we apply the same
algorithm to estimate the prediction mode by choosing the
one that has minimal square error.

The similarity measure of the macroblock i is defined and
calculated as in (16). We calculate the similarity measure
M; over all the macroblocks of the whole image, and
choose the median value as the similarity measure of
differential image coding M 5 4.

We test on four images, Lena, Baboon, Peppers, and
Pentagon, that are compressed using H.264 intraprediction
mode with macroblock 16-by-16 and prediction mode
0. The similarity measures M 5 4 versus quantization
step are shown in Fig. 13(c). The lines marked with stars
are for H.264-compressed images, and the lines with
triangle markers represent those transform-coded and
subband-coded images. From Fig. 13(c), it is obvious
that there is a significant gap between M 5 4, of these
two groups. Therefore, M 5 4 can accurately identify
H.264-coded images from images compressed using other
source coding schemes studied in this paper. Note that the
similarity measure does not decrease significantly when
the quantization step decreases. Even with small quantiza-
tion step sizes, the residues are still discretized. When the
quantization step size becomes very small (for instance,
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